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1 Introduction

Optimal control of dynamic systems subject to realistic constraints on input signals and state variables
represents a crucial area in control theory. Numerous practical control challenges can be framed as opti-
mization problems, thereby creating a significant demand for efficient numerical algorithms capable of
delivering solutions. Optimal control theory focuses on finding control functions that optimize a specific
performance criterion, typically expressed as a cost function, in various domains, including engineering,
economics, and biology. Mathematically, these problems are formulated as the minimization of the cost
function J , defined as:

J =

∫ TF

t0

L(x(t), u(t), t) dt+ ϕ(x(TF )),

where L denotes the running cost, ϕ indicates the terminal cost, x(t) represents the state variable at time
t, and u(t) signifies the control variable at time t. The dynamic evolution of the system is governed by:

ẋ(t) = f(x(t), u(t), t), x(t0) = x0.

Due to the inherent complexity of nonlinear systems, obtaining exact solutions is often infeasible, ne-
cessitating the deployment of numerical methods [4].

This paper introduces a novel polynomial basis aimed at addressing longstanding challenges in op-
timal control challenges, specifically issues related to numerical instability, computational cost, and the
enforcement of terminal condition. This development suggests a wider applicability for alternative poly-
nomial representations in the context of dynamical systems.

Numerical methods typically discretize optimal control problems (OCPs) to facilitate computational
solutions. The selection of a particular method is influenced by the accuracy requirements and compu-
tational feasibility [11].

In recent decades, iterative techniques have been extensively employed to solve OCPs. These meth-
ods approximate optimal solutions through successive refinements, with prominent approaches includ-
ing:

• Gradient-Based Methods: These techniques optimize the control function by iteratively minimiz-
ing J in the direction of the cost function’s gradient [4].

• Sequential Quadratic Programming (SQP): This method addresses nonlinear control problems by
solving a sequence of quadratic approximations, demonstrating robust performance in constrained
problems [8].

• Dynamic Programming (DP): DP decomposes complex problems into simpler stages, and is
widely applied in nonlinear and high-dimensional contexts [10].

Alipour et al. developed an iterative method that integrates homotopy analysis and parametrization ap-
proaches to address these problems [2]. In [1], an iterative method was employed to solve a quadratic
optimal control problem (QOCP) using the state parameterization technique alongside scaling Boubaker
polynomials. Jaddu proposed a method utilizing the second quasilinearization technique and state pa-
rameterization with Chebyshev polynomials to approach nonlinear OCPs, including state and control
saturation constraints [14, 16].
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Polynomial basis functions serve to approximate control and state variables, offering a structured
representation within bounded intervals. Specifically, polynomial basis approximations express control
u(t) and state x(t) as:

u(t) ≈
N∑
j=0

cjψj(t),

x(t) ≈
N∑
j=0

djψj(t),

whereψj(t) represents polynomial basis functions, and cj and dj are the corresponding coefficients [10].
The integration of iterative techniques with polynomial basis functions offers an effective numerical

methods for addressing complex optimal control challenges [7]. This hybrid approach enhances solution
accuracy and flexibility, handling the effective management of nonlinearity and complex constraints.
Applications of the iterative-polynomial approach span various fields, including robotics, aerospace, and
finance, and continues to evolve alongside advancements in machine learning and adaptive algorithms.
Future research aims to refine these hybrid techniques to confront emerging challenges in large-scale
and real-time control systems [4, 22].

In this study, we seek to enhance the method presented in [15] while building upon the research
conducted by Banks et al. [3, 20]. Our objective is to advance the solutions for nonlinear quadratic
OCPs subject to terminal state constraints, and saturation constraints on both state and control variables.
By expanding these methodologies, we aim to establish a more robust framework for addressing these
complex control problems through the use of Chelyshkov polynomials [19].

The remainder of this paper is structured as follows. Section 2 formally defines the optimal control
problem under consideration and presents the necessary preliminaries for implementing the proposed
method. Section 3 outlines the development and execution of the proposed method. Section 4 presents
numerical examples that illustrate the accuracy and effectiveness of the method. Finally, Section 5
concludes the paper and discusses potential avenues for future research.

