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1 Introduction

The concept of Fuzzy Relation Equations (FREs) was initially introduced by Sanchez [25],
who explored the characteristics of their solutions. In a subsequent study [5], the Fuzzy Re-
lation System (FRS) was utilized for image and video compression and reconstruction, with
encoding and decoding processes articulated through FREs. In this context, the author intro-
duced the ideas of maximum and minimum solutions to delineate the solution set for Max-Min
FREs, and proposed a variety of solution methodologies was suggested to deepen the theoret-
ical understanding of the subject [8, 18]. Furthermore, the max-min composition framework
was extended to include max-t, addition-min, and other operational forms [6, 14, 32].

Li and Yang [14] notably introduced the addition-min Fuzzy Relation Inequalities (FRIs) to
effectively model a peer-to-peer file-sharing system, highlighting that the addition-min operator
does not conform to the max-∗ composition operator. Building on the concept of the pseudo-
minimal index, Yang [28] developed a pseudo-minimal-index algorithm designed to minimize
a linear objective function constrained by addition-min fuzzy relation inequalities. This work
sought to enhance the findings presented in [9, 12, 28].

Fuzzy relation mathematical programming refers to optimization problems involving fuzzy
relation equations or inequalities as constraints. Early research in this field was conducted
by Wang who introduced fuzzy relation elasticized linear programming focusing on max-min
composition. This approach optimizes variables and parameters constrained within a lattice
framework defined by the interval [0, 1], utilizing lattice operators such as∨,∧. The researchers
applied a conservative approach to derive a minimal solution set, allowing them to identify the
optimal solution for the specified problem. Recent studies [21, 22] have continued to explore
this issue.

In a separate investigation, researchers analyzed fuzzy relation linear programming, break-
ing down the primary problem into sub-problems for detailed examination. One sub-problem
was solvable via straightforward methods, while the other was reformulated as a 0-1 integer
programming problem, which was addressed using the branch-and-bound technique. This ap-
proach enabled the identification of optimal solutions without the need to compute all minimal
solutions associated with the constraints. Further research has refined and popularized this
solution method.

In the context of fuzzy relation nonlinear optimization problems, genetic algorithms are fre-
quently employed to search for approximate optimal solutions. However, more direct method-
ologies have also been proposed for certain objective functions. For instance, Cao [7] intro-
duced a solution approach to the fuzzy relation geometric programming problem associated
with max-min composition. Abbasi Molai [1, 2] studied the quadratic programming problem
with fuzzy relations under max-product composition, restructuring the original problem into a
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series of general quadratic programming problems by determining the minimal solutions of the
FRIs, which were subsequently analyzed and solved.

Peeva et al. [20] presented an analytical approach for addressing fuzzy linear systems of
equations utilizing max-product composition. Their method yields a universal algorithm for
finding the greatest solution and the complete set of minimal solutions when the system is
consistent (i.e., solvable). Additionally, Shieh proposed an innovative technique for deriving
minimal solutions in max-product fuzzy relation systems, based on the principle of minimal
covering [26]. This technique not only facilitates the extraction of the initial minimal solution,
but also employs a backtracking procedure for identifying all subsequent minimal solutions.
Our proposed algorithm improves upon this by negating the need to assess all minimal and
maximal solutions, significantly reducing computational effort while offering enhanced solu-
tion accuracy and manageable computational complexity.

Wireless communication is extensively utilized across various sectors, including mobile
communication and information transmission. This paper focuses on optimization management
models for wireless communication. Our proposed model involves transmitting information
via electromagnetic waves from fixed Emission Base Stations (EBSs). We aim to optimize the
radiation intensity of these EBSs, recognizing that while higher radiation intensity can enhance
communication quality; it also raises potential health concerns.

In a recent advancement building upon prior research in fuzzy relation geometric program-
ming, Yang et al. [30] investigated the single-variable term semi-latticized geometric program-
ming constrained by max-product FREs. This formulation was inspired by peer-to-peer net-
work systems, aiming tominimize themaximum dissatisfaction levels experienced by terminals
within the framework. The objective functions associated with these optimization problems are
characterized as specific geometric functions, and due to their nonconvex nature and inherent
complexity, general geometric objective functions have received limited exploration. Further-
more, it is essential to note that real-world data tends to be discrete rather than continuous,
with statistical data often consisting of discrete values corresponding to tangible phenomena.
This study specifically examined a monomial geometric programming objective function con-
strained by bipolar max-product fuzzy relation conditions [4].

