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Abstract. This paper explores a specific category of optimization
management models tailored for wireless communication systems.
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a fuzzy relation multi-objective programming approach. We define
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termed the feasible index set algorithm, which is designed to determine
the optimal lexicographic solution to the problem, demonstrating
polynomial computational complexity. Previous studies have indicated
that the emission base stations within wireless communication systems
can be effectively modeled using a series of fuzzy relation inequalities
through max-product composition. This topic is also addressed in our
paper. Wireless communication is widely employed across various
sectors, encompassing mobile communication and data transmission.
In this framework, information is transmitted via electromagnetic
waves generated by fixed emission base stations.
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1 Introduction

The concept of Fuzzy Relation Equations (FREs) was initially introduced by Sanchez [25], who explored
the characteristics of their solutions. In a subsequent study [5], the Fuzzy Relation System (FRS) was
utilized for image and video compression and reconstruction, with encoding and decoding processes
articulated through FREs. In this context, the author introduced the ideas of maximum and minimum
solutions to delineate the solution set for Max-Min FREs, and proposed a variety of solution method-
ologies was suggested to deepen the theoretical understanding of the subject [8, 18]. Furthermore, the
max-min composition framework was extended to include max-t, addition-min, and other operational
forms [6, 14, 32].

Li and Yang [14] notably introduced the addition-min Fuzzy Relation Inequalities (FRIs) to effec-
tively model a peer-to-peer file-sharing system, highlighting that the addition-min operator does not
conform to the max-∗ composition operator. Building on the concept of the pseudo-minimal index,
Yang [28] developed a pseudo-minimal-index algorithm designed to minimize a linear objective func-
tion constrained by addition-min fuzzy relation inequalities. This work sought to enhance the findings
presented in [9, 12, 28].

Fuzzy relation mathematical programming refers to optimization problems involving fuzzy relation
equations or inequalities as constraints. Early research in this field was conducted by Wang who intro-
duced fuzzy relation elasticized linear programming focusing on max-min composition. This approach
optimizes variables and parameters constrained within a lattice framework defined by the interval [0, 1],
utilizing lattice operators such as ∨,∧. The researchers applied a conservative approach to derive a
minimal solution set, allowing them to identify the optimal solution for the specified problem. Recent
studies, e.g., [21, 22], have continued to explore this issue.

In a separate investigation, researchers analyzed fuzzy relation linear programming, breaking down
the primary problem into sub-problems for detailed examination. One sub-problem was solvable via
straightforwardmethods, while the other was reformulated as a 0-1 integer programming problem, which
was addressed using the branch-and-bound technique. This approach enabled the identification of opti-
mal solutions without the need to compute all minimal solutions associated with the constraints. Further
research has refined and popularized this solution method.

In the context of fuzzy relation nonlinear optimization problems, genetic algorithms are frequently
employed to search for approximate optimal solutions. However, more direct methodologies have also
been proposed for certain objective functions. For instance, Cao in [7] introduced a solution approach
to the fuzzy relation geometric programming problem associated with max-min composition. Abbasi
Molai in [1, 2] studied the quadratic programming problem with fuzzy relations under max-product
composition, restructuring the original problem into a series of general quadratic programming problems
by determining the minimal solutions of the FRIs, which were subsequently analyzed and solved.

Peeva et al. [20] presented an analytical approach for addressing fuzzy linear systems of equations
utilizing max-product composition. Their method yields a universal algorithm for finding the greatest
solution and the complete set of minimal solutions when the system is consistent (i.e., solvable). Addi-
tionally, Shieh proposed an innovative technique for deriving minimal solutions in max-product fuzzy
relation systems, based on the principle of minimal covering [26]. This technique not only facilitates
the extraction of the initial minimal solution, but also employs a backtracking procedure for identifying
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all subsequent minimal solutions. Our proposed algorithm improves upon this by negating the need to
assess all minimal and maximal solutions, significantly reducing computational effort while offering
enhanced solution accuracy and manageable computational complexity.

Wireless communication is extensively utilized across various sectors, including mobile commu-
nication and information transmission. This paper focuses on optimization management models for
wireless communication. Our proposed model involves transmitting information via electromagnetic
waves from fixed Emission Base Stations (EBSs). We aim to optimize the radiation intensity of these
EBSs, recognizing that while higher radiation intensity can enhance communication quality; it also raises
potential health concerns.

