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Abstract. A critical aspect of successful project management is
ensuring that execution aligns with the baseline schedule. However,
traditional project control methods often struggle to effectively address
the uncertainties and deviations that can arise during project execution,
leading to delays and inefficiencies. To tackle these challenges, this
paper introduces a novel heuristic approach based on the Tabu Search
(TS) algorithm for identifying discrete control points throughout the
project life cycle. These control points enable proactive monitor-
ing, timely deviation detection, and corrective actions, significantly
minimizing project delays. Unlike traditional scheduling techniques,
which can be rigid and reactive, our proposed method dynamically
adjusts control points to enhance project oversight. Experimental
results on benchmark instances from the Kolisch library demonstrate
that our approach significantly reduces project delays, with up to 20%
improvements compared to initial schedules in certain scenarios. These
findings underscore the effectiveness of the TS algorithm in enhancing
project control strategies, highlighting its potential applicability in
real-world project management scenarios.
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1 Introduction

In the management of complex projects, maintaining alignment with the baseline schedule is
critical to ensuring successful project delivery. However, due to uncertainties, resource con-
straints, and unforeseen events, deviations from the initial schedule often occur. These devia-
tions, if not addressed promptly, can lead to delays, budget overruns, and suboptimal outcomes.
Therefore, identifying discrete control points throughout the project life cycle where progress
can be assessed and corrective actions can be taken becomes a vital aspect of project manage-
ment.

Historically, project control relied heavily on deterministic approaches like the Critical Path
Method (CPM), Program Evaluation and Review Technique (PERT), and Gantt charts. These
tools, while foundational, have limitations due to their inability to manage uncertainties and
risks in project execution. As noted by Pellerin and Perrier (2018), traditional methods are
largely schedule-driven and focus on activities’ precedence relationships, without fully consid-
ering the stochastic nature of real-world projects. The simplifications made in these techniques
often compromise their applicability to complex projects where uncertainties play a significant
role [4].

Resource-constrained project scheduling problems (RCPSP) involve allocating a set of lim-
ited resources to various activities within a project, while considering precedence constraints
-which dictate the order in which activities must be completed- and specific project objectives
es) in [9]. Effective project scheduling is crucial for ensuring timely and resource-efficient
project completion. The RCPSP represents a well-established combinatorial optimization chal-
lenge that arises in complex projects where both resources limitation and task dependencies are
crucial. Numerous methods have been explored to address the RCPSP, ranging from traditional
heuristics to advanced metaheuristic algorithms such as Tabu Search (TS) (e.g., [1, 8]), Genetic
Algorithms (GA), and Simulated Annealing (SA). These methods aim to find a near optimal
resource allocation while minimizing project duration and meeting predefined constraints [3].

Although many advanced project scheduling algorithms have been developed to construct
resource-feasible baseline schedules, projects are often executed in relatively unstable envi-
ronments, making changes to the baseline schedules inevitable [6]. Therefore, monitoring and
control of project progress are essential. One objective of the control process may be to mini-
mize the deviations from the baseline schedule (e.g., refer to [5, 6]). Despite significant efforts
to make project schedules more robust to unforeseen events and the many solutions proposed by
researchers, a comprehensive monitoring and control mechanism throughout project execution
remains essential. Unlike exact optimization approaches, such as the facility location model
proposed by Sabeghi et al. (2015) [6], which provides mathematically rigorous solutions, our
study focuses on a heuristic-based approach. The use of TS offers greater flexibility and com-
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putational efficiency, particularly in large-scale and dynamic project environments where exact
methods may become computationally expensive.

To gain a clearer insight into the current research landscape surrounding project control,
Song et al. in [7] analyzed and classified existing studies into four primary categories: (1)
project monitoring methods, (2) corrective action strategies, (3) modelling constraints, and (4)
the use of project data. In the category of project monitoring, two main approaches are dis-
cussed: top-down and bottom-up monitoring. Top-down project monitoring evaluates overall
project performance against predefined threshold values and generates warning signals when
these thresholds are exceeded, indicating potential project delays. In contrast, bottom-up mon-
itoring begins at the activity level, measuring the progress of individual tasks and comparing
them to activity-specific thresholds to detect early warning signs.

