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Abstract. An irregularity measure (IM) of a connected graph G is
defined as a non-negative graph invariant that satisfies the condition
IM(G) = 0 if and only if G is a regular graph. Among the prominent
degree-based irregularity measures are Bell’s degree variance, denoted
as V arB(G), and degree deviation, represented as S(G). Specifically,
they are defined by the equations V arB(G) = 1

n

∑n
i=1

(
di − 2m

n

)2
and S(G) =

∑n
i=1

∣∣di − 2m
n

∣∣, where m is the number of edges and
n is the number of vertices in G. This paper studies the properties
of Bell’s degree-variance and degree deviation for acyclic, unicyclic,
and cactus graphs. Our analysis shows how these measures relate
to graph topology and structure, influencing the overall irregularity.
Additionally, we identify and analyze optimal graphs that minimize
both irregularity measures, providing insights into their implications
for network design, data structure optimization, and real-world applica-
tions. This study contributes to the understanding of graph irregularity
and offers a framework for future research into irregularity measures
across different classes of graphs.
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1 Introduction

Let G be a connected simple graph with vertex set V (G) and edge set E(G), comprising n

vertices andm edges, respectively. The maximum degree and the minimum degree of vertices
in G are denoted by ∆ = ∆(G) and δ = δ(G), respectively. For any vertex ui ∈ V (G),
we denote its degree by dG(ui) and throughout this paper, we will use the simpler notations
d(ui) or di interchangeably. A vertex that is adjacent to all other vertices in G is referred to as
a universal vertex. The number of vertices with degree i is represented as Ni. A graph G is
defined to be R-regular if all its vertices have the same degree R; otherwise, it is classified as
an irregular graph. If the degree sequenceDs(G) of an irregular graph G consists of exactly k
distinct degrees, then G is termed a k-degreed graph. Specifically, an irregular graph featuring
precisely two different degrees is called a bidegreed graph, denoted as G(∆, δ).

According to Bell’s definition [3], an irregularity measure (IM) for a (connected) graph
G is a non-negative graph invariant such that IM(G) = 0 if and only if G is regular. The
earliest irregularity measure was proposed by Collatz and Sinogowitz [5] in 1957. Other notable
measures include the Collatz-Sinogowitz index [3], Albertson index [1], total irregularity [2],
and the sigma index [8, 12]. Among these, the most widely used measures of irregularity are
degree deviation S(G) and degree variance V ar(G). The degree deviation was introduced
by Nikiforov [17], and is defined for a connected graph G of order n and sizem as:

S(G) =

n∑
i=1

∣∣∣∣di − 2m

n

∣∣∣∣ ,
while Bell [3] defined degree variance as:

V arB(G) =
1

n

n∑
i=1

(
di −

2m

n

)2

.

Here,2mn represents the average degree of the vertices in graph G. For clarity, we denote
V arB(G) simply as V ar(G).

Additionally, we introduce two novel graph irregularity measures IRD(G) and IRR(G),
which involve coefficients of the harmonic mean. These measures are defined as follows (see
[9]):

IRD(G) =
2N∆Nδ

N∆ +Nδ
(∆− δ),

IRR(G) =
n

2
(∆− δ).

The study of optimal graphs based on irregularity focuses on identifying graphs within a
specific class that maximize or minimize particular measures of irregularity. Degree variance
and degree deviation, stand as prevalent irregularity measures in this context. Consequently,
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exploring optimal graphs based on these measures often entails solving optimization problems
where the objective function is an irregularity measure.

Cactus graphs, initially referred to as Husimi trees, were first introduced in scientific liter-
ature approximately sixty years ago in works of Husimi and Riddell, which examined cluster
integrals related to condensation in statistical mechanics [14, 16, 18]. These graphs find appli-
cations in fields such as chemistry [15, 22] as well as in electrical and communication networks
[21]. For further insights into cactus graphs, we direct the reader to the works of [4, 10, 11].
A connected graph is categorized as a cactus graph if every two distinct cycles share at most
one edge. A cactus graph G is termed m-uniform if all of its blocks, which may be edges or a
cycles, are cycles of the same sizem.

In the Section 2, we study the degree deviation S(G) and the degree variance V ar(G) of
acyclic and unicyclic graphs. In Section 3, we consider several cactus chains to derive the
degree deviation S(G) and the degree variance V ar(G) of these types of graphs. The final
conclusions are presented in Section 4.