In a recent advancement building upon prior research in fuzzy relation geometric programming,
Yang et al. [30] investigated the single-variable term semi-latticized geometric programming constrained
by max-product FREs. This formulation was inspired by peer-to-peer network systems, aiming to mini-
mize the maximum dissatisfaction levels experienced by terminals within the framework. The objective
functions associated with these optimization problems are characterized as specific geometric functions,
and due to their nonconvex nature and inherent complexity, general geometric objective functions have
received limited exploration. Furthermore, it is essential to note that real-world data tends to be discrete
rather than continuous, with statistical data often consisting of discrete values corresponding to tangible
phenomena. This study specifically examined a monomial geometric programming objective function
constrained by bipolar max-product fuzzy relation conditions [4].

In a recent study, researchers utilized FRIs in conjunction with max-product composition to develop
a model for the Wireless Communication Terminal (WCT) system. The primary objective of this inves-
tigation was to minimize the maximum radiation intensity, intentionally avoiding the prioritization of
the relative importance of the terminals, particularly the emission base stations.

The following model was formulated based on this objective:

Min Z(x) = min x1 ∨ x2 ∨ . . . ∨ xn
s.t. AoxT ≥ bT .

(1)

Here, the constraint AoxT ≥ bT governs the model, where x = (x1, x2, . . . , xn) represents the intensi-
ties of electromagnetic radiation associated with the terminals.

For the purposes of this model, all terminals are considered to have equal importance. To address
this optimization issue, the researchers initially compared the characteristics of max-product FRIs with
those of max-product FREs, as described in prior studies [16, 23, 24, 31]. The concept of egalitarianism
was elaborated upon in another study [10], highlighting that in practical management scenarios, it may
be essential to assign distinct priority levels to terminals, reflecting their relative significance.

This paper presents a lexicographically optimal solution for a multi-objective programming prob-
lem constrained by max-product FRIs, thereby contributing to optimization management in wireless
communication systems. To address this issue, we developed a Feasible Index Set (FIS) algorithm.

The organization of this paper is delineated as follows: Section 2 elaborates on the implementation
of the model within the wireless communication system, introducing each variable and symbol utilized.
Section 3 discusses the findings related to max-product FRIs, introduces the concept of a FIS, and pro-
vides a comprehensive examination of the sequential progression of the FIS algorithm, which is designed
to find the unique lexicographic optimal solution for the specified problem. We aim to demonstrate both
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the feasibility and effectiveness of the algorithm in this context. Section 4 offers an in-depth discussion
of the FIS algorithm, while Section 5 presents a numerical example to illustrate its application.

2 Wireless Communication System Model

This study examines a multi-objective programming problem constrained by max-product fuzzy relation
inequalities:

Min {z1(x), z2(x), . . . , zn(x)} = {x1, x2, . . . , xn}
s.t. AoxT ≥ bT ,

(2)

The optimization management framework for the Emission Base Station (EBS) in a wireless com-
munication system is characterized by a set of fuzzy relational inequalities that employ max-product
composition, as illustrated in Equation (2) and Figure 1. This system incorporates variables x =

(x1, x2, . . . , xn), matrices A = (aij)m×n, vectors b = (b1, b2, . . . , bm), and parameters xj , aij and bi
all constrained to the range [0, 1] with bi > 0, for all i ∈ I = {1, 2, . . . ,m} and j ∈ J = {1, 2, . . . , n}.
Here, I and J represent two distinct index sets.

Figure 1: Wireless communication base-station system.

In a specified geographical region, there are n Electronically Beam-Steerable (EBS) antennas la-
beled E1, E2, . . . , En. These antennas are responsible for transmitting informational data through elec-
tromagnetic waves at uniform radiation intensity. To ensure effective communication, it is imperative
that the radiation intensity of these electromagnetic waves meets specific established standards. The
region contains m designated Testing Points (TPs) denoted as T1, T2, . . . , Tm, each with a minimum re-
quirement for the electromagnetic radiation intensity, denoted as bi for i = 1, 2, . . . ,m. When a terminal
device, such as a mobile phone, receives the electromagnetic signal at a TP, it connects to the EBS that
exhibits provides the highest radiation intensity at that particular point.

Let the jth EBS emit electromagnetic waves with a radiation strength of xj . When these electro-
magnetic waves reach the ith TP, their radiation intensity denoted as rij , decreases to a value that is less
than or equal to xj . Consequently, there exists a real number aij ∈ [0, 1] such that rij = aijxj .

We can therefore express the subsequent system:
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a11x1 ∨ a12x2 ∨ . . . ∨ a1nxn ≥ b1,

a21x1 ∨ a22x2 ∨ . . . ∨ a2nxn ≥ b2,
...

am1x1 ∨ am2x2 ∨ . . . ∨ amnxn ≥ bm.