2 Preliminaries

2.1 The Problem

We consider the following nonlinear optimal control problem, which we aim to solve numerically:
Find the optimal control u(t) = u∗(t) that minimizes the performance function defined as follows:

J = x(TF )
tS x(TF ) +

∫ TF

0

(xtQx+ utRu) dt, (1)

The state of the dynamic system is governed by:

ẋ = f(x(t), u(t), t), (2)

subject to the following conditions:
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• Initial and terminal conditions:

x(0) = x0, (3)

λ(x(TF ), TF ) = 0, (4)

• State and control constraints:

Xm ≤ x(t) ≤ XM ,

Um ≤ u(t) ≤ UM . (5)

In this problem, Q and S are in Rn×n, assumed to be positive semidefinite matrices, while R ∈ Rm×m

is a positive definite matrix. The vector x ∈ Rn represents the state vector, u ∈ Rm denotes the control
vector, x0 ∈ Rn is the initial condition vector. The function f is a continuously differentiable nonlinear
function with respect to all its variables. Additionally, we assume that m ≤ n and that the bounds
XM , Xm ∈ Rn and UM , Um ∈ Rm are specified fixed values, with TF being a known constant.

In this paper, we address problem (1)–(5) by transforming it using an iteration method into a series of
time-varying linear quadratic optimal problems with constraints. In the first iteration, the nonlinear state
equation is approximated by linear state equations, which in the subsequent iteration are reformulated
into a second-degree programming problem utilizing ChPs.

Given that Chelyshkov polynomials are defined over the interval [0, 1] and knowing any closed
interval [TS , TF ] can be mapped linearly to [0, 1] using the transformation τ = t−TS

TF−TS
, t ∈ [TS , TF ].

We will assume, for the sake of simplicity, that the problem is defined on the interval [0, 1].

2.2 Chelyshkov Polynomials

Chelyshkov polynomials (ChPs) are inherently orthogonal on the interval [0, 1] under a uniform weight
function. Given that optimal control problems are typically formulated over finite time horizons (e.g.,
t ∈ [0, T ]), normalizing to the interval [0, 1] eliminates the need for coordinate transformations required
for polynomials such as Legendre (orthogonal on [−1, 1]) or Chebyshev polynomials. This normalization
not only simplifies implementation but also reduces computational overhead, and preserves numerical
stability.

The uniform weight function associated with ChPs aligns with the standard L2 inner product space
commonly employed in optimal control formulations. This congruence facilitates the derivation of op-
erational matrices (e.g., integration and differentiation matrices) for spectral methods such as Galerkin
or collocation, potentially leading to increased efficiency. In our prior research involving partial differ-
ential equations (PDEs) [19], Chelyshkov wavelets exhibited advantages in addressing sharp gradients
and discontinuities due to their localization properties. Hence, optimal control problems governed by
PDEs or those displaying analogous solution structures may derive substantial benefits from these char-
acteristics, suggesting a promising extension to control theory.

While classical polynomials bases are well-established, exploring newer bases such as ChPs serves
to expand the methodological toolkit available to the research community. Their relative novelty, having
been introduced in 2006 [5], indicates potential that remains largely unexplored in control applications.
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This paper aims to rigorously evaluate their efficacy in this domain. Importantly, our motivation extends
beyond novelty; the structural properties of ChPs (e.g., boundary adaptability and sparsity in operational
matrices) suggest benefits worthy of investigation. We recognize the necessity of benchmarking our
findings against classical methods. While this study primarily focuses on establishing feasibility and
methodology, we plan to conduct explicit comparative studies in future work to quantitatively assess
convergence rates, stability, and computational cost relative to Legendre/Chebyshev bases.

Chelyshkov polynomials Pm(t) are defined as follows [19]:

Pm(t) := PM,m(t) =

M−m∑
j=0

am,j t
m+j , m = 0, 1, . . . ,M, (6)

where the coefficients are given by:

am,j = (−1)j
(
M −m

j

)(
M +m+ j + 1

M −m

)
,

andM is a fixed predetermined integer. Under the uniform weight function w(t) = 1, ChPs are orthog-
onal on the interval [0, 1]: ∫ 1

0

Pn(t)Pm(t) dt =
δmn

m+ n+ 1
, (7)

where δmn is the Kronecker delta. Additionally, we have:∫ 1

0

Pn(t), dt =
1

M + 1
, n = 0, 1, . . . ,M.