In a recent study, researchers utilized FRIs in conjunction with max-product composition
to develop a model for the Wireless Communication Terminal (WCT) system. The primary
objective of this investigation was to minimize the maximum radiation intensity, intentionally
avoiding the prioritization of the relative importance of the terminals, particularly the emission
base stations.

The following model was formulated based on this objective:

Min Z(x) = min x1 ∨ x2 ∨ . . . ∨ xn

s.t. AoxT ≥ bT .
(1)
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Here, the constraintAoxT ≥ bT governs the model, where x = (x1, x2, . . . , xn) represents the
intensities of electromagnetic radiation associated with the terminals.

For the purposes of this model, all terminals are considered to have equal importance. To
address this optimization issue, the researchers initially compared the characteristics of max-
product FRIs with those of max-product FREs, as described in prior studies [16, 23, 24, 31].
The concept of egalitarianism was elaborated upon in another study [10], highlighting that in
practicalmanagement scenarios, it may be essential to assign distinct priority levels to terminals,
reflecting their relative significance.

This paper presents a lexicographically optimal solution for a multi-objective programming
problem constrained by max-product FRIs, thereby contributing to optimization management
in wireless communication systems. To address this issue, we developed a Feasible Index Set
(FIS) algorithm.

The organization of this paper is delineated as follows: Section 2 elaborates on the imple-
mentation of the model within the wireless communication system, introducing each variable
and symbol utilized. Section 3 discusses the findings related to max-product FRIs, introduces
the concept of a FIS, and provides a comprehensive examination of the sequential progression
of the FIS algorithm, which is designed to find the unique lexicographic optimal solution for
the specified problem. We aim to demonstrate both the feasibility and effectiveness of the al-
gorithm in this context. Section 4 offers an in-depth discussion of the FIS algorithm, while
Section 5 presents a numerical example to illustrate its application.

2 Wireless Communication System Model

This study examines amulti-objective programming problem constrained bymax-product fuzzy
relation inequalities:

Min {z1(x), z2(x), . . . , zn(x)} = {x1, x2, . . . , xn}
s.t. AoxT ≥ bT ,

(2)
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Figure 1: Wireless communication base-station system.

The optimization management framework for the Emission Base Station (EBS) in a wire-
less communication system is characterized by a set of fuzzy relational inequalities that employ
max-product composition, as illustrated in Equation (2) and Figure 1. This system incorpo-
rates variables x = (x1, x2, . . . , xn), matrices A = (aij)m×n, vectors b = (b1, b2, . . . , bm),
and parameters xj , aij and bi all constrained to the range [0, 1] with bi > 0, for all i ∈ I =

{1, 2, . . . ,m} and j ∈ J = {1, 2, . . . , n}. Here, I and J represent two distinct index sets.
In a specified geographical region, there are n Electronically Beam-Steerable (EBS) an-

tennas labeled E1, E2, . . . , En. These antennas are responsible for transmitting informational
data through electromagnetic waves at uniform radiation intensity. To ensure effective com-
munication, it is imperative that the radiation intensity of these electromagnetic waves meets
specific established standards. The region contains m designated Testing Points (TPs) denoted
as T1, T2, . . . , Tm, each with a minimum requirement for the electromagnetic radiation inten-
sity, denoted as bi for i = 1, 2, . . . ,m. When a terminal device, such as a mobile phone,
receives the electromagnetic signal at a TP, it connects to the EBS that exhibits provides the
highest radiation intensity at that particular point.

Let the jth EBS emit electromagnetic waves with a radiation strength of xj . When these
electromagnetic waves reach the ith TP, their radiation intensity denoted as rij , decreases to a
value that is less than or equal to xj . Consequently, there exists a real number aij ∈ [0, 1] such
that rij = aijxj .

We can therefore express the subsequent system:

a11x1 ∨ a12x2 ∨ . . . ∨ a1nxn ≥ b1,

a21x1 ∨ a22x2 ∨ . . . ∨ a2nxn ≥ b2,
...

am1x1 ∨ am2x2 ∨ . . . ∨ amnxn ≥ bm.

(3)

The radiation intensity xj and the communication quality requirement bi are generally con-
strained for all i ∈ I and j ∈ J , allowing for normalization within the unit interval [0, 1]. If
there exists an index i0 such that bi0 = 0, removing the corresponding inequality involving i0
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from the system (3) will not affect its solution set. Consequently, it is typically assumed that
aij , xj and bi are all within the range [0, 1], with bi > 0 in the System (3). Essentially, System
(3) represents a set of max-product FRIs and can be expressed as follows:

AoxT ≥ bT , (4)

where

A = (aij)m×n ∈ [0, 1]m×n , x = (x1, x2, . . . , xn) ∈ [0, 1]n , b = (b1, b2, . . . , bm) ∈ (0, 1]m.