(3)

The radiation intensity xj and the communication quality requirement bi are generally constrained
for all i ∈ I and j ∈ J , allowing for normalization within the unit interval [0, 1]. If there exists an index
i0 such that bi0 = 0, removing the corresponding inequality involving i0 from the system (3) will not
affect its solution set. Consequently, it is typically assumed that aij , xj and bi are all within the range
[0, 1], with bi > 0 in the System (3). Essentially, System (3) represents a set of max-product FRIs and
can be expressed as follows:

AoxT ≥ bT , (4)

where

A = (aij)m×n ∈ [0, 1]
m×n

, x = (x1, x2, . . . , xn) ∈ [0, 1]
n
, b = (b1, b2, . . . , bm) ∈ (0, 1]m.

The aim of this study is to reduce the harmful effects of electromagnetic radiation on human health by
minimizing the intensities of electromagnetic wave radiation, denoted as variables x = (x1, x2, . . . , xn).
This can be formulated as a vector optimization model, which addresses the issue of

Min Z(x) = min {x1, x2, . . . , xn}
s.t. AoxT ≥ bT .

(5)

Simultaneously minimizing all variables is often infeasible, making it necessary to prioritize them
based on a specific hierarchy. In this study, we establish a priority order of the variables: x1 → x2 →
· · · → xn. This indicates that the primary objective is to minimize x1 first, followed by x2, and so
on, with xn being the last variable to minimize. The primary focus of this research is to determine the
lexicographic optimal solution for the Problem (5). The set X is characterized as the n-dimensional
Cartesian product of the closed interval [0, 1], which can be formally represented as follows:

X = [0, 1]
n
= {x = (x1, x2, . . . , xn) |0 ≤ xj ≤ 1, j = 1, 2, . . . , n} . (6)

3 Max-Product Fuzzy Relations

It is essential to recognize that some equations related to fuzzy relations may not align with the cor-
responding maximum and minimum solutions. Consequently, it is crucial to discuss relevant findings
regarding the resolution of max-product FRIs before addressing the issue outlined in Equation (2).

Definition 1. [20] States that for any two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be-
longing to the set X , x ≺ y if and only if

(1) x1 < y1 or
(2) x1 = y1 and x2 < y2 or
...
(n) x1 = y1, . . . , xn−1 = yn−1 and xn < yn.

(7)
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Remark 1. Based on Definition 1, it is straightforward to verify that for any x, y ∈ X , the relationship
x ⪯ y holds if and only if

(1) x1 ≤ y1 and
(2) If x1 = y1 then x2 ≤ y2 and
...
(n) If x1 = y1, . . . , xn−1 = yn−1 then xn ≤ yn.

(8)

Denote X = [0, 1]
n and X(A, b) =

{
x ∈ X | AoxT ≥ bT

}
.

Definition 2. [3, 25] A solution x̂ ∈ X (A, b) is referred to as the maximum solution of AoxT ≥ bT if
x ≤ x̂ for all x ∈ X(A, b). A solution x̆ ∈ X (A, b) is considered a minimal solution to AoxT ≥ bT

when x ≤ x̆ implies that x = x̆ for any x ∈ X (A, b).
Obviously, if the maximum solution of (3) exists, it is unique, with x̂ = (1, 1, . . . , 1).

Theorem 1. [31] Let AoxT ≥ bT be a system of max-product FRIs. This system is consistent if and
only if x̂ = (1, 1, . . . , 1) ∈ X (A, b). Furthermore, when the system is consistent, the complete solution
setX (A, b) can be determined by identifying a singular maximum solution along with a finite quantity
of minimal solutions, specifically

X (A, b) =
⋃

S∈F (S)

{x ∈ [0, 1]
n | x̆ ≤ x ≤ x̂} , (9)

where F (S) represents the set of all minimal solutions of (3).
The feasible domain defined by the max-product FRIs (3) can be thoroughly described by the so-

lution set X (A, b). Indeed, possessing knowledge of all minimal solutions allows for expressing the
solution set X (A, b). The primary challenge lies in computing all minimal solutions for the system
represented by (3). However, this task is classified as NP-hard. Consequently, we propose a method-
ology aimed at identifying all potential minimal solutions, rather than exclusively focusing on minimal
solutions.

Proposition 1. Let x1, x2 ∈ X . If x1 ≤ x2, then x1 ⪯ x2.

Definition 3. [20] A feasible solution x∗ ∈ X (A, b) is considered a lexicographically optimal solution
to Problem (2) if and only if x∗ ⪯ x for every x ∈ X (A, b).

