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Abstract. A critical aspect of successful project management is
ensuring that execution aligns with the baseline schedule. However,
traditional project control methods often struggle to effectively address
the uncertainties and deviations that can arise during project execution,
leading to delays and inefficiencies. To tackle these challenges, this
paper introduces a novel heuristic approach based on the Tabu Search
(TS) algorithm for identifying discrete control points throughout the
project life cycle. These control points enable proactive monitor-
ing, timely deviation detection, and corrective actions, significantly
minimizing project delays. Unlike traditional scheduling techniques,
which can be rigid and reactive, our proposed method dynamically
adjusts control points to enhance project oversight. Experimental
results on benchmark instances from the Kolisch library demonstrate
that our approach significantly reduces project delays, with up to 20%
improvements compared to initial schedules in certain scenarios. These
findings underscore the effectiveness of the TS algorithm in enhancing
project control strategies, highlighting its potential applicability in
real-world project management scenarios.
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1 Introduction

In the management of complex projects, maintaining alignment with the baseline schedule is critical to
ensuring successful project delivery. However, due to uncertainties, resource constraints, and unforeseen
events, deviations from the initial schedule often occur. These deviations, if not addressed promptly,
can lead to delays, budget overruns, and suboptimal outcomes. Therefore, identifying discrete control
points throughout the project life cycle where progress can be assessed and corrective actions can be
taken becomes a vital aspect of project management.

Historically, project control relied heavily on deterministic approaches like the Critical Path Method
(CPM), Program Evaluation and Review Technique (PERT), and Gantt charts. These tools, while foun-
dational, have limitations due to their inability to manage uncertainties and risks in project execution.
As noted by Pellerin and Perrier (2018), traditional methods are largely schedule-driven and focus on ac-
tivities’ precedence relationships, without fully considering the stochastic nature of real-world projects.
The simplifications made in these techniques often compromise their applicability to complex projects
where uncertainties play a significant role [4].

Resource-constrained project scheduling problems (RCPSP) involve allocating a set of limited re-
sources to various activities within a project, while considering precedence constraints -which dictate the
order in which activities must be completed- and specific project objectives es) in [9]. Effective project
scheduling is crucial for ensuring timely and resource-efficient project completion. The RCPSP repre-
sents a well-established combinatorial optimization challenge that arises in complex projects where both
resources limitation and task dependencies are crucial. Numerous methods have been explored to ad-
dress the RCPSP, ranging from traditional heuristics to advanced metaheuristic algorithms such as Tabu
Search (TS) (e.g., [1, 8]), Genetic Algorithms (GA), and Simulated Annealing (SA). These methods aim
to find a near optimal resource allocation while minimizing project duration and meeting predefined
constraints [3].

Although many advanced project scheduling algorithms have been developed to construct resource-
feasible baseline schedules, projects are often executed in relatively unstable environments, making
changes to the baseline schedules inevitable [6]. Therefore, monitoring and control of project progress
are essential. One objective of the control process may be to minimize the deviations from the baseline
schedule (e.g., refer to [5, 6]). Despite significant efforts to make project schedules more robust to un-
foreseen events and themany solutions proposed by researchers, a comprehensivemonitoring and control
mechanism throughout project execution remains essential. Unlike exact optimization approaches, such
as the facility location model proposed by Sabeghi et al. (2015) [6], which provides mathematically rig-
orous solutions, our study focuses on a heuristic-based approach. The use of TS offers greater flexibility
and computational efficiency, particularly in large-scale and dynamic project environments where exact
methods may become computationally expensive.

To gain a clearer insight into the current research landscape surrounding project control, Song et
al. in [7] analyzed and classified existing studies into four primary categories: (1) project monitoring
methods, (2) corrective action strategies, (3) modelling constraints, and (4) the use of project data. In the
category of project monitoring, two main approaches are discussed: top-down and bottom-up monitor-
ing. Top-down project monitoring evaluates overall project performance against predefined threshold
values and generates warning signals when these thresholds are exceeded, indicating potential project de-
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lays. In contrast, bottom-up monitoring begins at the activity level, measuring the progress of individual
tasks and comparing them to activity-specific thresholds to detect early warning signs.