2 Results for Acyclic and Unicyclic Graphs

In this section, we analyze the degree deviation and degree variance of acyclic and unicyclic
graphs. We begin by presenting the following lemma and theorems, which will be referenced in
subsequent discussions. Additionally, we identify optimal graphs based on these two measures
of irregularity.

Lemma 1. [9] Let G be a connected bidegreed graph with n vertices. Then,

i. IRD(G) = S(G) ≤ IRR(G) = n
2 (∆ − δ), with equality holding if and only if G is a

balanced bidegreed graph.

ii. V ar(G) = 1
n2 IRR(G)IRD(G) ≤ 1

n2 (IRR(G))2 = (∆−δ)2

4 , with equality holding if
and only if G is a balanced bidegreed graph.

iii. V ar(G) = ∆−δ
2n S(G).

Theorem 1. [9] Let T denote a tree with n vertices. Then,

i. S(T ) = 4(n−2)
n + 2(n−2)

n

∆∑
i=3

Ni(i− 2).

ii. V ar(T ) = 2(n−2)
n2 + 1

n

∆∑
i=3

Ni(i− 1)(i− 2).
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According to Theorem 1, since star graphs Sn exhibit the maximum degree deviation and
degree variance while and path graphs Pn show the minimum, we derive the following corol-
lary:

Corollary 1. Let T be any tree of order n. Then:

i. 4(n−2)
n ≤ S(T ) ≤ 2(n−1)(n−2)

n .

ii. 2(n−2)
n2 ≤ V ar(T ) ≤ (n−1)(n−2)2

n2 .

Theorem 2. [9] Let G be a connected unicyclic graph with n vertices. Then,

i. S(G) = 2

∆∑
i=3

Ni(i− 2).

ii. V ar(G) = 1
n

∆∑
i=3

Ni(i− 1)(i− 2).

iii. nV ar(G)− S(G) =
∆∑
i=4

Ni(i− 2)(i− 3).

Theorem 3. If T is a tree with n vertices and t pendant vertices, then

S(T ) = (2− 4

n
)t.

Proof. Let D = {v ∈ V (T ) | deg(v) = 1}. In any tree of order n, we have m = n −
1, thus 2m

n = 2 − 2
n . Therefore, we can express the degree deviation as follows: S(T ) =∑n

i=1

∣∣di − 2m
n | =

∑n
i=1 |di − 2 + 2

n

∣∣. This leads to:
S(T ) = t(1− 2

n
) +

∑
v/∈D

(dv − 2 +
2

n
) = t(1− 2

n
) +

∑
v/∈D

dv − (n− t)(2− 2

n
).

Thus,
= t(1− 2

n
) + (2n− 2− t)− (n− t)(2− 2

n
) = (2− 4

n
)t.

We denote the path graph with n vertices as Pn and the star graph as Sn. Additionally, the
number of pendant vertices in a tree T is represented by tT . It is evident that the average degree
of the vertices in a tree T with n vertices is given by

dT =
2n− 2

n
.

Furthermore, it holds that 2 = tPn ≤ tT ≤ tSn = n − 1. Consequently, according to
Theorem 1, we can derive the following results:
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Corollary 2. For any two trees T1 and T2 with n vertices, S(T1) = S(T2) if and only if
tT1 = tT2 .

The next corollary offers optimal trees based on degree deviation:

Corollary 3. For any tree T that contains n vertices, the following inequality holds:

S(Pn) ≤ S(T ) ≤ S(Sn).

Equality in the left inequality occurs if and only if T is a path, while equality in the right
inequality occurs if and only if T is a star.

Edge contraction is an operation that removes an edge from a graph G and merges the two
vertices connected by that edge into a single vertex. The resulting graph is denoted as G/e.
The following theorem compares the degree deviation of T with that of T/e:

Theorem 4. Let T be a tree with n vertices and e ∈ E(T ). Then, S(T ) ≥ S(T/e) with
equality holding only when T = K2.

Proof. Let DT = {v ∈ V (T ) | deg(v) = 1} denote the set of pendant vertices, where |DT | =
tT and let T1 = T/e. It can be shown that

|DT1 | − 1 ≤ |DT | ≤ |DT1 |.