Among the various strategies for top-down monitoring, the literature identifies three pri-
mary approaches: Buffer Management (BM), Earned Value Management (EVM), and Statis-
tical Analysis (STA). BM focuses on monitoring buffer consumption against expected values;
EVM uses metrics such as Schedule Performance Index (SPI) and the Cost Performance In-
dex (CPI) and their time-based counterparts to assess schedule and cost performance; and STA
employs methods like traditional statistical techniques, control charts, Bayesian statistics, and
Kalman filters to detect deviations and define threshold limits. Most of the existing research,
as summarized in Song et al. [7] emphasizes EVM as a dominant tool for top-down project
monitoring.

The approach proposed in our study also falls within the category of top-down project mon-
itoring. Specifically, discrete control points are determined across the project life cycle using
the TS algorithm. The project performance is then simulated to identify potential delays. If the
simulated project completion time exceeds the planned deadline, corrective actions are taken.
These corrective actions consist of crashing compressible activities within their feasible limits.
In this study, we do not consider resource constraints in the crashing process. Moreover, con-
trol actions are implemented only at the end of activity execution, and we assume no activity
preemption occurs.

The use of TS in this study is motivated by its ability to dynamically adjust its exploration
strategy through adap tive memory structures. Unlike GA and SA, which depend on random-
ized mechanisms for diversification, TS systematically restricts revisits to previously explored
solutions, thereby enhancing search efficiency and improving convergence toward high-quality
solutions.

The remainder of the paper is organized as follows: Section 2 provides a detailed explana-
tion of the proposed TS algorithm for determining project control points (DPCP). In Section 3,
the results of implementing this algorithm on several test problems from the Kolisch library are
presented. Finally, Section 4 offers the discussion and conclusion.
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2 Tabu Search Algorithm for Determining the Project Control Points

In this section we implement a TS algorithm to identify discrete control points in a project life
cycle. The goal is to track and control the progress of the project by finding the near optimal
placement of control points, which allows for monitoring, evaluation, and corrective action
during project execution. The details of the presented TS algorithm are outlined in Algorithm
1 and for convenience, a flowchart illustrating this algorithm is provided in Figure 1.

This algorithm identifies all paths in the project network, from the starting node to the end
node. These paths are important because they determine the critical sequences of activities that
influence the overall project time line.

An initial random solution is generated by selecting a random subset of the control points
(cp) from the set of existing points, Ep. Ep is the set of all discrete time instants where the
execution of one or more activities of the project finishes according to the baseline schedule.
cp is the sequence of the points which represent the initial set of control points where project
progress will be monitored. The initial cost of this solution is evaluated using the cost func-
tion, costfunc(), introduced by Algorithm 2. This function, estimates the total penalty of a
given solution by simulating project progress and calculating the average delay with respect to
the project due date. It takes into account possible variations in activity durations, evaluates
critical and non-critical paths, and quantifies how delays accumulate under different control
point configurations. First, input variables, such as initial start times and durations of activities,
are initialized, and the critical and non-critical project paths are identified. For each activity, a
random duration is generated within a specified range, which is [minval,maxval] (minval:
Minimum possible durations for activities (activities’ compressed duration), maxval: Maxi-
mum possible durations for activities) and project finish times are updated. For each control
point, the critical activities duration from that control point to the end are reduced, and the im-
pact on the project’s final completion time is evaluated. Finally, if the project exceeds the due
date, a penalty is calculated as a percentage of the relative delay, and this value is returned as
the total cost:

Cmax = ((pft(n)− duedate)/duedate)/Maxsii× 100,

where, pft(n) is the project finish time and Maxsii is the maximum number of simulation
iteration.

The TS process is implemented to iteratively improve the initial solution by exploring neigh-
bouring solutions and avoiding previously explored regions using a Tabu List, TL. TL is a ma-
trix that is used to keep track of moves that are temporarily forbidden, preventing the algorithm
from revisiting recently explored solutions.

In each iteration, a neighbouring solution is generated by randomly modifying one of the
control points. The algorithm explores alternative positions for this control point by moving
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Algorithm 1 TS Algorithm for DPCP.
Input:

• Project Information:

– stinitial: Array of initial start times for activities.

– dinitial: Array of activity durations.

– n: The number of project’s activities.

– pre: An array containing the list of predecessor activities for each activity.

– nprec: An array indicating the number of predecessors for each activity.

– succ: An array containing the list of successor activities for each activity.

– nsucc: An array indicating the number of successors for each activity.

– pft: Activities’ finish times.

– m: The number of control points.

• TS Parameters:

– MaxIt: Maximum number of iterations.