Fixing the integer M , it is evident from Eq. (6) that each polynomial Pm(t) where m = 0, 1, . . . ,M

is of degree M . The set of ChPs {Pm(t) |m = 0, 1, . . . ,M} forms an orthogonal basis for
∏

M (t),
(the space of polynomials of degree at most M ). Consequently, any function f(t) ∈ L2[0, 1] can be
approximated in terms of ChPs follows:

f(t) ≃
M∑

m=0

cm Pm(t) = CTPM (t), (8)

where CT = [c0, c1, . . . , cM ] and the coefficients cm can be approximated as

cm ≃ ⟨f, Pm⟩
∥Pm∥2

= (2m+ 1)

∫ 1

0

f(t)Pm(t) dt,

and PM (t) = [P0(t), P1(t), . . . , PM (t)]T.

Lemma 1. Let N = [µij ](M+1)×(M+1) be a matrix. Then:

PT
M (t)N PM (t) =

µ11P0(t)P0(t) + 2µ12P0(t)P1(t) + 2µ13P0(t)P2(t) + · · ·+ 2µ1,M+1P0(t)PM (t)

+ µ22P1(t)P1(t) + 2µ23P1(t)P2(t) + · · ·+ 2µ1,M+1P0(t)PM (t)

+ µ33P2(t)P2(t) + · · ·+ 2µ1,M+1P0(t)PM (t)

...
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+ µ(M+1),(M+1)PM (t)PM (t).

Thus, using (7), we obtain: ∫ 1

0

(PT
M (t)N PM (t))dt =

M+1∑
i=1

µii

2i− 1
.

Proof. Based on the properties of matrix (vector) multiplication properties and certain calculations, the
proof is straightforward.

Theorem 1. Suppose u(x) ∈ Cn[0, 1] and un(x) is its expansion in terms of ChPs, as described in (8).
Then we have:

∥u(x)− un(x)∥2 ≤ Mn

(n+ 1)!22n+1
,

whereMn is a constant such that

|u(n+1)(x)| ≤Mn, x ∈ [0, 1].

Proof. Let pn(t) be the interpolating polynomial for u at the nodes ti, where ti, i = 0, 1, . . . , n are the
roots of the (n+ 1)-degree shifted Chebyshev polynomial on [0, 1]. For any t ∈ [0, 1], we can express:

u(t)− pn(t) =
u(n+1)(ξt)

(n+ 1)!

n∏
i=0

(t− ti).

Since the interpolating nodes are Chebyshev nodes, we find:

u(t)− pn(t) =
Mn

(n+ 1)!22n+1
, x ∈ [0, 1].

Since un(t) represents the least squares best approximation of u(t), [17, Example 3.4.8] , it follows that:

∥u(t)− un(t)∥2 ≤ ∥u(t)− pn(t)∥2 =
Mn

(n+ 1)!22n+1
, x ∈ [0, 1].

Thus, we obtain the desired result.

2.3 Iterative Technique

Consider a nonlinear system described by the following equation [21]:

ẋ = f(x) = A(x)x, x(0) = x0 ∈ Rn, (9)

where A(x) is a locally Lipschitz matrix function. This system can be approximated by a sequence of
linear time-varying equations represented as follows:

ẋ(1) = A(x(0))x(1), x(1)(0) = x(0),
...

ẋ(i) = A(x(i−1))x(i), x(i)(0) = x(0),

(10)
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where i = 1, 2, . . ..
This formulation allows us to avoid directly addressing the complexities inherent in the nonlinear

system by expressing it as a series of linear equations that evolve over time. Consequently, this approach
simplifies the analysis and control of the system, thereby facilitating the prediction and optimization of
its behavior. Such a technique is particularly advantageous in control theory and engineering, where
linear models are typically more tractable and can yield significant insights into the dynamics of more
complex nonlinear systems.

Theorem 2. [20]. Suppose that A(x) : Rn → Rn is locally Lipschitz and that the nonlinear equation
(9) possesses a unique solution x(t) on the interval [0, T ]. Then the sequence defined by (10) converges
uniformly to x(t).

3 Main Results

We employ the iterative method to address the OCP defined in equations (1)–(5), leading to the following
reformulated problem:

J [k] = x[k](1)t S x[k](1) +

∫ 1

0

(x[k](t)tQx[k](t) + u[k](t)t, R u[k](t))dt, (11)

subject to
ẋ[k](t) = A(x[k−1](t))x[k](t) +B(x[k−1](t))u[k](t), x[k](0) = 0, (12)

with the terminal condition given by
λ(x[k](1), 1) = 0, (13)

and bounds constraints for k = 1, 2, . . . represented as:

Xm ≤ x[k](t) ≤ XM , Um ≤ u[k](t) ≤ UM . (14)

The constrained linear time-varying quadratic OCPs, as delineated in Equations (11)–(14), can be
effectively resolved by transforming them into quadratic programming problems. This transformation is
facilitated through the application of state parameterization which simplifies the original control prob-
lems and makes them more tractable to computational solutions. For a comprehensive discussion and
detailed explanation of the state parameterization technique, refer to e.g., [15].