By Theorem 3, we have:

S(T ) = (2− 4

n
)tT ≥ (2− 4

n
)tT1 ≥ (2− 4

n− 1
)tT1 = S(T1) = S(T/e),

with equality holding only if T = K2.

Proposition 1. If T is a tree with n vertices, then the value of S(T )− S(T/e) is either 0 or 2
for sufficiently large n.

Proof. By Theorem 3, we establish that

S(Pn)− S(Pn/e) =

(
4(
2(n− 1)

n
− 1)− 4(

2(n− 2)

n− 1
− 1)

)
= 4

(
2

n2 − n

)
,

which approaches 0 for sufficiently large n. Similarly, for the star graph Sn:

S(Sn)− S(Sn/e)

=

(
2(n− 1)(

2(n− 1)

n
− 1)− 2(n− 2)(

2(n− 2)

n− 1
− 1)

)
,

which approaches 2 for sufficiently large n.
Let T be a tree with n vertices and tn pendant vertices. By Theorem 4, we have 0 ≤

S(T )− S(T/e).
We examine the following cases:
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• Case 1. The trees T and T/e have the same number of pendant vertices. By Theorem 3, we get

S(T )− S(T/e) = 2tn(
2

n(n− 1)
) ≤ 2(n− 1)(

2

n(n− 1)
=

4

n
.

Therefore, S(T )− S(T/e) approaches 0 for sufficiently large n.

• Case 2. The number of pendant vertices in tree T is one more than the number of pendant
vertices in tree T/e. In this case, we have

(
S(T )− S(T/e)

)
=

(2tn(n− 2)

n
− 2(tn − 1)(n− 3)

n− 1

)
.

This simplifies to

=
(
2tn(

2

n(n− 1)
) +

2(n− 3)

n− 1

)
≤

(
2(n− 1)(

2

n(n− 1)
) +

2(n− 3)

n− 1

)
,

yielding that S(T )− S(T/e) approaches 2 for sufficiently large n.

Theorem 5. Let T be a tree of order n, and let e = uv ∈ E(T ).

i. If deg(u), deg(v) ≥ 2 or deg(u), deg(v) ≤ 2, then V ar(T ) < V ar(T/e).

ii. If deg(u) ≥ 3 and deg(v) = 1 (or deg(u) = 1 and deg(v) ≥ 3), then nV ar(T ) ≥ (n −
1)V ar(T/e).

Proof. Assume deg(u) = s and deg(v) = t.

i. By Theorem 1, if s, t ≤ 2, the terms
∑∆

i=3Ni(i − 1)(i − 2) in V ar(T ) and V ar(T/e) are
equal, therefore, given that (n−2)

n2 < (n−3)
(n−1)2

and 1
n < 1

n−1 , we conclude V ar(T ) < V ar(T/e).

ii. If s ≥ 3 and t = 1 and Ns = x and Ns−1 = y, we have:

∆′∑
i=3

N ′
i(i− 1)(i− 2) =

∆′∑
i=3, i ̸=s,s−1

N ′
i(i− 2) +N ′

s−1(n− 2)(s− 3) +N ′
s(n− 1)(s− 2) =

∆′∑
i=3, i ̸=s,s−1

N ′
i(i− 2) + (y + 1)(s− 2)(s− 3) + (x− 1)(s− 1)(s− 2),

since for each i = 1, 2, ...,∆′ i ̸= s, s− 1, Ni = N ′
i and

y(s− 2)(s− 3) + x(s− 1)(s− 2) > (y + 1)(s− 2)(s− 3)(x− 1)(s− 1)(s− 2),

we have:
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∆∑
i=3

Ni(i− 1)(i− 2)

=

∆∑
i=3, i ̸=s,s−1

Ni(i− 1)(i− 2) + y(s− 2)(s− 3) + x(s− 1)(s− 2)

>
∆′∑

i=3, i ̸=s,s−1

N ′
i(i− 1)(i− 2) + (y + 1)(s− 2)(s− 3) + (x− 1)(s− 1)(s− 2)

=

∆′∑
i=3

N ′
i(i− 1)(i− 2).

which implies nV ar(T ) > (n− 1)V ar(T/e) since ( (n−2)
n > (n−3)

(n−1)).

Here, we study the degree deviation and the degree variance of several types of unicyclic
connected graphs, which are utilized in Theorem 6.