– lTL: Tabu tenure.

Output: Relative delay of the project after completing execution within the control process.
Procedure:

1. Identify all possible project paths.

2. Generate initial control points (Ep):

(a) Identify control points (Ep) from finish times pft. These points are potential con-
trol points.

(b) Sort Ep and selectm control points (cp) randomly from Ep.

(c) Evaluate the cost of the initial solution using costfunc() (refer to Algorithm 2) and
set it as the best solution BestSol.

it both forward (to later positions in Ep) and backward (to earlier positions in Ep) within the
ordered set of candidate control points (potential control points). Each modified solution is
evaluated using the costfunc(). If the new solution offers an improvement over the current
best solution and is not restricted by the Tabu List, it is adopted as the new best solution. Sub-
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sequently, The TL is updated to record the recent moves, ensuring they are not revisited within
a short period (Tabu tenure).

The algorithm continues iterating until it reaches themaximumnumber of iterations (MaxIt).
After each iteration, the best solution found so far is stored. The final solution represents the
best-found placement of control points for project monitoring.

Algorithm 2 Cost Function Calculation (costfunc())
Input:

• sol: Current solution (control points).

• n: Number of activities.

• stinitial: Initial start times.

• dinitial: Initial durations.

• nprec, nsucc: Predecessors and successors.

• duedate: Project due date.

• Π: Project paths.

• minval,maxval: Minimum and maximum durations for activities.

• Maxsii: Maximum simulation iterations.

Output: Cmax: Total cost based on project delay.
Procedure:

1. Initialize:

• Set fstatus and sstatus to 0;

• Initialize start times (st), durations (d), and finish times (pft).

2. For each simulation iteration sii from 1 toMaxsii:

(a) Generate a random duration reald(i) in [minval(i),maxval(i)].

(b) Update realft(i) and start times for successor activities.

(c) Calculate total duration lp(i) for each path in Π.

(d) Identify critical (cp) and non-critical paths (np).

(e) Compute possible reduction in critical activity durations (maxcrashing).

(f) Simulate progress by adjusting activity durations (reald) and recalculate pft.

(g) If pft(n) > duedate, calculate the relative delay as a percentage.

3. Compute mean relative delay: Cmax.

4. Return Cmax.
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ّIn Algorithm 2, The corrective actions are modelled through activity crashing at control
points. At each selected control point, the algorithm identifies critical activities and applies
duration reductions within their feasible ranges. This reflects managerial decisions made during
project monitoring to mitigate delays. Other corrective actions may include adding resources
or adjusting task sequencing.

In our approach, the corrective actions related to modifying control points involve dynamic
simulation of project progress and adaptive duration reduction (crashing) of critical activities.
Specifically, each time a new set of control points is generated, the algorithm performs the
following:

• It simulates the project execution up to each control point,

• Identifies the current critical paths based on updated durations,

• Evaluates the potential to reduce the durations of critical activities at those points (based
on predefined flexibility bounds),

• Applies a crashing mechanism to simulate corrective actions (e.g., allocating extra re-
sources or compressing schedules),

• Recalculates the project finish time accordingly.

This allows the model to determine how effective a particular set of control points would be in
reducing the relative project delay. The TS process then seeks a configuration of control points
that maximizes the impact of corrective actions, leading to a lower total project delay.

3 Experimental Results

Algorithms 1 were implemented in MATLAB and tested on several benchmark instances from
the Kolisch library [2], which provides standard test cases for project scheduling. These bench-
mark problems, such as the J30 problem set, contain varying task durations, resource con-
straints, and dependencies, which make them suitable for testing the efficiency and robustness
of the proposed TS algorithm.

In each test, the initial control points were selected based on the baseline schedule to pro-
vide starting points for the TS process. Sabeghi et al. [6] made some effort to find the best
amount of number of control points. For J30, they found that considering seven control points
leads to producing better results. Hence, without loss of generality, we use this quantity in
our computations. Table 1 presents the results, comparing the average relative delay (% RD)
for initial and improved control points across several instances. For these instances, based on
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Baseline schedule

projectinformation (stinitial, n, pre, succ)

Identify all possible project paths (Π)

Generate existing points (Ep)

from finish times

Sort (Ep) and selectm control point, cp,

as initial solution, sol, randomly

Initialize TS Parameters)

Maxit, TL, lTL,Bestsol and set itcount = 1.

itcount ≤ Maxit?

