[1] Albertson, M.O. (1997). “The irregularity of a graph”, Ars Combinatoria, 46, 219-225, doi: 0fba1b3710f21f7208f71ce2d605c777966af7b2.
[2] Abdo, H., Brandt, S., and Dimitrov, D. (2014). “The total irregularity of graph”, Discrete Mathematics and Theoretical Computer Science, 16, 201-206, doi:10.46298/dmtcs.1263.
[3] Bell, F.K. (1992). “A note on the irregularity of a graph”, Linear Algebra and its Applications, 161, 45-54, doi:10.1016/0024-3795(92)90004-t.
[4] Borissevich, K., and Doslić, T. (2015). “Counting dominating sets in cactus chains”, Filomat, 29(8), 1847-1855, doi:10.2298/fil1508847b.
[5] Collatz, L., and Sinogowitz, U. (1957). “Spektren endlicher grafen”, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 21, 63-77, doi:10.1007/bf02941924.
[6] Diudea, M.V., Gutman, I., and Lorentz, J. (2001). “Molecular topology”, Nova, Huntington.
[7] Firouzian, S., and Adabitabar Firozja, M. (2016). “Fuzzy number-valued fuzzy graph”, Control and Optimization in Applied Mathematics, 1(2), 77-86.
[8] Furtula, B., Gutman, I., Vukićević, Z.K., Lekishvili, G., and Popivoda, G. (2015). “On an old/new degree-based topological index”, Bulletin: Classe des Sciences Mathématiques Et Naturelles, 148(40), 19-31.
[9] Ghalavand, A., Reti, T., Milovanovic, I.Z., and Ashrafi, A.R. (2022). “Graph irregularity characterization with particular regard to bidegreed graphs”, arXiv:2211.06744, doi:10.48550/arXiv.2211.06744.
[10] Ghanbari, N. (2022). “On the Graovac-Ghorbani and atom-bond connectivity indices of graphs from primary subgraphs”, Iranian Journal of Mathematical Chemistry, 13(1), 45-72, doi:10.22052/ijmc.2022.246079.1612.
[11] Ghanbari, N., and Alikhani, S. (2021). “Mostar index and edge Mostar index of polymers”, Computational and Applied Mathematics, 40, 260, doi:10.1007/s40314-021-01652-x.
[12] Gutman, I. (2016). “Irregularity of molecular graph”, Kragujevac Journal of Science, 38, 99-109, doi: 10.5937/kgjsci1638071g.
[13] Hamidi, M., Norouzi, K., and Rezaei, A. (2021). “On grey graphs and their applications in optimization”, Control and Optimization in Applied Mathematics, 6(2), 79-96, doi:10.30473/coam. 2022.61195.1181.
[14] Harary, F., and Uhlenbeck, G. E. (1953). “On the number of Husimi trees”, Proceedings of the National Academy of Sciences, 39, 315-322, doi:10.1073/pnas.39.4.315.
[15] Hosoya, H., and Balasubramanian, K. (1989). “Exact dimer statistics and characteristic polynomials of cacti lattices”, Theoretica Chimica Acta, 76, 315-329, doi: 10.1007/bf00529932.
[16] Husimi, K. (1950). “Note on Mayer’s theory of cluster integrals”, The Journal of Chemical Physics, 18, 682-684, doi:10.1063/1.1747725.
[17] Nikiforov, V. (2006). “Eigenvalues and degree deviation in graph”, Linear Algebra and its Applications, 414, 347-360, doi:10.1016/j.laa.2005.10.011.
[18] Riddell, R. J. (1951). “Contributions to the theory of condensation”, Ph.D. Thesis, University of Michigan, Ann Arbor.
[19] Tavakoli, M., and Rahbarnia, F. (2012). “Note on properties of first Zagreb index of graphs”, Iranian Journal of Mathematical Chemistry, 3, 1-5, doi:10.22052/ijmc.2012.5269.
[20] Yousef, S., and Naeem, A. (2024). “On the multiplicative reformulated First Zagreb index of n-vertex trees with respect to matching number”, Iranian Journal of Mathematical Chemistry, 15(3), 203-225, doi:10.22052/ijmc.2024.253967.1793.
[21] Zmazek, B. (2004). “The obnoxious center problem on weighted cactus graphs”, Discrete Applied Mathematics, 136, 377-386, doi:10.1016/s0166-218x(03)00452-9.
[22] Zmazek, B., and Zerovnik, J. (2003). "Computing the weighted Wiener and Szeged number on weighted cactus graphs in linear time”, Croatica Chemica Acta, 76(2), 137-143.