Definition 1. Let Cn denote a cycle with n-vertices. The graph CnTk is formed by identifying
a vertex from a tree Tk of order k with a vertex from the cycle Cn.

b

b

b b b

b

b b

b b b

b

b

Figure 1: Graphs C3T5 (left) and C4T3 (right).

The following simple lemma can proven by induction:

Lemma 2. Let G be a connected unicyclic graph with a cycle Cn, formed by identifying trees
Tk1 , Tk2 , . . . , Tkr to the vertices u1, u2, . . . , ur (where r ≤ n of the cycle Cn. Then,

S(G) = S(CnTk1) + S(CnTk2) + · · ·+ S(CnTkr).

Let Tm,n denote the graph produced by joining a cycle Cm to a path Pn; this is referred to
as the (m,n)-tadpole graph. The tadpole graphs T3,1 and T4,1 are illustrated in Figure 2.

b

b b

b

b

b b

b

b

Figure 2: Tadpole graphs T3,1 (left) and T4,1 (right).



In
Pr
es
s

8 Bell’s Degree Variance and Degree Deviation in Graphs ...

Lemma 3. For the unicyclic graph CnTk, it holds that S(CnTk) = 2t, where t denotes the
number of pendant vertices in CnTk.

Proof. We will prove this lemma by induction on t. For the base case where t = 1, the graph
CnTk represents a tadpole graph, and it is clear that S(CnTk) = 2. Now, assume that for any
graphCnTk with t pendant vertices, the relationship S(CnTk) = 2t holds. Wewill demonstrate
that for every graph CnTk with t + 1 pendant vertices, it follows that S(CnTk) = 2(t + 1).
Consider a pendant vertex u1 from the graph CnTk. If u1 is adjacent to a vertex of degree 2,
then upon removing u1, the number of pendant vertices in both S(CnTk) and S(CnTk−1) will
equal t+ 1. Consequently, we have S(CnTk) = S(CnTk−1).

Continuing this process, we eventually arrive at a point where ui is not adjacent to a vertex
of degree 2. In this case, upon removing the vertex ui, the value of S(CnTk) will decrease by
2, resulting in the new graph S(CnTk−j) containing t pendant vertices. Thus, we can conclude
that S(CnTk) = S(CnTk−j − {ui}) + 2 = 2t+ 2.

Note that a tree with at most one vertex of degree ≥ 3 is referred to as a starlike tree. The
path Pn and the star graph Sn are two special examples of starlike tree.

Corollary 4. It follows that S(CnTk) ≥ 2(∆Tk
−1) and S(CnTk) = 2(∆Tk

−1), with equality
occurring if and only if Tk is a starlike tree connected to Cn by a pendant vertex.

Using Lemmas 2 and 3 we can establish the following theorem:

Theorem 6. If G is a unicyclic graph with t pendant vertices, then S(G) = 2t.

The following corollary provides a lower bound for the degree deviation of an irregular
unicycle graph of order n, as well as identifying the optimal graphs of this category:

Corollary 5. If Gn is an irregular unicycle graph of order n, then S(Gn) ≤ 2(n − 3) and the
equality holds if and only ifGn has a universal vertex. It is noteworthy that, in the equality, the
cycle of G must be a triangle.

Applying the Cauchy-Schwarz inequality, we have S(G) ≤ n
√

V ar(G). Additionally,
for any unicyclic graph G of order n with ∆G ≤ 3, it follows that V ar(G) ≤ 1, with equality
holding if and only ifG is a sun-graph (denoted as (Cn◦K1), where ◦ denotes the corona opera-
tion). The following theorem offers an alternative version of the previous inequality applicable
to unicyclic graphs:

Theorem 7. If G is a unicycle graph with n vertices, then S(G) ≤ nV ar(G) and equality
holds if and only if ∆G ≤ 3.

Proof. For each vertex vi with degree deg(vi) = di, we observe that |di− 2| ≤ (di− 2)2. This
relationship allows us to derive the desired result.
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We aim to establish a lower bound for Bell’s degree variance V ar(G) for unicycle graph
of order n with t pendant vertices. We will also identify the optimal graphs that achieve these
optimal values. Utilizing Theorems 6 and 7, we conclude the following corollary:

Corollary 6. If G is a unicycle graph of order n and t pendant vertices, then V ar(G) ≥ 2t
n

with equality holding if and only if∆G ≤ 3.