Next, we approximate both the state and control variables using ChPs as follows [19]:

x[k](t) =M [k]
x PN (t), (15)

u[k](t) =M [k]
u PN (t), (16)

where, PN (t) = [P0(t), P1(t), . . . , PN (t)]T is the vector of ChPs, Mx ∈ Rn×(N+1) and Nu ∈
Rm×(N+1) are matrices of unknown parameters that will be determined later, and N denotes the de-
gree of the ChPs.

Substituting (15) and (16) in Equation (11) yields:
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J [k] = PT
N (1)M [k]T

x SM [k]
x PN (1)

+

∫ 1

0

(PT
N (t)M [k]T

x QM [k]
x PN (t) + PT

N (t)M [k]T

u RM [k]
u PN (t))dt. (17)

Noting that PN (1) = [(−1)N , (−1)N+1, . . . , (−1)2N ]T, we can express as

J [k] =

N∑
i=0

N∑
j=0

(−1)i+jγij +

N+1∑
i=1

ηii + ζii
2i− 1

, (18)

whereM [k]T

x SM
[k]
x = [γij ](N+1)×(N+1), ηii and ζii are diagonal entries ofM

[k]T

x QM
[k]
x = [ηij ](N+1)×(N+1)

andM [k]T

u RM
[k]
u = [ζij ](N+1)×(N+1) respectively. The last term in Equation (18) can be rewritten as:

N+1∑
i=1

ηii + ζii
2i− 1

= PT
N (1)D̄PN (1),

where D̄ is a diagonal matrix whose elements are defined as d̄ii = ηii+ζii
2i−1 .

Consequently, based on the preceding discussion and referencing results from [9], [12] and [13],
Equation (17) or equivalently Equation (18) can be represented in the following quadratic form:

J [k] =
1

2
yTHy, (19)

where y is a vector containing the unknown elements of matricesMx andMu arranged in suitable order,
andH is a positive definite Hessian matrix. Since the matricesA(x[k−1](t)) andB(x[k−1](t)) are time-
dependent, each element can be expressed as Aij(t) = fA(x

[k−1](t), t) and Bij(t) = gB(x
[k−1](t), t).

These can then be approximated using ChPs as follows:

Aij(t) =WTPN (t), (20)

Bij(t) = V TPN (t). (21)

The initial and terminal conditions x[k](0) = 0 and λ(x[k](1), 1) = 0 can also be expressed in terms of
ChPs. Now, considering the imposed constraints, we have:

x[k](t) ≤ XM ,

−x[k](t) ≤ −Xm,

u[k](t) ≤ UM ,

−u[k](t) ≤ −Um.

Currently, we utilize collocation method by discretizing the interval [0, 1] into r+1 points as follows
:

0 = t0 < t1 < · · · < tr = 1.

Subsequently, applying the ChP approximations leads to:

M [k]
x PN (t) ≤ XM , (22)

−M [k]
x PN (t) ≤ −Xm, (23)

M [k]
u PN (t) ≤ UM , (24)
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−M [k]
u PN (t) ≤ −Um. (25)

Equations (22)–(25) are subsequently replaced by the following inequality constraints:

M [k]
x PN (ts) ≤ XM , (26)

−M [k]
x PN (ts) ≤ −Xm, (27)

M [k]
u PN (ts) ≤ UM , (28)

−M [k]
u PN (ts) ≤ −Um, (29)

for s = 0, 1, . . . , r.
Consequently, we can formulate the following standard quadratic programming problem:

min
y

1

2
yTHy (30)

subject to the constraints:

A1y = b1, (31)

A2y ≤ b2, (32)

where the equality constraints are arise from the initial and terminal conditions, alongside Equations (20)
and (21), while the inequality constraints stem from the saturation constraints as expressed in Equations
(26)–(29).

At this point, the problem defined by Equations (30)–(32) can be solved using relevant software or
implemented in any suitable programming language. In this study, we utilize the NMinimize command
in WOLFRAMMATHEMATICA 14.0 to address the optimization problem.