Among the various strategies for top-down monitoring, the literature identifies three primary ap-
proaches: BufferManagement (BM), EarnedValueManagement (EVM), and Statistical Analysis (STA).
BM focuses on monitoring buffer consumption against expected values; EVM uses metrics such as
Schedule Performance Index (SPI) and the Cost Performance Index (CPI) and their time-based counter-
parts to assess schedule and cost performance; and STA employs methods like traditional statistical tech-
niques, control charts, Bayesian statistics, and Kalman filters to detect deviations and define threshold
limits. Most of the existing research, as summarized in Song et al. [7] emphasizes EVM as a dominant
tool for top-down project monitoring.

The approach proposed in our study also falls within the category of top-down project monitoring.
Specifically, discrete control points are determined across the project life cycle using the TS algorithm.
The project performance is then simulated to identify potential delays. If the simulated project comple-
tion time exceeds the planned deadline, corrective actions are taken. These corrective actions consist of
crashing compressible activities within their feasible limits. In this study, we do not consider resource
constraints in the crashing process. Moreover, control actions are implemented only at the end of activity
execution, and we assume no activity preemption occurs.

The use of TS in this study is motivated by its ability to dynamically adjust its exploration strategy
through adap tive memory structures. Unlike GA and SA, which depend on randomized mechanisms for
diversification, TS systematically restricts revisits to previously explored solutions, thereby enhancing
search efficiency and improving convergence toward high-quality solutions.

The remainder of the paper is organized as follows: Section 2 provides a detailed explanation of
the proposed TS algorithm for determining project control points (DPCP). In Section 3, the results of
implementing this algorithm on several test problems from the Kolisch library are presented. Finally,
Section 4 offers the discussion and conclusion.

2 Tabu Search Algorithm for Determining the Project Control Points

In this section we implement a TS algorithm to identify discrete control points in a project life cycle.
The goal is to track and control the progress of the project by finding the near optimal placement of
control points, which allows for monitoring, evaluation, and corrective action during project execution.
The details of the presented TS algorithm are outlined in Algorithm 5 and for convenience, a flowchart
illustrating this algorithm is provided in Figure 1.

This algorithm identifies all paths in the project network, from the starting node to the end node.
These paths are important because they determine the critical sequences of activities that influence the
overall project time line.

An initial random solution is generated by selecting a random subset of the control points (cp) from
the set of existing points, Ep. Ep is the set of all discrete time instants where the execution of one or
more activities of the project finishes according to the baseline schedule. cp is the sequence of the points
which represent the initial set of control points where project progress will be monitored. The initial
cost of this solution is evaluated using the cost function, costfunc(), introduced by Algorithm 6. This
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Algorithm 5 TS Algorithm for DPCP.
Input:

• Project Information:

– stinitial: Array of initial start times for activities.

– dinitial: Array of activity durations.

– n: The number of project’s activities.

– pre: An array containing the list of predecessor activities for each activity.

– nprec: An array indicating the number of predecessors for each activity.

– succ: An array containing the list of successor activities for each activity.

– nsucc: An array indicating the number of successors for each activity.

– pft: Activities’ finish times.

– m: The number of control points.

• TS Parameters:

– MaxIt: Maximum number of iterations.

– lTL: Tabu tenure.

Output: Relative delay of the project after completing execution within the control process.
Procedure:

1. Identify all possible project paths.

2. Generate initial control points (Ep):

(a) Identify control points (Ep) from finish times pft. These points are potential con-
trol points.

(b) Sort Ep and selectm control points (cp) randomly from Ep.

(c) Evaluate the cost of the initial solution using costfunc() (refer to Algorithm 6)
and set it as the best solution BestSol.
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function, estimates the total penalty of a given solution by simulating project progress and calculating
the average delay with respect to the project due date. It takes into account possible variations in activity
durations, evaluates critical and non-critical paths, and quantifies how delays accumulate under different
control point configurations. First, input variables, such as initial start times and durations of activities,
are initialized, and the critical and non-critical project paths are identified. For each activity, a random
duration is generated within a specified range, which is [minval,maxval] (minval: Minimum possible
durations for activities (activities’ compressed duration), maxval: Maximum possible durations for
activities) and project finish times are updated. For each control point, the critical activities duration
from that control point to the end are reduced, and the impact on the project’s final completion time
is evaluated. Finally, if the project exceeds the due date, a penalty is calculated as a percentage of the
relative delay, and this value is returned as the total cost:

Cmax = ((pft(n)− duedate)/duedate)/Maxsii× 100,

where, pft(n) is the project finish time andMaxsii is the maximum number of simulation iteration.