The aim of this study is to reduce the harmful effects of electromagnetic radiation on human
health by minimizing the intensities of electromagnetic wave radiation, denoted as variables
x = (x1, x2, . . . , xn). This can be formulated as a vector optimization model, which addresses
the issue of

Min Z(x) = min {x1, x2, . . . , xn}
s.t. AoxT ≥ bT .

(5)

Simultaneouslyminimizing all variables is often infeasible, making it necessary to prioritize
them based on a specific hierarchy. In this study, we establish a priority order of the variables:
x1 → x2 → · · · → xn. This indicates that the primary objective is to minimize x1 first,
followed by x2, and so on, with xn being the last variable to minimize. The primary focus of
this research is to determine the lexicographic optimal solution for the Problem (5). The set X
is characterized as the n-dimensional Cartesian product of the closed interval [0, 1], which can
be formally represented as follows:

X = [0, 1]n = {x = (x1, x2, . . . , xn) |0 ≤ xj ≤ 1, j = 1, 2, . . . , n} . (6)

3 Max-Product Fuzzy Relations

It is essential to recognize that some equations related to fuzzy relations may not align with the
correspondingmaximum andminimum solutions. Consequently, it is crucial to discuss relevant
findings regarding the resolution of max-product FRIs before addressing the issue outlined in
Equation (2).

Definition 1. [20] States that for any two vectorsx = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

belonging to the set X , x ≺ y if and only if

(1) x1 < y1 or
(2) x1 = y1 and x2 < y2 or
...
(n) x1 = y1, . . . , xn−1 = yn−1 and xn < yn.

(7)
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Remark 1. Based on Definition 1, it is straightforward to verify that for any x, y ∈ X , the
relationship x ⪯ y holds if and only if

(1) x1 ≤ y1 and
(2) If x1 = y1 then x2 ≤ y2 and
...
(n) If x1 = y1, . . . , xn−1 = yn−1 then xn ≤ yn.

(8)

Denote X = [0, 1]n and X(A, b) =
{
x ∈ X | AoxT ≥ bT

}
.

Definition 2. [3, 25] A solution x̂ ∈ X (A, b) is referred to as themaximum solution ofAoxT ≥
bT if x ≤ x̂ for all x ∈ X(A, b). A solution x̆ ∈ X (A, b) is considered a minimal solution to
AoxT ≥ bT when x ≤ x̆ implies that x = x̆ for any x ∈ X (A, b).

Obviously, if the maximum solution of (3) exists, it is unique, with x̂ = (1, 1, . . . , 1).

Theorem 1. [31] Let AoxT ≥ bT be a system of max-product FRIs. This system is consistent
if and only if x̂ = (1, 1, . . . , 1) ∈ X (A, b). Furthermore, when the system is consistent, the
complete solution set X (A, b) can be determined by identifying a singular maximum solution
along with a finite quantity of minimal solutions, specifically

X (A, b) =
∪

S∈F (S)

{x ∈ [0, 1]n | x̆ ≤ x ≤ x̂} , (9)

where F (S) represents the set of all minimal solutions of (3).
The feasible domain defined by the max-product FRIs (3) can be thoroughly described by

the solution set X (A, b). Indeed, possessing knowledge of all minimal solutions allows for
expressing the solution set X (A, b). The primary challenge lies in computing all minimal
solutions for the system represented by (3). However, this task is classified as NP-hard. Conse-
quently, we propose a methodology aimed at identifying all potential minimal solutions, rather
than exclusively focusing on minimal solutions.

Proposition 1. Let x1, x2 ∈ X . If x1 ≤ x2, then x1 ⪯ x2.

Definition 3. [20] A feasible solution x∗ ∈ X (A, b) is considered a lexicographically optimal
solution to Problem (2) if and only if x∗ ⪯ x for every x ∈ X (A, b).

Proposition 2. [10] If x is a solution of the System (3) and x′ ≥ x, with x′ ∈ X , then x′ is
also a solution of System (3).

Corollary 1. Let x̂ = (1, 1, . . . , 1) ∈ X . If x1, x2 ∈ X (A, b), then x1 ∨ x2 ∈ X (A, b).

Lemma 1. If both x1 and x2 are solutions of system (3), and x1 ≤ x2, then for every y ∈
[x1, x2], y is also a solution of system (3).
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Proof. The proof is straightforward.