4 Illustrative Examples

Example 1. Consider the well-known Van der Pol oscillator problem, which can be articulated as fol-
lows:

Min J =
1

2

∫ 5

0

(x21 + x22 + u2)dt

s.t :

ẋ1 = x2, x1(0) = 1,

ẋ2 = −x1 + (1 + x21)x2 + u,

x2(0) = 0, x1(5) = −1, x2(5) = 0,

|u(t)| ≤ 3

4
.

In this context, we define the matrix A(x) as:

A(x) = A(

(
x1
x2

)
) =

(
0 1

−1 1 + x21

)
.
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Assuming x =
(
x1

x2

)
, y =

(
y1

y2

)
and ∥x− y∥ < r, we have:

∥A(x)−A(y)∥ = |x21 − y21 | = |x1 + y1| |x1 − y1| < 2r |x1 − y1| ≤ 2r ∥x− y∥.

Thus, A(x) is locally Lipschitz and meets the conditions of Theorem 2, confirming that the method
converges. The problem was solved using the proposed iterative method with N = 7 and r = 10, and
the results are displayed in Table 1 and illustrated in Figure 1.

Table 1: Values of J with N = 7 and r = 10 for the Van der Pol oscillator problem (Example 1)

k J [k]

0 1.450427989

1 2.411326825

2 2.264578128

3 2.780074587

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
 

 

 

Figure 1: Results for x[k]
1 (t), x[k]

2 (t) and u[k](t) from the Van der Pol oscillator problem (Example 1 withN = 7

and r = 10 and for k = 1, 2, 3, 4, 5, 6.

Example 2. We now consider the following nonlinear optimal control problem as discussed in [6, 18]:

Min J =
1

2

∫ 1

0

(x2 + u2) dt

s.t :

u(t) = ẋ,

x(0) = 0, x(1) =
1

2
,

The exact solution to this problem is given by:
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x(t) =
e(et − e−t)

2(e2 − 1)
,

u(t) =
e(et + e−t)

2(e2 − 1)
,

J = 0.328258821374830.

In the problem, we have A(x) = 0, which is evident and satisfies the conditions of locally Lipschitz.
The results obtained from solving this problem using the proposed method and comparing them with
the results obtained in the [6, 18] are summarized in the Table 2. Additionally, Figure 2 illustrates the
behavior of theL∞ error as a function ofN . As supported by theoretical expectations, the error decreases
with an increase in N .

7.3974×10-8

3.35193×10-7

1.3671×10-6

5.886×10-5

9.46008×10-3

4 5 6 7 8

10-7

10-6

10-5

10-4

0.001

0.010

Figure 2: L∞ error for the nonlinear optimal control problem (Example 2) with varying N = 4, 5, 6, 7, 8 and
r = 8 for k = 5.

Table 2: L∞ Error of J with N = 5 and r = 8 for the nonlinear optimal control problem (Example 2).

Proposed method Method in [6] Method in [18]
L∞ Error 5.886× 10−5 2.03089× 10−4 2.1× 10−4

5 Conclusions

In this study, we have introduced a hybrid approach for effectively solving optimal control problems
(OCPs). Our approach integrates three approximation techniques: an iterative method, Chebyshev poly-
nomial approximation, and collocation. The numerical examples serve to illustrate the computational
efficiency and accuracy inherent in the proposed method, highlighting its effectiveness in addressing
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complex OCPs. Looking ahead, future research will focus on several key areas. These include the ex-
ploration of Chelyshkov wavelet approximation to enhance the flexibility and accuracy of our solutions;
testing the method across a broader spectrum of OCPs to validate its robustness and adaptability; extend-
ing the framework to accommodate multi-objective optimization problems, which are vital in various
application domains; and devising adaptive parameter selection strategies to further refine the method’s
performance. These advancements hold the promise of significantly enhancing the method’s efficacy
and expanding its applicability across diverse fields, ultimately contributing to the resolution of increas-
ingly intricate optimization challenges.

Declarations

Availability of Supporting Data
All data generated or analyzed during this study are included in this published paper.

Funding
The authors conducted this research without any funding, grants, or support.

Competing Interests
The authors declare that they have no competing interests relevant to the content of this paper.

Authors’ Contributions
The main text of manuscript is collectively written by the authors.