Theorem8. If graphG is formed by identifying the vertices v1, v2, · · · vr of treesTk1 , Tk2 , . . . , Tkr

with different vertices u1, u2, . . . , ur of the cycleCn, then the variance of ( G ) can be expressed
as

V ar(G) =

r∑
i=1

V ar(CnTki)(ki + n− 1)

n− r +
∑

ki
.

Proof. The total number of vertices in the graphG is given by n− r+
∑r

i=1 ki. Thus, we can
express the variance as follows:

V ar(G) =
(
∑k1

i=1(d1i − 2)2) + ...+ (
∑kr

i=1(dri − 2)2)

n− r +
∑r

i=1 ki
=

∑r
i=1 V ar(CnTki)(ki + n− 1)

n− r +
∑

ki
.

Theorem 9. If Gn is an irregular unicyclic graph of order n, then V ar(Gn) ≤ (n−2)(n−3)
n ,

with equality holding if and only if Gn contains a universal vertex.

Proof. We will prove the assertion by induction on n. For the base case n = 4, we find that
V ar(G4) =

1
2 , hence nV ar(G4) = 2 ≤ (n− 2)(n− 3).

Assume that for the graphGn, the inequality nV ar(Gn) ≤ (n− 2)(n− 3) holds. We now
consider an irregular unicycle graph Gn+1 with n + 1 vertices. Let u be a pendant vertex of
graph Gn+1. By removing the vertex u, we analyze two cases.

Case 1. If removing u, does not change the number of pendant vertices, then we have
n+1∑
i=1

(di − 2)2 =
n∑

i=1

(di − 2)2.

Consequently,

(n+ 1)V ar(Gn+1) = nV ar(Gn) ≤ (n− 2)(n− 3) < (n− 1)(n− 2).

Case 2. If the removal of u reduces the number of pendant vertices, the maximum reduction
in the value of

∑n+1
i=1 (di − 2)2 occurs when u is a leaf adjacent to a universal vertex. The

reduction value in this scenario is given by (n− 2)2 − (n− 3)2 + 1, yielding:

(n+ 1)V ar(Gn+1) ≤ nV ar(Gn) + (n− 2)2 − (n− 3)2 + 1

≤ (n− 2)(n− 3) + (n− 2)2 − (n− 3)2 + 1 = (n− 1)(n− 2).
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For the case of equality, let nV ar(Gn) = (n − 2)(n − 3) and assume the graph G does not
contain a universal vertex. Suppose that vertex v is a vertex in the cycle of the graph with
degree greater than 3. Since v is not universal vertex, there are vertices that are not adjacent to
v. Two subcases arise:

Case A. The graphG has a support vertex (a vertex adjucent to a pendant vertex) that is not
on the cycle. Let u0 be a support vertex in tree T , where k pendant vertices are adjacent to u0,
and tree T is connected to the cycle at the vertex v. If we isolate all k pendant vertices from u0

and connect them to v, we obtain a new graph G′:

(n− 2)(n− 3) = nV ar(G) = (dv − 2)2 + (d− u0 − 2)2 + k(1− 2)2 +B

= (dv − 2)2 + (k − 1)2 + k +B,

whereB represents the sum of terms of the form (d−2)2 for the remaining vertices. Conversely,
for the modified graph ( G’ ):

nV ar(G′) = (dv + k − 2)2 + (1− 2)2 + k(1− 2)2 +B.

A straightforward calculation reveals that

(n− 2)(n− 3) = nV ar(G) ≨ nV ar(G′) ≤ (n− 2)(n− 3),

resulting in a contradiction.
Case B. The graph G contains a support vertex that is part of the cycle. We consider two

subcases:
Subcase 1. The cycle has length n1 ≥ 4. In this instance, the graph G is formed by

identifying the central vertices of 1 ≤ r ≤ n1 stars K1,ki with vertices of Cn1 . Then, we have
n = n1 + k1 + . . .+ kr and consequently,

nV ar(G) = (k21 + k1) + . . . (k2r + kr) ≨ (k1 + . . .+ kr)
2

≨ (k1 + . . .+ kr + 2)(k1 + . . .+ kr + 1)

≤ (n1 + k1 + . . .+ kr − 2)(n1 + k1 + . . .+ kr − 3) = (n− 2)(n− 3).