Proposition 2. [10] If x is a solution of the System (3) and x′ ≥ x, with x′ ∈ X , then x′ is also a
solution of System (3).

Corollary 1. Let x̂ = (1, 1, . . . , 1) ∈ X . If x1, x2 ∈ X (A, b), then x1 ∨ x2 ∈ X (A, b).

Lemma 1. If both x1 and x2 are solutions of system (3), and x1 ≤ x2, then for every y ∈ [x1, x2], y is
also a solution of system (3).

Proof. The proof is straightforward.

Definition 4. [22] For any two vectors x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T ∈ [0, 1]
n, we

define x ≥ y (or x ≤ y) if xj ≥ yj (or xj ≤ yj) for each j = 1, 2, . . . , n.
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Lemma 2. [22] Let x, y ∈ [0, 1]
n. If x ≤ y, then Z1 (x) ≤ Z1 (y).

Theorem 2. [13, 17, 27] If System (3) is considered consistent, then it has a solution to equation (3),
i.e. x̂ ∈ X (A, b) and conversely.

The initial theorem asserts that the consistency of System (3) can be assessed by analyzing its po-
tential maximum solution x̂ = (1, 1, . . . , 1). Following this, alternative approaches for evaluating the
consistency of System (2) will be presented. The terms “discrimination index set” and “discrimination
matrix” are derived from definitions outlined in previous research [6, 15]. These concepts have been
adapted for use in the relevant fuzzy relation inequality systems.

The following statement provides a concise expression:

Ji = {j ∈ J | aij ≥ bi} , (10)

for every i ∈ I . The sets J1, J2, . . . , Jm are referred to as the discrimination index sets of System (3).
Additionally, this is denoted as π = J1 × J2 × . . .× Jm.

Theorem 3. [11, 29] If System (3) is consistent, then Ji ̸= ∅ for every i ∈ I and conversely.

From Theorem 3, we can derive the following:

Corollary 2. If System (3) is consistent, then π ̸= ∅ and conversely.

Definition 5. [31] A matrixD = (dij)m×n is called the discrimination matrix of System (3) if and only
if for every i ∈ I , j ∈ J

dij =

 bi
aij
, j ∈ Ji,

0, otherwise.
(11)

Theorem 4. [31] The consistency of System (3) is defined by the condition that each row in the matrix
D must contain at least one non-zero entry.

Definition 6. [10] Consider the matrix D, and S = (sij)m×n, where sij ∈ {0, dij}. If the matrix S is
regarded as a solution matrix for System (3), then every row of S contains a distinct non-zero element,
and conversely.

Let F (S) represent the collection of all matrices that satisfy System (3). If S is an element of the
solution set F (S) for System (3), we define the vector xS =

(
xS1 , x

S
2 , . . . , x

S
n

)
as follows:

xSj = ∨
i∈I

sij , j ∈ J. (12)

Theorem 5. [10] If S represents a solution for System (3), then the vector xS defined in Equation (12)
serves as a solution to System (3).

The vector xS , as delineated by Equation (12), is referred to as the solution associated with the
solution matrix S in the context of System (3).

Theorem 6. If Equation (3) is considered consistent, then the resulting set of solutions is as follows:

X(A, b) =
⋃

S∈F (S)

{
xS ≤ x ≤ x̂

}
. (13)

The solution denoted as xS for a given set S, and x̂ = (1, 1, . . . , 1) represents the optimal solution for
the System (3).
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Proof. Considering the propositions: (Let S be a solution matrix for the discrimination matrix C, and
let xS be defined as (12). Then xS is a solution of System (3)) and (Let x0 be an arbitrary solution of
System (3). Then, there exists a solution matrix S and its corresponding solution xS such that xS ≤ x0).
As indicated in [20], this theorem can be readily demonstrated.

In the next section, we introduce the concept of a FIS, which serves as the foundation for developing
an algorithm known as the FIS algorithm. This algorithm is intended to identify the unique lexicograph-
ically optimal solution for the Problem (2). The following section has been adapted from reference [10],
with some modifications in symbols and variables.

It is assumed that the system represented by Equation (3) is aligned with the discrimination matrix:

D =


d11 d12 . . . d1n

d21 d22 . . . d2n
...

... . . .
...

dm1 dm2 . . . dmn

 . (14)

Let
j∗i = max {j ∈ J | dij > 0} , i ∈ I, (15)

and
Ij = {i ∈ I | j∗i = j} , j ∈ J. (16)

then, we arrive at the index set {Ij | j ∈ J}.