References

[1] Ahmed, I.N., Ouda, E.H. (2020). “An iterative method for solving quadratic optimal control prob-
lem using scaling Boubaker polynomials”, Open Science Journal, 5(2), doi:10.23954/osj.
v5i2.2538.

[2] Alipour, M., Vali, M.A., Borzabadi, A.H. (2019). “A hybrid parametrization approach for a class
of nonlinear optimal control problems”, Numerical Algebra, Control and Optimization, 9(4), 493-
506, doi:10.3934/naco.2019037.

[3] Banks, S.P., Dinesh, K. (2000). “Approximate optimal control and stability of nonlinear finite
and infinite-dimensional systems”, Annals of Operations Research, 98, 19-44, doi:10.1023/A:
1019279617898.

[4] Betts, J. T., (2020). “Practical methods for optimal control and estimation using nonlinear pro-
gramming”, 3rd ed. SIAM, doi:10.1137/1.9780898718577.

doi: 10.23954/osj.v5i2.2538.
doi: 10.23954/osj.v5i2.2538.
doi: 10.3934/naco.2019037.
doi: 10.1023/A:1019279617898
doi: 10.1023/A:1019279617898
doi: 10.1137/1.9780898718577


Hatamian & Samareh Hashemi/ COAM, 10 (1), Winter-Spring (2025) 137

[5] Chelyshkov, V.S. (2006). “Alternative orthogonal polynomials and quadratures”, Electronic Trans-
actions on Numerical Analysis, 25(7), 17-26.

[6] Delphi, M., Shihab, S. (2019). “Modified iterative algorithm for solving optimal control problems”,
Open Science Journal of Statistics and Application, 6(2), 20-27.

[7] Diveev, A., Sofronova, E., Konstantinov, S. (2021). “Approaches to numerical solution of opti-
mal control problem using evolutionary computations”, Applied Sciences, 11(15), doi:10.3390/
app11157096.

[8] Eide, J.D., Hager, W.W., Rao, A.V. (2021). “Modified Legendre–Gauss–Radau collocation method
for optimal control problems with nonsmooth solutions”, Journal of Optimization Theory and Ap-
plications, 191, 600-633, doi:10.1007/s10957-021-01810-5.

[9] Figueiredo, M.A.T., Nowak, R.D., Wright, S.J. (2007). “Gradient projection for sparse reconstruc-
tion: Application to compressed sensing and other inverse problems”, IEEE Journal of Selected
Topics in Signal Processing, 1, 586-597, doi:10.1109/JSTSP.2007.910281.

[10] Fischer, B. (2011). “Polynomial based iteration methods for symmetric linear systems”, Society for
Industrial and Applied Mathematics, doi:10.1137/1.9781611971927.

[11] Frankowska, H., Zhang, H., Zhang, X. (2019). “Necessary optimality conditions for local minimiz-
ers of stochastic optimal control problems with state constraints”, Transactions of the American
Mathematical Society, 327, 1289-1331.

[12] Gentle, J.E. (2024). “Matrix algebra theory, computations and applications in statistics”, Third
Edition, Springer, doi:10.1007/978-3-031-42144-0.

[13] Horn, R.A., Johnson, Ch.R. (2013). “Matrix analysis”, Second Edition, Cambridge University
Press.

[14] Jaddu, H. (2002). “Direct solution of nonlinear optimal control problems using quasilinearization
and Chebyshev polynomials”, Journal of the Franklin Institute, 339(4), 479-498, doi:10.1016/
S0016-0032(02)00028-5.

[15] Jaddu, H., Majdalawi, A. (2014). “Legendre polynomials iterative technique for solving a class of
nonlinear optimal control problems”, International Journal of Control and Automation, 7, 17-28,
doi:10.14257/ijca.2014.7.3.03.

[16] Jaddu, H., Vlach, M. (2002). “Successive approximation method for non-linear optimal control
problems with applications to a container crane problem”,Optimal Control Applications andMeth-
ods, 23(5), 275-288, doi:10.1002/oca.713.

[17] Kendall, A., Weimin, H. (2009). “Theoretical numerical analysis, A functional analysis frame-
work”, 3rd Ed., Springer, doi:10.1007/978-1-4419-0458-4.