The TS process is implemented to iteratively improve the initial solution by exploring neighbouring
solutions and avoiding previously explored regions using a Tabu List, TL. TL is a matrix that is used
to keep track of moves that are temporarily forbidden, preventing the algorithm from revisiting recently
explored solutions.

In each iteration, a neighbouring solution is generated by randomly modifying one of the control
points. The algorithm explores alternative positions for this control point by moving it both forward
(to later positions in Ep) and backward (to earlier positions in Ep) within the ordered set of candidate
control points (potential control points). Each modified solution is evaluated using the costfunc(). If
the new solution offers an improvement over the current best solution and is not restricted by the Tabu
List, it is adopted as the new best solution. Subsequently, The TL is updated to record the recent moves,
ensuring they are not revisited within a short period (Tabu tenure).

The algorithm continues iterating until it reaches the maximum number of iterations (MaxIt). After
each iteration, the best solution found so far is stored. The final solution represents the best-found
placement of control points for project monitoring.

ّIn Algorithm 6, The corrective actions are modelled through activity crashing at control points. At
each selected control point, the algorithm identifies critical activities and applies duration reductions
within their feasible ranges. This reflects managerial decisions made during project monitoring to miti-
gate delays. Other corrective actions may include adding resources or adjusting task sequencing.

In our approach, the corrective actions related to modifying control points involve dynamic simu-
lation of project progress and adaptive duration reduction (crashing) of critical activities. Specifically,
each time a new set of control points is generated, the algorithm performs the following:
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Algorithm 6 Cost Function Calculation (costfunc())
Input:

• sol: Current solution (control points).

• n: Number of activities.

• stinitial: Initial start times.

• dinitial: Initial durations.

• nprec, nsucc: Predecessors and successors.

• duedate: Project due date.

• Π: Project paths.

• minval,maxval: Minimum and maximum durations for activities.

• Maxsii: Maximum simulation iterations.

Output: Cmax: Total cost based on project delay.
Procedure:

1. Initialize:

• Set fstatus and sstatus to 0;

• Initialize start times (st), durations (d), and finish times (pft).

2. For each simulation iteration sii from 1 toMaxsii:

(a) Generate a random duration reald(i) in [minval(i),maxval(i)].

(b) Update realft(i) and start times for successor activities.

(c) Calculate total duration lp(i) for each path in Π.

(d) Identify critical (cp) and non-critical paths (np).

(e) Compute possible reduction in critical activity durations (maxcrashing).

(f) Simulate progress by adjusting activity durations (reald) and recalculate pft.

(g) If pft(n) > duedate, calculate the relative delay as a percentage.

3. Compute mean relative delay: Cmax.

4. Return Cmax.
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• It simulates the project execution up to each control point,

• Identifies the current critical paths based on updated durations,

• Evaluates the potential to reduce the durations of critical activities at those points (based on pre-
defined flexibility bounds),

• Applies a crashing mechanism to simulate corrective actions (e.g., allocating extra resources or
compressing schedules),

• Recalculates the project finish time accordingly.

This allows the model to determine how effective a particular set of control points would be in reducing
the relative project delay. The TS process then seeks a configuration of control points that maximizes
the impact of corrective actions, leading to a lower total project delay.

3 Experimental Results

Algorithms 5 were implemented in MATLAB and tested on several benchmark instances from the
Kolisch library [2], which provides standard test cases for project scheduling. These benchmark prob-
lems, such as the J30 problem set, contain varying task durations, resource constraints, and dependencies,
which make them suitable for testing the efficiency and robustness of the proposed TS algorithm.