Definition 4. [22] For any two vectors x = (x1, x2, . . . , xn)
T and y = (y1, y2, . . . , yn)

T ∈
[0, 1]n, we define x ≥ y (or x ≤ y) if xj ≥ yj (or xj ≤ yj) for each j = 1, 2, . . . , n.

Lemma 2. [22] Let x, y ∈ [0, 1]n. If x ≤ y, then Z1 (x) ≤ Z1 (y).

Theorem 2. [13, 17, 27] If System (3) is considered consistent, then it has a solution to equation
(3), i.e. x̂ ∈ X (A, b) and conversely.

The initial theorem asserts that the consistency of System (3) can be assessed by analyzing
its potential maximum solution x̂ = (1, 1, . . . , 1). Following this, alternative approaches for
evaluating the consistency of System (2)will be presented. The terms “discrimination index set”
and “discrimination matrix” are derived from definitions outlined in previous research [6, 15].
These concepts have been adapted for use in the relevant fuzzy relation inequality systems.

The following statement provides a concise expression:

Ji = {j ∈ J | aij ≥ bi} , (10)

for every i ∈ I . The sets J1, J2, . . . , Jm are referred to as the discrimination index sets of
System (3). Additionally, this is denoted as π = J1 × J2 × . . .× Jm.

Theorem 3. [11, 29] If System (3) is consistent, then Ji ̸= ∅ for every i ∈ I and conversely.

From Theorem 3, we can derive the following:

Corollary 2. If System (3) is consistent, then π ̸= ∅ and conversely.

Definition 5. [31] A matrixD = (dij)m×n is called the discrimination matrix of System (3) if
and only if for every i ∈ I , j ∈ J

dij =


bi
aij

, if j ∈ Ji,

0, otherwise.
(11)

Theorem 4. [31] The consistency of System (3) is defined by the condition that each row in
the matrix D must contain at least one non-zero entry.

Definition 6. [10] Consider the matrix D, and S = (sij)m×n, where sij ∈ {0, dij}. If the
matrix S is regarded as a solution matrix for System (3), then every row of S contains a distinct
non-zero element, and conversely.

Let F (S) represent the collection of all matrices that satisfy System (3). If S is an element
of the solution setF (S) for System (3), we define the vector xS =

(
xS1 , x

S
2 , . . . , x

S
n

)
as follows:

xSj = ∨
i∈I

sij , j ∈ J. (12)



In
Pr
es
s

Amiri, et al. 9

Theorem 5. [10] If S represents a solution for System (3), then the vector xS defined in Equa-
tion (12) serves as a solution to System (3).

The vector xS , as delineated by Equation (12), is referred to as the solution associated with
the solution matrix S in the context of System (3).

Theorem 6. If Equation (3) is considered consistent, then the resulting set of solutions is as
follows:

X(A, b) =
∪

S∈F (S)

{
xS ≤ x ≤ x̂

}
. (13)

The solution denoted as xS for a given set S, and x̂ = (1, 1, . . . , 1) represents the optimal
solution for the System (3).

Proof. Considering the propositions: (Let S be a solution matrix for the discrimination matrix
C, and let xS be defined as (12). Then xS is a solution of System (3)) and (Let x0 be an arbitrary
solution of System (3). Then, there exists a solution matrix S and its corresponding solution
xS such that xS ≤ x0). As indicated in [20], this theorem can be readily demonstrated.

In the next section, we introduce the concept of a FIS, which serves as the foundation for
developing an algorithm known as the FIS algorithm. This algorithm is intended to identify the
unique lexicographically optimal solution for the Problem (2). The following section has been
adapted from reference [10], with some modifications in symbols and variables.

It is assumed that the system represented by Equation (3) is aligned with the discrimination
matrix:

D =


d11 d12 . . . d1n

d21 d22 . . . d2n
...

... . . .
...

dm1 dm2 . . . dmn

 . (14)

Let
j∗i = max {j ∈ J | dij > 0} , i ∈ I, (15)

and
Ij = {i ∈ I | j∗i = j} , j ∈ J. (16)

then, we arrive at the index set {Ij | j ∈ J}.

Definition 7. In Equation (3), let the variable x = (x1, x2, . . . , xn) be an element of the setX .
The set

{i ∈ I | ai1x1 ∨ ai2x2 ∨ . . . ∨ ainxn ≥ bi} , (17)

is termed the FIS of x and is denoted by Ix.