Definition 7. In Equation (3), let the variable x = (x1, x2, . . . , xn) be an element of the setX . The set

{i ∈ I | ai1x1 ∨ ai2x2 ∨ . . . ∨ ainxn ≥ bi} , (17)

is termed the FIS of x and is denoted by Ix.

Theorem 7. Let x, y ∈ X with x ≤ y, then Ix ⊆ Iy .

Proof. If i ∈ Ix, then ai1x1 ∨ ai2x2 ∨ · · · ∨ ainxn ≥ bi. Furthermore, the inequality x ≤ y indicates
that each component of vector y is greater than or equal to the corresponding component of vector x
for all indices j ∈ J . Since all elements in vector a are non-negative for all indices j in set J , we can
conclude that

ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≥ ai1x1 ∨ ai2x2 ∨ · · · ∨ ainxn.

From the inequalities established above, we deduce that ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≥ bi. Therefore,
Ix ⊆ Iy .

Definition 8. Let x1, x2, . . . , xt ∈ X . We define y = x1 ∨ x2 ∨ · · · ∨ xt = (y1, y2, . . . , yn) as follows:

yj = x1j ∨ x2j ∨ · · · ∨ xtj . (18)

Lemma 3. Let x1, x2, . . . , xt ∈ X , then xk ≤ x1 ∨ x2 ∨ · · · ∨ xt applies to each k ∈ {1, 2, . . . , t}.

Lemma 4. Let x1, x2, . . . , xt ∈ X , then

i. Ix1∨x2∨···∨xt = Ix1 ∪ Ix2 ∪ · · · ∪ Ixt
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ii. x1 ∨ x2 ∨ · · · ∨ xt is a solution of System (3) if and only if Ix1 ∪ Ix2 ∪ · · · ∪ Ixt = I .

Proof. (i) By Lemmas 3 and associated theorem it is evident that Ixk ⊆ Ix1∨x2∨···∨xt is applicable
to any k ∈ {1, 2, . . . , t}. As a result, we have Ix1 ∪ Ix2 ∪ · · · ∪ Ixt ⊆ Ix1∨x2∨···∨xt . To complete
the proof, we must verify that Ix1∨x2∨···∨xt ⊆ Ix1 ∪ Ix2 ∪ · · · ∪ Ixt . Let i ∈ Ix1∨x2∨···∨xt .
Denote x1 ∨ x2 ∨ · · · ∨ xt = y = (y1, y2, . . . , yn), then ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≥ bi.
There exists a j0 ∈ J such that aij0yj0 ≥ bi. Additionally, there is a k0 ∈ {1, 2, . . . , t} such that
xk0
j0

= x1j0 ∨ x2j0 ∨ · · · ∨ xtj0 . Therefore, we conclude that ai1x
k0
1 ∨ ai2x

k0
2 ∨ · · · ∨ ainx

k0
n ≥

aij0x
k0
j0

≥ bi. i.e., i ∈ Ixk0 . In conclusion, we assert that i ∈ Ixk0 ⊆ Ix1 ∪ Ix2 ∪ · · · ∪ Ixt and
Ix1∨x2∨···∨xt ⊆ Ix1 ∪ Ix2 ∪ · · · ∪ Ixt .

(ii) The supporting evidence can be found in Theorem 2 and part (i).

Definition 9. [20] Let x = (x1, x2, . . . , xn) ∈ X . For any j ∈ J , let xθj =
(
xjθ1 , x

jθ
2 , . . . , x

jθ
n

)
, where

xjθk =

xj , k = j,

0, k ̸= j.

The FIS of xθj , denoted as Ixθ
j
, is referred to as the feasible index set of xj , i.e., Ixj .

Lemma 5. Let x1, x2, . . . , xt ∈ X . Then:

i. Ix = Ix1
∪ Ix2

∪ · · · ∪ Ixn
,

ii. If the variable x represents a solution to System (3), then Ix1 ∪Ix2 ∪· · ·∪Ixn = I and conversely.

Proof. Considering

x = (x1, x2, . . . , xn)

= (x1, 0, 0, . . . , 0) ∨ (0, x2, 0, . . . , 0) ∨ · · · ∨ (0, 0, 0, . . . , xn)

= xθ1 ∨ xθ2 ∨ · · · ∨ xθn,

the conclusion of this proof follows from Lemma 3.

Proposition 3. Let x1, x2, . . . , xt ∈ X andD = (dij)m×n denote the discrimination matrix for System
(3). Then, for every j ∈ J , it holds that

Ixj = {i ∈ I | xj ≥ dij > 0} (19)

Based on this information, we will now proceed to the FIS algorithm.