[18] Mehne, H.H., Borzabadi, A.H. (2006). “A numerical method for solving optimal control
problems using state parameterization”, Numerical Algorithms, 42, 165-169, doi:10.1007/
s11075-006-9035-5.

doi: 10.3390/app11157096
doi: 10.3390/app11157096
doi: 10.1007/s10957-021-01810-5
doi: 10.1109/JSTSP.2007.910281
doi: 10.1137/1.9781611971927
doi: 10.1007/978-3-031-42144-0
doi: 10.1016/S0016-0032(02)00028-5
doi: 10.1016/S0016-0032(02)00028-5
doi: 10.14257/ijca.2014.7.3.03
doi: 10.1002/oca.713
doi: 10.1007/978-1-4419-0458-4
doi: 10.1007/s11075-006-9035-5
doi: 10.1007/s11075-006-9035-5


138 A Hybrid Approach for for Solving Nonlinear OCPs/ COAM, 10 (1), Winter-Spring (2025)

[19] Samareh Hashemi, S.A., Saeedi, H., Foroush Bastani, A. (2024). “A hybrid Chelyshkov wavelet-
finite differences method for time-fractional black-Scholes equation”, Journal of Mahani Mathe-
matical Research, 13(2), 423-452, doi:10.22103/jmmr.2024.22371.1526.

[20] Tomas-Rodriguez, M., Banks, S.P. (2003). “Linear approximations to nonlinear dynamical systems
with applications to stability and spectral theory”, IMA Journal of Control and Information, 20(1),
89-103, doi:10.1093/imamci/20.1.89.

[21] Tomas-Rodriguez, M., Banks, S.P. (2006). “An iterative approach to eigenvalue assignment for
nonlinear systems”, Proceedings of the 45th IEEE Conference on Decision & Control, 977-982,
doi:10.1109/CDC.2006.376758.

[22] Vlassenbroeck, J. (1988). “A Chebyshev polynomial method for optimal control with state con-
straints”, Automatica, 24(4), 499-506, doi:10.1016/0005-1098(88)90094-5.

doi: 10.22103/jmmr.2024.22371.1526
doi: 10.1093/imamci/20.1.89
doi: 10.1109/CDC.2006.376758
doi: 10.1016/0005-1098(88)90094-5

	Optimal Control of Linear Singularly Perturbed Systems via Eigenvalue Assignmentto.44em.
	Mehrnoosh Salehi Chegeni, Majid Yarahmadi 
	Analyzing Drug Therapy on the Interaction Between Tumor and Immune Cells Based on Optimal Fractional Control Theoryto.44em.
	Alireza Fakharzadeh Jahromi, Mahin Azizi Karachi, Hajar Alimorad 
	Mathematical Modelling of Malaria Spread in Response to Climate Variability in Sudanto.44em.
	Gassan A.M.O. Farah, Abdulaziz Mukhtar, Kailash C. Patidar 
	Resource Allocation Optimization for Multi-Target Detection and Tracking in Cognitive Radar Networksto.44em.
	Maryam Najimi, Akbar Hashemi Borzabadi 
	Hybrid of Convolutional Neural Network and Support Vector Machine for Cancer Type Predictionto.44em.
	Soghra Mikaeyl Nejad 
	Multi-Objective Optimization Problem Involving Max-Product Fuzzy Relation Inequalities with Application in Wireless Communicationto.44em.
	Narjes Amiri, Hadi Nasseri, Davood Darvishi Salokolaei 
	Bell's Degree Variance and Degree Deviation in Graphs: Analyzing Optimal Graphs Based on These Irregularity Measuresto.44em.
	Hasan Barzegar, Mohsen Sayadi, Saeid Alikhani, Nima Ghanbari 
	A Hybrid Numerical Approach for Solving Nonlinear Optimal  Control Problemsto.44em.
	Rasoul Hatamian, Seyed Amjad Samareh Hashemi 
	A Meshless Method for Optimal Control of Parabolic PDEs Using Rational Radial Basis Functionsto.44em.
	Afrah Kadhim Saud Al-tameemi, Mahmoud Mahmoudi, Majid Darehmiraki 
	Determining Control Points in the Project Life Cycle: A Heuristic Approach Utilizing Tabu Searchto.44em.
	Narjes Sabeghi 
	Pythagorean Fuzzy Sets for Credit Risk Assessment: A Novel Approach to Predicting Loan Defaultto.44em.
	Amal Kumar Adak, Nil Kamal 
	Mesh-Free RBF-FD Method with Polyharmonic Splines and Polynomials for High-Dimensional PDEs and Financial Option Pricingto.44em.
	Narges Hosseinzadeh, Elyas Shivanian, Saeid Abbasbandy 