Subcase 2. When the cycle has a length of n1 = 3, and the graph G does not have
a universal vertex, it can be formed by connecting 2 ≤ r ≤ 3 stars to C3, where each star
Si comprises ki pendant vertices connected to the cycle via their central vertex. Thus, n =

3 + k1 + k2 + k3 and the proof follows similarly to that of the previous subcase.

Theorem 10. Let G be a unicyclic graph and let e = uv ∈ E(G) such that G/e is also a
unicyclic graph. Then S(G/e) ≤ S(G), with equality holding if and only if deg(u) ≥ 2 and
deg(v) ≥ 2 or deg(u) ≤ 2 and deg(v) ≤ 2.

Proof. Let deg(u) = s and deg(v) = t. We consider the following cases:
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1. If s, t ≥ 2 or s, t ≤ 2, then

|s− 2|+ |t− 2| = |s+ t− 4|.

Consequently, we find S(G) =
∑n

i=1 |di− 2| =
∑n

i=1&di ̸=s,t |di− 2|+ |s+ t− 4| = S(G/e).

2. If s < 2 and t > 2 (or s > 2 and t < 2), then we observe

|s− 2|+ |t− 2| > |s+ t− 4|,

implying that S(G) > S(G/e).

Therefore, the theorem has been proven.

Theorem 11. LetG be a unicyclic graph with n vertices and let e = uv ∈ E(G) such thatG/e

is also a unicyclic graph. The following statements hold:

(i) If deg(u) ≥ 2 and deg(v) ≥ 2 or deg(u) ≤ 2 and deg(v) ≤ 2, then V ar(G/e) ≥ V ar(G).

(ii) If deg(u) > 2 and deg(v) = 1 or deg(v) > 2 and deg(u) = 1, then

(n− 1)V ar(G/e) < nV ar(G).

Proof. Assume deg(u) = s and deg(v) = t.

1. If s, t ≥ 2 or s, t ≤ 2, then we have:

(s− 2)2 + (t− 2)2 ≤ (s+ t− 4)2.

It follows that

V ar(G) =
1

n
[

n∑
i=1

(di − 2)2] ≤ 1

n− 1
[

n∑
i=1&di ̸=s,t

(di − 2)2 + (s+ t− 4)2] = V ar(G/e).

2. If s > 2 and t = 1, then we find that

(s− 2)2 + 1 > (s− 3)2.

Therefore,

nV ar(G) =

n∑
i=1

(di − 2)2 >

n∑
i=1&di ̸=s,t

(di − 2)2 + (s− 3)2 = (n− 1)V ar(G/e).
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bcbc bc bcbc bcbc bc
x1 x2 x3

y1 y2 y3
G1 G2 G3 bc bcb b b

xn

ynyn−1

Gn−1

xn−1

Gn

Figure 3: Chain of graphs

3 Results for Certain Cactus Graphs

In this section, we calculate the degree deviation and the degree variance of several cactus
graphs. Consider a series of disjoint connected graphs, denoted as G1, G2, . . . , Gn. We con-
struct a chain of these graphs, referred to as C(G1, . . . , Gn), by linking them sequentially.
Specifically, for each adjacent pair of graphs,Gi andGi+1 , we merge a selected vertex yi from
Gi with a selected vertex xi+1 from Gi+1 (see Figure 3).

Proposition 2. Let Xn,m be a chain cactus graph in which each block consists of a cycle of
lengthm, where n ≥ 2 represents the number of cycles. Then the following holds:

(i) S(Xn,m) = 4(m−2)n2−4(m−4)n−8
(m−1)n+1 .

(ii) V ar(Xn,m) = 4(m−2)n2−4(m−4)n−8
[(m−1)n+1]2

.

Proof. (i) Since all of these chain cactus graphs exhibit bidegree properties, we apply Lemma
1 to find that

S(Xn,m) = IRD(Xn,m) =
2[n− 1][n(m− 2) + 2]

[n− 1] + [n(m− 2) + 2]
(4− 2)

=
4(m− 2)n2 − 4(m− 4)n− 8

(m− 1)n+ 1
.

(ii) The variance is given by V ar(Xn,m) = (4−2)
2[n(m−1)+1]S(Xn,m) = 4(m−2)n2−4(m−4)n−8

[(m−1)n+1]2
.