4 Proposed Algorithm

We will introduce a novel algorithm aimed at obtaining the lexicographically optimal solution for Prob-
lem (2), employing the discrimination matrix alongside the concept of the FIS. Since this algorithm is
based on the feasible index set, it will be referred to as the FIS Algorithm.
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Remark 2. In the FIS algorithm, we have:

(i)



I ′1 = I1,

I ′2 = I2 − Ix∗
1
,

I ′3 = I3 − Ix∗
1
− Ix∗

2
,

...
I ′n = In − Ix∗

1
− Ix∗

2
− · · · − Ix∗

n−1
.

(ii) x∗k = ∨
i∈I′

k

dik, k ∈ J.

(20)

The primary objective of the FIS algorithm is to verify the optimality of the resulting vector x∗.

Algorithm 3 FIS Proposed Algorithm
Input sets I , J , matrix aij , and vector bi Lexicographically optimal solution x∗ for Problem (2)

Step 1: For i ∈ I , compute Ji = {j ∈ J | aij ≥ bi}.

Step 2: If Ji ̸= ∅ holds for any i ∈ I , then Problem (2) is feasible and go to Step 3. Otherwise,
if there exists an index i ∈ I such that Ji = ∅, then Problem (2) does not possess a lexicographic
optimal solution, and the process terminates.

Step 3: For i ∈ I and j ∈ J , if j ∈ Ji, compute dij = bi
aij
, otherwise dij = 0.

Step 4: For i ∈ I , calculate J∗
i = max{j ∈ J | dij > 0}.

Step 5: For j ∈ J , calculate Ij = {i ∈ I | J∗
i = j}.

Step 6:

For k = 1, set I ′k = Ik, compute x∗k =
∨

i∈I′k
dik.

For k ∈ [2, n], compute Ix∗k−1
= {i ∈ I | x∗k−1 ≥ di(k−1) > 0},

Let I ′k = Ik −
⋃k−1

j=1 Ix∗j ,

Compute x∗k =
∨

i∈I′k
dik.

We evaluate the computational complexity of the FIS algorithm based on the programming outlined.
It is important to note that the dimensions m and n are determined by the matrices Am×n and b1×n,
where n represents the number of variables, andm denotes the number of inequalities in the constraints.
Therefore, the computational complexity of the FIS algorithm is characterized as O(mn2).

5 Case Study

Example 1. In this section, we present a numerical example to illustrate the practicality and effective-
ness of the proposed Algorithm 3. This example focuses on optimal resource management in wireless
communication systems. Specifically, we consider a scenario involving an EBS, with six potential base
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stations and seven specific testing locations. The optimization model for this system can be redefined
as a multi-objective programming problem characterized by fuzzy relations.

min {x1, x2, . . . , x6}
s.t. AoxT ≥ bT ,

(21)

where x = (x1, x2, . . . , x6), b = (bi) = (0.6, 0.7, 0.7, 0.6, 0.6, 0.65). Consider the values presented
in Table 1, which can be organized into a matrix A = (aij). Each entry of this matrix represents the
radiation intensity between six base stations and seven designated test points.

Table 1: Radiation intensity values

Base Station \Test Point # 1 # 2 # 3 # 4 # 5 # 6 # 7

Base Station 1 0.65 0.6 0.65 0.7 0.3 0.2 0.15
Base Station 2 0.7 0.5 0.6 0.55 0.1 0.3 0.35
Base Station 3 0.8 0.7 0.75 0.7 0.5 0.6 0.6
Base Station 4 0.6 0.25 0.3 0.35 0.9 0.8 0.9
Base Station 5 0.8 0.75 0.7 0.7 0.3 0.35 0.2
Base Station 6 0.7 0.6 0.45 0.8 0.8 0.7 0.5

Solution Steps: Step 1: We establish the discrimination index, indicating that:

J1 = {1, 2, 3, 4},

J2 = {1},

J3 = {1, 2, 3, 4},

J4 = {1, 5, 6, 7},

J5 = {1, 2, 3, 4},

J6 = {1, 4, 5, 6}.

(22)

Step 2: It is clear that Ji ̸= ∅ for each i ∈ {1, 2, . . . , 6} satisfies the necessary conditions. Follow-
ing Theorem 2, the constraints present in this scenario are consistent, confirming the feasibility of the
problem.

Step 3: According to Definition 5, we define the relevant discrimination matrix for this analysis:

D = (dij) =



0.92 1 0.92 0.85 0 0 0

1 0 0 0 0 0 0

0.87 1 0.93 1 0 0 0

0 0 0 0 0.66 0.75 0.66

0.75 0.8 0.85 0.85 0 0 0

0.92 0 0 0.81 0.81 0.92 0


. (23)

Step 4: Using (15), we derive the following results:

J∗
1 = 4, J∗

2 = 1, J∗
3 = 4, J∗

4 = 7, J∗
5 = 4, J∗

6 = 6.