Theorem 7. Let x, y ∈ X with x ≤ y, then Ix ⊆ Iy.
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Proof. If i ∈ Ix, then ai1x1 ∨ ai2x2 ∨ · · · ∨ ainxn ≥ bi. Furthermore, the inequality x ≤ y

indicates that each component of vector y is greater than or equal to the corresponding compo-
nent of vector x for all indices j ∈ J . Since all elements in vector a are non-negative for all
indices j in set J , we can conclude that

ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≥ ai1x1 ∨ ai2x2 ∨ · · · ∨ ainxn.

From the inequalities established above, we deduce that ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≥ bi.
Therefore, Ix ⊆ Iy.

Definition 8. Let x1, x2, . . . , xt ∈ X . We define y = x1 ∨ x2 ∨ · · · ∨ xt = (y1, y2, . . . , yn) as
follows:

yj = x1j ∨ x2j ∨ · · · ∨ xtj . (18)

Lemma 3. Let x1, x2, . . . , xt ∈ X , then xk ≤ x1 ∨ x2 ∨ · · · ∨ xt applies to each k ∈
{1, 2, . . . , t}.

Lemma 4. Let x1, x2, . . . , xt ∈ X , then

i. Ix1∨x2∨···∨xt = Ix1 ∪ Ix2 ∪ · · · ∪ Ixt

ii. x1 ∨ x2 ∨ · · · ∨ xt is a solution of System (3) if and only if Ix1 ∪ Ix2 ∪ · · · ∪ Ixt = I .

Proof. (i) By Lemmas 3 and associated theorem it is evident that Ixk ⊆ Ix1∨x2∨···∨xt is ap-
plicable to any k ∈ {1, 2, . . . , t}. As a result, we have Ix1∪Ix2∪· · ·∪Ixt ⊆ Ix1∨x2∨···∨xt .
To complete the proof, we must verify that Ix1∨x2∨···∨xt ⊆ Ix1 ∪ Ix2 ∪ · · · ∪ Ixt .
Let i ∈ Ix1∨x2∨···∨xt . Denote x1 ∨ x2 ∨ · · · ∨ xt = y = (y1, y2, . . . , yn), then
ai1y1 ∨ ai2y2 ∨ · · · ∨ ainyn ≥ bi. There exists a j0 ∈ J such that aij0yj0 ≥ bi. Addition-
ally, there is a k0 ∈ {1, 2, . . . , t} such that xk0j0 = x1j0 ∨ x2j0 ∨ · · · ∨ xtj0 . Therefore, we
conclude that ai1xk01 ∨ai2xk02 ∨· · ·∨ainx

k0
n ≥ aij0x

k0
j0

≥ bi. i.e., i ∈ Ixk0 . In conclusion,
we assert that i ∈ Ixk0 ⊆ Ix1 ∪ Ix2 ∪ · · · ∪ Ixt and Ix1∨x2∨···∨xt ⊆ Ix1 ∪ Ix2 ∪ · · · ∪ Ixt .

(ii) The supporting evidence can be found in Theorem 2 and part (i).

Definition 9. [20] Letx = (x1, x2, . . . , xn) ∈ X . For any j ∈ J , letxθj =
(
xjθ1 , xjθ2 , . . . , xjθn

)
,

where

xjθk =

xj , k = j,

0, k ̸= j.

The FIS of xθj , denoted as Ixθ
j
, is referred to as the feasible index set of xj , i.e., Ixj .

Lemma 5. Let x1, x2, . . . , xt ∈ X . Then:
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i. Ix = Ix1 ∪ Ix2 ∪ · · · ∪ Ixn ,

ii. If the variable x represents a solution to System (3), then Ix1 ∪ Ix2 ∪ · · · ∪ Ixn = I and
conversely.

Proof. Considering

x = (x1, x2, . . . , xn)

= (x1, 0, 0, . . . , 0) ∨ (0, x2, 0, . . . , 0) ∨ · · · ∨ (0, 0, 0, . . . , xn)

= xθ1 ∨ xθ2 ∨ · · · ∨ xθn,

the conclusion of this proof follows from Lemma 3.

Proposition 3. Let x1, x2, . . . , xt ∈ X and D = (dij)m×n denote the discrimination matrix
for System (3). Then, for every j ∈ J , it holds that

Ixj = {i ∈ I | xj ≥ dij > 0} (19)

Based on this information, we will now proceed to the FIS algorithm.

4 Proposed Algorithm

We will introduce a novel algorithm aimed at obtaining the lexicographically optimal solution
for Problem (2), employing the discrimination matrix alongside the concept of the FIS. Since
this algorithm is based on the feasible index set, it will be referred to as the FIS Algorithm.