Generate a new solution, newsol from sol

ReturnBestsol

Evaluate the new solution,

costfunc(projectdata,Π)

Is newsol better

than current solution

and newsol /∈ TL?

Bestsol← newsol

Update the Tabu List

sol← Bestsol

itcount = itcount + 1

Yes

No

Yes

No

Figure 1: Outline of the proposed method
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preliminary experiments to ensure a balanced trade-off between solution quality and computa-
tional efficiency, we selected a Tabu tenure of 10 and a maximum iteration count of 100. As
shown in the table, the algorithm effectively reduced the project delay by iteratively adjusting
control points to minimize deviation from the baseline schedule.

The process began with generating a set of initial control points and then applying the TS
algorithm iteratively to improve these control points. For example, in instance j3010-5, the ini-
tial average relative delay of 29.64% was reduced to 9.54% after adjustment, demonstrating an
improvement. Similarly, for instance j3035-5, the delay was reduced from 20.27% to 14.62%,
showing the algorithm’s capability to adjust control points strategically and mitigate delays ef-
fectively. In addition to the differences in the characteristics and complexity of the benchmark
problems, the observed variations in the performance of the TS algorithm are also influenced
by the simulation of the execution process. For each problem instance, the actual execution
times of activities are randomly generated, and delays are calculated accordingly. As a result,
the probability of experiencing higher or lower delays differs across projects, affecting the fea-
sibility of corrective actions. This inherent variability in the simulation process contributes
to the observed differences in the effectiveness of the TS algorithm across various instances.
Therefore, the ability of TS to reduce delays depends not only on the structural properties of
the benchmark problems but also on the stochastic nature of project execution.

Each test was conducted multiple times to account for variability in project conditions and
confirm the robustness of the proposed method. The algorithm’s effectiveness was validated
by comparing initial and final control points, with improved placements resulting in decreased
delays in nearly all instances. These results highlight the adaptability of the TS algorithm, show-
casing its potential to be applied broadly to various projects to improve adherence to baseline
schedules.

Table 1: The average relative delay (%RD) for some instances of J30

File number Due date Initial Control Points %RD Final Control Points %RD
j301-5 41 10, 11, 17, 19, 38, 39, 41 7.06 4, 6, 12, 16, 29, 37, 41 3.83
j305-5 87 13, 19, 35, 36, 51, 65, 87 2.30 9, 13, 19, 35, 51, 65, 87 1.54
j3010-5 43 2,15, 20, 21, 31, 38, 43 29.64 2, 9, 15, 20, 31, 38, 43 9.54
j3015-5 65 16, 29, 31, 33, 35, 43, 65 7.63 5, 29, 31, 33, 35, 43, 65 2.99
j3020-5 61 2, 11, 12, 19, 35, 37, 61 21.58 2, 11, 12, 19, 23, 35, 61 16.98
j3025-5 77 16, 32, 39, 55, 65, 66, 77 2.15 8, 32, 39, 55, 65, 66, 77 0.86
j3030-5 58 5, 15, 27, 30, 43, 49, 58 9.36 5, 27, 30, 43, 46, 49, 58 8.22
j3035-5 60 24, 28, 32, 34, 40, 49, 60 20.27 14, 28, 32, 34, 40, 49, 60 14.62
j3040-5 65 12, 26, 27, 37, 49, 55, 65 27.26 12, 26, 27, 31, 37, 49, 65 16.82
j3045-5 97 11, 18, 49, 50, 65, 72, 97 5.40 11, 49, 50, 65, 72, 92, 97 1.55
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4 Conclusion

This study presented a Tabu Search (TS) algorithm designed to identify the near-optimal place-
ment of control points throughout the project life cycle, enabling proactive monitoring and
timely corrective actions. By systematically adjusting the positioning of these control points,
the algorithm effectively reduced project delays across several benchmark instances from the
Kolisch library. The results indicate that the algorithm can be readily adapted to various types
of projects, offering project managers with a reliable tool for monitoring progress and swiftly
addressing deviations from the base-line schedule. Moreover, the flexibility of the TS algorithm
paves the way for its implementation in diverse project management contexts, potentially en-
hancing both efficiency and productivity. Future research could explore integrating additional
constraints, such as cost considerations and resource allocation, to further refine the approach.
Exploring these dimensions could broaden the algorithm’s applicability and effectiveness, of-
fering project managers enhanced strategies for navigating complex project environments and
optimizing resource utilization.
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