102 Multi-Objective Fuzzy Optimization in Wireless Communication/ COAM, 10 (1), Winter-Spring (2025)

Step 5: As per (16), the feasible index sets can be identified through the following computational
methods:

I1 = {2}, I4 = {1, 3, 5}, I6 = {6}

and
I2 = I3 = I5 = ∅.

Step 6:

i. Let I ′1 = I1 = {2}. Then x∗1 = ∨
i∈I′

1

di1 = ∨
i∈{2}

d21 = 1.

ii. Determine the feasible indices set Ix∗
1

= {i | x∗1 ≥ di1 > 0} = {i | 1 ≥ di1 > 0} =

{1, 2, 3, 5, 6}.

Let I ′2 = I2 − Ix∗
1
= ∅ − {1, 2, 3, 5, 6} = ∅. Then x∗2 = ∨

i∈I′
2

di2 = ∨
i∈∅

di2 = 0.

iii. Determine Ix∗
2
= {i | x∗2 ≥ di2 > 0} = {i | 0 ≥ di1 > 0} = ∅.

Let I ′3 = I3 − Ix∗
1
− Ix∗

2
= ∅ − {1, 2, 3, 5, 6} − ∅ = ∅. Then x∗3 = ∨

i∈I′
3

di3 = ∨
i∈∅

di3 = 0.

iv. Determine Ix∗
3
= {i | x∗3 ≥ di3 > 0} = {i | 0 ≥ di3 > 0} = ∅.

Let I ′4 = I4 − Ix∗
1
− Ix∗

2
− Ix∗

3
= {1, 3, 5} − {1, 2, 3, 5, 6} − ∅ − ∅ = ∅. Then x∗4 = ∨

i∈I′
4

di4 =

∨
i∈∅

di4 = 0.

v. Determine Ix∗
4
= {i | x∗4 ≥ di4 > 0} = {i | 0 ≥ di4 > 0} = ∅.

Let I ′5 = I5− Ix∗
1
− Ix∗

2
− Ix∗

3
− Ix∗

4
= ∅−{1, 2, 3, 5, 6}−∅−∅−∅ = ∅. Then x∗5 = ∨

i∈I′
5

di5 =

∨
i∈∅

di5 = 0.

vi. Determine Ix∗
5
= {i | x∗5 ≥ di5 > 0} = {i | 0 ≥ di5 > 0} = ∅.

Let I ′6 = I6 − Ix∗
1
− Ix∗

2
− Ix∗

3
− Ix∗

4
− Ix∗

5
= {6} − {1, 2, 3, 5, 6} − ∅ − ∅ − ∅ − ∅ = ∅. Then

x∗6 = ∨
i∈I′

6

di6 = ∨
i∈∅

di6 = 0.

Step 7: We find the lexicographically optimal solution to the problem:

x∗ = (1, 0, 0, 0, 0, 0). (24)

The values x1, x2, . . . , x6 indicate the intensity of electromagnetic radiation at the terminals, ranging
from a minimum of zero to a maximum of one.

Due to the complexity of minimizing each variable in this context, we decided to focus on minimiz-
ing these variables according to a specified hierarchy of importance, i.e.,

x1 → x2 → · · · → x6.

This decision led us to derive the optimal lexical solution to the problem.

Example 2. In this scenario, we analyze a wireless communication system featuring a configuration
of EBS that consists of 10 potential base stations and 8 designated testing points. The corresponding
optimization model can be reformulated as a fuzzy relational latticed linear programming problem.
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Min {x1, x2, . . . , x10}
s.t. AoxT ≥ bT ,

where x = (x1, x2, . . . , x10) , b = (bi) = (0.6, 0.65, 0.6, 0.7, 0.7, 0.6, 0.6, 0.65), and A is defined in
Table 2.

Solution Steps: Step 1: We establish the discrimination index:

J1 = {1, 2, 3, 4, 5, 6, 7},

J2 = {1, 2, 3, 4},

J3 = {1, 2, 3, 4, 5, 6, 7, 9, 10},

J4 = {8, 9, 10},

J5 = {2, 4, 5, 6, 7} ,

J6 = {4, 5, 7, 8, 9} ,

J7 = {6, 7, 8, 9, 10} ,

J8 = {4, 5, 6, 7, 9}

(25)

Step 2: It is evident that Ji ̸= ∅ for each i ∈ {1, 2, . . . , 8}. Following Theorem 2, the constraints
of the problem are consistent, indicating that the problem is feasible.