Remark 2. In the FIS algorithm, we have:

(i)



I ′1 = I1,

I ′2 = I2 − Ix∗
1
,

I ′3 = I3 − Ix∗
1
− Ix∗

2
,

...
I ′n = In − Ix∗

1
− Ix∗

2
− · · · − Ix∗

n−1
.

(ii) x∗k = ∨
i∈I′k

dik, k ∈ J.

(20)

The primary objective of the FIS algorithm is to verify the optimality of the resulting vector x∗.
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Algorithm 1 FIS Proposed Algorithm
Data: Input sets I , J , matrix aij , and vector bi
Result: Lexicographically optimal solution x∗ for Problem (2)

Step 1: For i ∈ I , compute Ji = {j ∈ J | aij ≥ bi}.

Step 2: If Ji ̸= ∅ holds for any i ∈ I , then Problem (2) is feasible and go to Step 3. Otherwise,
if there exists an index i ∈ I such that Ji = ∅, then Problem (2) does not possess a lexicographic
optimal solution, and the process terminates.

Step 3: For i ∈ I and j ∈ J , if j ∈ Ji, compute dij = bi
aij

, otherwise dij = 0.

Step 4: For i ∈ I , calculate J∗
i = max{j ∈ J | dij > 0}.

Step 5: For j ∈ J , calculate Ij = {i ∈ I | J∗
i = j}.

Step 6:

For k = 1, set I ′k = Ik, compute x∗k =
∨

i∈I′k
dik.

For k ∈ [2, n], compute Ix∗
k−1

= {i ∈ I | x∗k−1 ≥ di(k−1) > 0},

Let I ′k = Ik −
∪k−1

j=1 Ix∗
j
,

Compute x∗k =
∨

i∈I′k
dik.

We evaluate the computational complexity of the FIS algorithm based on the programming
outlined. It is important to note that the dimensions m and n are determined by the matrices
Am×n and b1×n, where n represents the number of variables, and m denotes the number of
inequalities in the constraints. Therefore, the computational complexity of the FIS algorithm is
characterized as O(mn2).

5 Case Study

Example 1. In this section, we present a numerical example to illustrate the practicality and
effectiveness of the proposed Algorithm 1. This example focuses on optimal resource man-
agement in wireless communication systems. Specifically, we consider a scenario involving
an EBS, with six potential base stations and seven specific testing locations. The optimization
model for this system can be redefined as a multi-objective programming problem characterized
by fuzzy relations.

min {x1, x2, . . . , x6}
s.t. AoxT ≥ bT ,

(21)
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where x = (x1, x2, . . . , x6), b = (bi) = (0.6, 0.7, 0.7, 0.6, 0.6, 0.65). Consider the values
presented in Table 1, which can be organized into a matrixA = (aij). Each entry of this matrix
represents the radiation intensity between six base stations and seven designated test points.

Table 1: Radiation intensity values

Base Station \Test Point # 1 # 2 # 3 # 4 # 5 # 6 # 7

Base Station 1 0.65 0.6 0.65 0.7 0.3 0.2 0.15
Base Station 2 0.7 0.5 0.6 0.55 0.1 0.3 0.35
Base Station 3 0.8 0.7 0.75 0.7 0.5 0.6 0.6
Base Station 4 0.6 0.25 0.3 0.35 0.9 0.8 0.9
Base Station 5 0.8 0.75 0.7 0.7 0.3 0.35 0.2
Base Station 6 0.7 0.6 0.45 0.8 0.8 0.7 0.5

Solution Steps: Step 1: We establish the discrimination index, indicating that:

J1 = {1, 2, 3, 4},

J2 = {1},

J3 = {1, 2, 3, 4},

J4 = {1, 5, 6, 7},

J5 = {1, 2, 3, 4},

J6 = {1, 4, 5, 6}.

(22)

Step 2: It is clear that Ji ̸= ∅ for each i ∈ {1, 2, . . . , 6} satisfies the necessary conditions.
Following Theorem 2, the constraints present in this scenario are consistent, confirming the
feasibility of the problem.

Step 3: According to Definition 5, we define the relevant discrimination matrix for this
analysis:

D = (dij) =



0.92 1 0.92 0.85 0 0 0

1 0 0 0 0 0 0

0.87 1 0.93 1 0 0 0

0 0 0 0 0.66 0.75 0.66

0.75 0.8 0.85 0.85 0 0 0

0.92 0 0 0.81 0.81 0.92 0


. (23)

Step 4: Using (15), we derive the following results:

J∗
1 = 4, J∗

2 = 1, J∗
3 = 4, J∗

4 = 7, J∗
5 = 4, J∗

6 = 6.