Example 1. (i) Consider the chain triangular cactus Tn = Xn,3 for n ≥ 2, as illustrated in the
Figure 4. By applying Proposition 2, we obtain the following results:

S(Tn) =
4(n− 1)(n+ 2)

2n+ 1
,

and
V ar(Tn) =

4(n− 1)(n+ 2)

(2n+ 1)2
.

(ii) Let Qn = Xn,4 for n ≥ 2 represent a para-chain square cactus, as depicted in Figure 5.
According to Proposition 2, we have:
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b b b b

b

bb

b

b

b

b

b

b

Figure 4: The graph Tn

S(Qn) =
8(n− 1)(n+ 1)

3n+ 1
,

and
V ar(Qn) =

8(n− 1)(n+ 1)

(3n+ 1)2
.

b b b b

b

bb

b

b

b

b

b

b

b b b b

Figure 5: The graph Qn

Theorem 12. For any integers s, t ∈ N, such that 3 ≤ s < t, it holds that

S(Xn,s) < S(Xn,t)

Proof. It suffices to demonstrate the assertion for the specific case where s = m and t = m+1.
By applying Proposition 2, we aim to show that S(Xn,m+1)− S(Xn,m) > 0:

S(Xn,m+1)− S(Xn,m) =
4(m− 1)n2 − 4(m− 3)n− 8

mn+ 1

− 4(m− 2)n2 − 4(m− 4)n− 8

(m− 1)n+ 1
=

2(n− 2) +mn(m− 2) + 3

[mn+ 1][(m− 1)n+ 1]
> 0.

Corollary 7. For everym ≥ 3, it follows that S(Tn) ≤ S(Xn,m).

Corollary 8. For any integers s, t ∈ N such that 3 ≤ s < t, it holds that

[(s− 1)n+ 1]V ar(Xn,s) < [(t− 1)n+ 1]V ar(Xn,t).

Proof. The result follows from Lemma 1 and Theorem 12.

Theorem 13. For any integerm ≥ 3 and n ≥ 2, we have

S(Xn,m) < S(Xn+1,m).
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Figure 6: Friendship graph F2, F3, F4 and Fn, respectively

Proof. Utilizing Proposition 2, we compute:

S(Xn+1,m)− S(Xn,m) =
4(m− 2)(n+ 1)2 − 4(m− 4)(n+ 1)− 8

(m− 1)(n+ 1) + 1

− 4(m− 2)n2 − 4(m− 4)n− 8

(m− 1)n+ 1

=
4(m− 2)2n2 + 4m(mn− 2) + 8

[(m− 1)(n+ 1) + 1][(m− 1)n+ 1]
> 0.

Definition 2. The friendship graph Fn is defined as the graph formed by merging n copies of
the cycle graph C3 at a common vertex. It is evident that the friendship graph is a bidegree
cactus graph, as illustrated in Figure 6.

Corollary 9. LetFn denote a friendship graph. Then the degree deviationS(Fn) and the degree
variance V ar(Fn) can be expressed as follows:

S(Fn) =
8n(n− 1)

2n+ 1
and V ar(Fn) =

8n(n− 1)2

(2n+ 1)2
.

4 Conclusion

In this study, we have explored two fundamental irregularity measures in graph theory—Bell’s
degree variance V ar(G) and degree deviation S(G)— across various significant classes of
graphs. Our investigation has resulted in the derivation of precise formulas and bounds for these
measures in acyclic graphs (trees), unicyclic graphs, and different forms of cactus graphs, thus
contributing to a deeper understanding of graph irregularity. Key findings from our research
include:

1. The establishment of exact formulations for S(T ) and Var(T ) in trees with n vertices,
highlighting their dependence on the number of pendant vertices and the degree distribu-
tion (Theorem 3).
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2. The derivation of the relationship S(G) = 2t for unicyclic graphs with t pendant vertices
(Theorem 6), demonstrating a straightforward linear correlation. We found optimal trees
and unicyclic graphs based on these two irregularity measures.

3. The identification of optimal trees and unicyclic graphs based on the two measures of
irregularity.

4. The observation that both S(Xn,m) and Var(Xn,m) exhibit monotonically increasing be-
havior regarding the parameters n andm (Theorems 12 and 13).

Our findings expand the theoretical foundation of graph irregularity measures and provide valu-
able tools for quantifying structural differences among various graph classes. The inequalities
and explicit formulas presented may have practical applications in network analysis, where
assessing the deviation from regularity is crucial.
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