Step 3: In line with Definition 5, the relevant discrimination matrix is defined as follows:

D = (dij) =



0.67 0.75 0.71 0.92 1 0.92 0.86 0 0 0

0.93 0.81 0.87 0.93 0 0 0 0 0 0

0.75 0.80 0.75 0.75 0.86 0.80 0.86 0 1 1

0 0 0 0 0 0 0 0.78 0.88 0.78

0 1 0 0.88 0.93 1 1 0 0 0

0 0 0 0.86 1 0 0.75 0.75 0.86 0

0 0 0 0 0 0.71 0.86 0.86 1 0.92

0 0 0 0.81 0.81 0.93 0.87 0 0.81 0


. (26)

Step 4: From (15), we derive:

J∗
1 = 7, J∗

2 = 4, J∗
3 = 10, J∗

4 = 10, J∗
5 = 7, J∗

6 = 9, J∗
7 = 10, J∗

8 = 9.

Step 5: Using (16), the feasible index sets can be determined through the following computational
methods: I4 = {2}, I7 = {1, 5}, I9 = {6, 8}, I10 = {3, 4, 7} and I1 = I2 = I3 = I5 = I6 = I8 = ∅.

Step 6: For k = 1, let I ′k = Ik. Compute x∗k = ∨
i∈I′

k

dik. For k = 2, 3, . . . , n, compute

Ix∗
k−1

=
{
i ∈ I|x∗k−1 ≥ di(k−1) > 0

}
,

let I ′k = Ik −
k−1⋃
j=1

Ix∗
j
, and compute x∗k = ∨

i∈I′
k

dik.

x∗1 = 0.67, x∗2 = 0.81, x∗3 = 0, x∗4 = 0.88, x∗5 = 0,

x∗6 = 0.71, x∗7 = 0, x∗8 = 0.78, x∗9 = 0, x∗10 = 0.
(27)

Step 7: We identify the lexicographically optimal solution to the problem
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x∗ = (0.67, 0.81, 0, 0.88, 0, 0.71, 0, 0.78, 0, 0) . (28)

The values x1, x2, . . . , x6 indicate the intensity of electromagnetic radiation at the terminals, ranging
from a minimum of zero to a maximum of 0.88.

Given the impracticality of minimizing each variable in this context, we opted to prioritize mini-
mizing these variables according to a designated hierarchy of importance, i.e., x1 → x2 → · · · → x6.
Thus, we achieved the optimal lexical solution to the problem.

Table 2: Radiation intensity values

Base Station \Test Point # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

Base Station 1 0.9 0.8 0.85 0.65 0.6 0.65 0.7 0.3 0.2 0.15
Base Station 2 0.7 0.8 0.75 0.7 0.5 0.6 0.55 0.1 0.3 0.35
Base Station 3 0.8 0.75 0.8 0.8 0.7 0.75 0.7 0.5 0.6 0.6
Base Station 4 0.4 0.55 0.5 0.1 0.25 0.3 0.35 0.9 0.8 0.9
Base Station 5 0.6 0.7 0.65 0.8 0.75 0.7 0.7 0.3 0.35 0.2
Base Station 6 0.1 0.15 0.35 0.7 0.6 0.45 0.8 0.8 0.7 0.5
Base Station 7 0.2 0.1 0.1 0.4 0.5 0.85 0.7 0.7 0.6 0.65
Base Station 8 0.35 0.5 0.4 0.8 0.8 0.7 0.75 0.5 0.8 0.6

6 Conclusions

The study outlines a multi-objective programming problem that utilizes max-product fuzzy relational
inequalities (FRIs) to develop an optimal management strategy for Emission Base Stations (EBSs) in
wireless communication systems. In this framework, the concept of a lexicographic optimal solution
is introduced, and shown to be unique under specific conditions. The research also clarifies significant
findings regarding max-product FRIs in contrast to fuzzy relational equations (FREs) and discusses the
feasible solution set along with their relevant properties to address the proposed optimization challenge.
Notably, the lexicographic optimal solution is identified as one of the minimal solutions subject to the
given constraints. Although a polynomial algorithm for addressing max-product fuzzy relation systems
has yet to be developed, the Feasible Index Set (FIS) algorithm has been designed to effectively determine
the unique lexicographic optimal solution without requiring a comprehensive identification of all min-
imal solutions. This algorithm demonstrates polynomial computational complexity and can be adapted
to tackle multi-objective programming problems constrained by max-min fuzzy relation inequalities.
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