Step 5: As per (16), the feasible index sets can be identified through the following compu-
tational methods:
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I1 = {2}, I4 = {1, 3, 5}, I6 = {6}

and
I2 = I3 = I5 = ∅.

Step 6:

i. Let I ′1 = I1 = {2}. Then x∗1 = ∨
i∈I′1

di1 = ∨
i∈{2}

d21 = 1.

ii. Determine the feasible indices set Ix∗
1
= {i | x∗1 ≥ di1 > 0} = {i | 1 ≥ di1 > 0} =

{1, 2, 3, 5, 6}.

Let I ′2 = I2 − Ix∗
1
= ∅ − {1, 2, 3, 5, 6} = ∅. Then x∗2 = ∨

i∈I′2
di2 = ∨

i∈∅
di2 = 0.

iii. Determine Ix∗
2
= {i | x∗2 ≥ di2 > 0} = {i | 0 ≥ di1 > 0} = ∅.

Let I ′3 = I3− Ix∗
1
− Ix∗

2
= ∅−{1, 2, 3, 5, 6}−∅ = ∅. Then x∗3 = ∨

i∈I′3
di3 = ∨

i∈∅
di3 = 0.

iv. Determine Ix∗
3
= {i | x∗3 ≥ di3 > 0} = {i | 0 ≥ di3 > 0} = ∅.

Let I ′4 = I4 − Ix∗
1
− Ix∗

2
− Ix∗

3
= {1, 3, 5} − {1, 2, 3, 5, 6} − ∅ − ∅ = ∅. Then x∗4 =

∨
i∈I′4

di4 = ∨
i∈∅

di4 = 0.

v. Determine Ix∗
4
= {i | x∗4 ≥ di4 > 0} = {i | 0 ≥ di4 > 0} = ∅.

Let I ′5 = I5 − Ix∗
1
− Ix∗

2
− Ix∗

3
− Ix∗

4
= ∅ − {1, 2, 3, 5, 6} − ∅ − ∅ − ∅ = ∅. Then

x∗5 = ∨
i∈I′5

di5 = ∨
i∈∅

di5 = 0.

vi. Determine Ix∗
5
= {i | x∗5 ≥ di5 > 0} = {i | 0 ≥ di5 > 0} = ∅.

Let I ′6 = I6 − Ix∗
1
− Ix∗

2
− Ix∗

3
− Ix∗

4
− Ix∗

5
= {6} − {1, 2, 3, 5, 6} − ∅− ∅− ∅− ∅ = ∅.

Then x∗6 = ∨
i∈I′6

di6 = ∨
i∈∅

di6 = 0.

Step 7: We find the lexicographically optimal solution to the problem:

x∗ = (1, 0, 0, 0, 0, 0). (24)

The values x1, x2, . . . , x6 indicate the intensity of electromagnetic radiation at the termi-
nals, ranging from a minimum of zero to a maximum of one.

Due to the complexity of minimizing each variable in this context, we decided to focus on
minimizing these variables according to a specified hierarchy of importance, i.e.,

x1 → x2 → · · · → x6.

This decision led us to derive the optimal lexical solution to the problem.
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Example 2. In this scenario, we analyze a wireless communication system featuring a con-
figuration of EBS that consists of 10 potential base stations and 8 designated testing points.
The corresponding optimization model can be reformulated as a fuzzy relational latticed linear
programming problem.

Min {x1, x2, . . . , x10}
s.t. AoxT ≥ bT ,

where x = (x1, x2, . . . , x10) , b = (bi) = (0.6, 0.65, 0.6, 0.7, 0.7, 0.6, 0.6, 0.65), and A is
defined in Table 2.

Solution Steps: Step 1: We establish the discrimination index:

J1 = {1, 2, 3, 4, 5, 6, 7},

J2 = {1, 2, 3, 4},

J3 = {1, 2, 3, 4, 5, 6, 7, 9, 10},

J4 = {8, 9, 10},

J5 = {2, 4, 5, 6, 7} ,

J6 = {4, 5, 7, 8, 9} ,

J7 = {6, 7, 8, 9, 10} ,

J8 = {4, 5, 6, 7, 9}

(25)

Step 2: It is evident that Ji ̸= ∅ for each i ∈ {1, 2, . . . , 8}. Following Theorem 2, the
constraints of the problem are consistent, indicating that the problem is feasible.