In each test, the initial control points were selected based on the baseline schedule to provide starting
points for the TS process. Sabeghi et al. [6] made some effort to find the best amount of number
of control points. For J30, they found that considering seven control points leads to producing better
results. Hence, without loss of generality, we use this quantity in our computations. Table 1 presents
the results, comparing the average relative delay (% RD) for initial and improved control points across
several instances. For these instances, based on preliminary experiments to ensure a balanced trade-off
between solution quality and computational efficiency, we selected a Tabu tenure of 10 and a maximum
iteration count of 100. As shown in the table, the algorithm effectively reduced the project delay by
iteratively adjusting control points to minimize deviation from the baseline schedule.

The process began with generating a set of initial control points and then applying the TS algorithm
iteratively to improve these control points. For example, in instance j3010-5, the initial average relative
delay of 29.64% was reduced to 9.54% after adjustment, demonstrating an improvement. Similarly, for
instance j3035-5, the delay was reduced from 20.27% to 14.62%, showing the algorithm’s capability to
adjust control points strategically and mitigate delays effectively. In addition to the differences in the
characteristics and complexity of the benchmark problems, the observed variations in the performance
of the TS algorithm are also influenced by the simulation of the execution process. For each problem
instance, the actual execution times of activities are randomly generated, and delays are calculated ac-
cordingly. As a result, the probability of experiencing higher or lower delays differs across projects,
affecting the feasibility of corrective actions. This inherent variability in the simulation process con-
tributes to the observed differences in the effectiveness of the TS algorithm across various instances.
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Figure 1: Outline of the proposed method
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Therefore, the ability of TS to reduce delays depends not only on the structural properties of the bench-
mark problems but also on the stochastic nature of project execution.

Each test was conducted multiple times to account for variability in project conditions and con-
firm the robustness of the proposed method. The algorithm’s effectiveness was validated by comparing
initial and final control points, with improved placements resulting in decreased delays in nearly all
instances. These results highlight the adaptability of the TS algorithm, showcasing its potential to be
applied broadly to various projects to improve adherence to baseline schedules.

Table 1: The average relative delay (%RD) for some instances of J30

File number Due date Initial Control Points %RD Final Control Points %RD
j301-5 41 10, 11, 17, 19, 38, 39, 41 7.06 4, 6, 12, 16, 29, 37, 41 3.83
j305-5 87 13, 19, 35, 36, 51, 65, 87 2.30 9, 13, 19, 35, 51, 65, 87 1.54
j3010-5 43 2,15, 20, 21, 31, 38, 43 29.64 2, 9, 15, 20, 31, 38, 43 9.54
j3015-5 65 16, 29, 31, 33, 35, 43, 65 7.63 5, 29, 31, 33, 35, 43, 65 2.99
j3020-5 61 2, 11, 12, 19, 35, 37, 61 21.58 2, 11, 12, 19, 23, 35, 61 16.98
j3025-5 77 16, 32, 39, 55, 65, 66, 77 2.15 8, 32, 39, 55, 65, 66, 77 0.86
j3030-5 58 5, 15, 27, 30, 43, 49, 58 9.36 5, 27, 30, 43, 46, 49, 58 8.22
j3035-5 60 24, 28, 32, 34, 40, 49, 60 20.27 14, 28, 32, 34, 40, 49, 60 14.62
j3040-5 65 12, 26, 27, 37, 49, 55, 65 27.26 12, 26, 27, 31, 37, 49, 65 16.82
j3045-5 97 11, 18, 49, 50, 65, 72, 97 5.40 11, 49, 50, 65, 72, 92, 97 1.55

4 Conclusion

This study presented a Tabu Search (TS) algorithm designed to identify the near-optimal placement of
control points throughout the project life cycle, enabling proactive monitoring and timely corrective
actions. By systematically adjusting the positioning of these control points, the algorithm effectively re-
duced project delays across several benchmark instances from the Kolisch library. The results indicate
that the algorithm can be readily adapted to various types of projects, offering project managers with
a reliable tool for monitoring progress and swiftly addressing deviations from the base-line schedule.
Moreover, the flexibility of the TS algorithm paves the way for its implementation in diverse project
management contexts, potentially enhancing both efficiency and productivity. Future research could
explore integrating additional constraints, such as cost considerations and resource allocation, to further
refine the approach. Exploring these dimensions could broaden the algorithm’s applicability and effec-
tiveness, offering project managers enhanced strategies for navigating complex project environments
and optimizing resource utilization.
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