Step 3: In line with Definition 5, the relevant discrimination matrix is defined as follows:

D = (dij) =



0.67 0.75 0.71 0.92 1 0.92 0.86 0 0 0

0.93 0.81 0.87 0.93 0 0 0 0 0 0

0.75 0.80 0.75 0.75 0.86 0.80 0.86 0 1 1

0 0 0 0 0 0 0 0.78 0.88 0.78

0 1 0 0.88 0.93 1 1 0 0 0

0 0 0 0.86 1 0 0.75 0.75 0.86 0

0 0 0 0 0 0.71 0.86 0.86 1 0.92

0 0 0 0.81 0.81 0.93 0.87 0 0.81 0


. (26)

Step 4: From (15), we derive:

J∗
1 = 7, J∗

2 = 4, J∗
3 = 10, J∗

4 = 10, J∗
5 = 7, J∗

6 = 9, J∗
7 = 10, J∗

8 = 9.

Step 5: Using (16), the feasible index sets can be determined through the following com-
putational methods: I4 = {2}, I7 = {1, 5}, I9 = {6, 8}, I10 = {3, 4, 7} and I1 = I2 = I3 =

I5 = I6 = I8 = ∅.
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Step 6: For k = 1, let I ′k = Ik. Compute x∗k = ∨
i∈I′k

dik. For k = 2, 3, . . . , n, compute

Ix∗
k−1

=
{
i ∈ I|x∗k−1 ≥ di(k−1) > 0

}
,

let I ′k = Ik −
k−1∪
j=1

Ix∗
j
, and compute x∗k = ∨

i∈I′k
dik.

x∗1 = 0.67, x∗2 = 0.81, x∗3 = 0, x∗4 = 0.88, x∗5 = 0,

x∗6 = 0.71, x∗7 = 0, x∗8 = 0.78, x∗9 = 0, x∗10 = 0.
(27)

Step 7: We identify the lexicographically optimal solution to the problem

x∗ = (0.67, 0.81, 0, 0.88, 0, 0.71, 0, 0.78, 0, 0) . (28)

The values x1, x2, . . . , x6 indicate the intensity of electromagnetic radiation at the termi-
nals, ranging from a minimum of zero to a maximum of 0.88.

Given the impracticality of minimizing each variable in this context, we opted to prioritize
minimizing these variables according to a designated hierarchy of importance, i.e., x1 → x2 →
· · · → x6. Thus, we achieved the optimal lexical solution to the problem.

Table 2: Radiation intensity values

Base Station \Test Point # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

Base Station 1 0.9 0.8 0.85 0.65 0.6 0.65 0.7 0.3 0.2 0.15
Base Station 2 0.7 0.8 0.75 0.7 0.5 0.6 0.55 0.1 0.3 0.35
Base Station 3 0.8 0.75 0.8 0.8 0.7 0.75 0.7 0.5 0.6 0.6
Base Station 4 0.4 0.55 0.5 0.1 0.25 0.3 0.35 0.9 0.8 0.9
Base Station 5 0.6 0.7 0.65 0.8 0.75 0.7 0.7 0.3 0.35 0.2
Base Station 6 0.1 0.15 0.35 0.7 0.6 0.45 0.8 0.8 0.7 0.5
Base Station 7 0.2 0.1 0.1 0.4 0.5 0.85 0.7 0.7 0.6 0.65
Base Station 8 0.35 0.5 0.4 0.8 0.8 0.7 0.75 0.5 0.8 0.6

6 Conclusions

The study outlines a multi-objective programming problem that utilizes max-product fuzzy
relational inequalities (FRIs) to develop an optimal management strategy for Emission Base
Stations (EBSs) in wireless communication systems. In this framework, the concept of a lex-
icographic optimal solution is introduced, and shown to be unique under specific conditions.
The research also clarifies significant findings regarding max-product FRIs in contrast to fuzzy
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relational equations (FREs) and discusses the feasible solution set along with their relevant
properties to address the proposed optimization challenge. Notably, the lexicographic optimal
solution is identified as one of the minimal solutions subject to the given constraints. Although
a polynomial algorithm for addressing max-product fuzzy relation systems has yet to be de-
veloped, the Feasible Index Set (FIS) algorithm has been designed to effectively determine
the unique lexicographic optimal solution without requiring a comprehensive identification of
all minimal solutions. This algorithm demonstrates polynomial computational complexity and
can be adapted to tackle multi-objective programming problems constrained by max-min fuzzy
relation inequalities.
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