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1 Introduction

Optimal control of dynamic systems subject to realistic constraints on input signals and state
variables represents a crucial area in control theory. Numerous practical control challenges
can be framed as optimization problems, thereby creating a significant demand for efficient
numerical algorithms capable of delivering solutions. Optimal control theory focuses on finding
control functions that optimize a specific performance criterion, typically expressed as a cost
function, in various domains, including engineering, economics, and biology. Mathematically,
these problems are formulated as the minimization of the cost function J , defined as:

J =

∫ TF

t0

L(x(t), u(t), t) dt+ ϕ(x(TF )),

whereL denotes the running cost, ϕ indicates the terminal cost, x(t) represents the state variable
at time t, and u(t) signifies the control variable at time t. The dynamic evolution of the system
is governed by:

ẋ(t) = f(x(t), u(t), t), x(t0) = x0.

Due to the inherent complexity of nonlinear systems, obtaining exact solutions is often infeasi-
ble, necessitating the deployment of numerical methods [4].

This paper introduces a novel polynomial basis aimed at addressing longstanding challenges
in optimal control challenges, specifically issues related to numerical instability, computational
cost, and the enforcement of terminal condition. This development suggests a wider applica-
bility for alternative polynomial representations in the context of dynamical systems.

Numerical methods typically discretize optimal control problems (OCPs) to facilitate com-
putational solutions. The selection of a particular method is influenced by the accuracy require-
ments and computational feasibility [11].

In recent decades, iterative techniques have been extensively employed to solve OCPs.
These methods approximate optimal solutions through successive refinements, with prominent
approaches including:

• Gradient-Based Methods: These techniques optimize the control function by iteratively
minimizing J in the direction of the cost function’s gradient [4].

• Sequential Quadratic Programming (SQP): This method addresses nonlinear control
problems by solving a sequence of quadratic approximations, demonstrating robust per-
formance in constrained problems [8].

• Dynamic Programming (DP): DP decomposes complex problems into simpler stages,
and is widely applied in nonlinear and high-dimensional contexts [10].
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Alipour et al. developed an iterative method that integrates homotopy analysis and parametriza-
tion approaches to address these problems [2]. In [1], an iterative method was employed to
solve a quadratic optimal control problem (QOCP) using the state parameterization technique
alongside scaling Boubaker polynomials. Jaddu proposed a method utilizing the second quasi-
linearization technique and state parameterization with Chebyshev polynomials to approach
nonlinear OCPs, including state and control saturation constraints [14, 16].

Polynomial basis functions serve to approximate control and state variables, offering a
structured representation within bounded intervals. Specifically, polynomial basis approxima-
tions express control u(t) and state x(t) as:

u(t) ≈
N∑
j=0

cjψj(t),

x(t) ≈
N∑
j=0

djψj(t),

where ψj(t) represents polynomial basis functions, and cj and dj are the corresponding coeffi-
cients [10].

The integration of iterative techniques with polynomial basis functions offers an effective
numerical methods for addressing complex optimal control challenges [7]. This hybrid ap-
proach enhances solution accuracy and flexibility, handling the effective management of non-
linearity and complex constraints. Applications of the iterative-polynomial approach span var-
ious fields, including robotics, aerospace, and finance, and continues to evolve alongside ad-
vancements in machine learning and adaptive algorithms. Future research aims to refine these
hybrid techniques to confront emerging challenges in large-scale and real-time control systems
[4, 22].

In this study, we seek to enhance the method presented in [15] while building upon the
research conducted by Banks et al. [3, 20]. Our objective is to advance the solutions for non-
linear quadratic OCPs subject to terminal state constraints, and saturation constraints on both
state and control variables. By expanding these methodologies, we aim to establish a more ro-
bust framework for addressing these complex control problems through the use of Chelyshkov
polynomials [19].

The remainder of this paper is structured as follows. Section 2 formally defines the optimal
control problem under consideration and presents the necessary preliminaries for implement-
ing the proposed method. Section 3 outlines the development and execution of the proposed
method. Section 4 presents numerical examples that illustrate the accuracy and effectiveness of
the method. Finally, Section 5 concludes the paper and discusses potential avenues for future
research.
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2 Preliminaries

2.1 The Problem

We consider the following nonlinear optimal control problem, which we aim to solve numeri-
cally:

Find the optimal control u(t) = u∗(t) that minimizes the performance function defined as
follows:

J = x(TF )
tS x(TF ) +

∫ TF

0
(xtQx+ utRu) dt, (1)

The state of the dynamic system is governed by:

ẋ = f(x(t), u(t), t), (2)

subject to the following conditions:

• Initial and terminal conditions:

x(0) = x0, (3)

λ(x(TF ), TF ) = 0, (4)

• State and control constraints:

Xm ≤ x(t) ≤ XM ,

Um ≤ u(t) ≤ UM . (5)

In this problem, Q and S are in Rn×n, assumed to be positive semidefinite matrices, while
R ∈ Rm×m is a positive definite matrix. The vector x ∈ Rn represents the state vector,
u ∈ Rm denotes the control vector, x0 ∈ Rn is the initial condition vector. The function f is
a continuously differentiable nonlinear function with respect to all its variables. Additionally,
we assume that m ≤ n and that the bounds XM , Xm ∈ Rn and UM , Um ∈ Rm are specified
fixed values, with TF being a known constant.

In this paper, we address problem (1)–(5) by transforming it using an iteration method into a
series of time-varying linear quadratic optimal problems with constraints. In the first iteration,
the nonlinear state equation is approximated by linear state equations, which in the subsequent
iteration are reformulated into a second-degree programming problem utilizing ChPs.

Given that Chelyshkov polynomials are defined over the interval [0, 1] and knowing any
closed interval [TS , TF ] can be mapped linearly to [0, 1] using the transformation τ = t−TS

TF−TS
,

t ∈ [TS , TF ]. We will assume, for the sake of simplicity, that the problem is defined on the
interval [0, 1].
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2.2 Chelyshkov Polynomials

Chelyshkov polynomials (ChPs) are inherently orthogonal on the interval [0, 1] under a uni-
form weight function. Given that optimal control problems are typically formulated over finite
time horizons (e.g., t ∈ [0, T ]), normalizing to the interval [0, 1] eliminates the need for co-
ordinate transformations required for polynomials such as Legendre (orthogonal on [−1, 1]) or
Chebyshev polynomials. This normalization not only simplifies implementation but also re-
duces computational overhead, and preserves numerical stability.

The uniformweight function associated with ChPs aligns with the standardL2 inner product
space commonly employed in optimal control formulations. This congruence facilitates the
derivation of operational matrices (e.g., integration and differentiation matrices) for spectral
methods such as Galerkin or collocation, potentially leading to increased efficiency. In our prior
research involving partial differential equations (PDEs) [19], Chelyshkov wavelets exhibited
advantages in addressing sharp gradients and discontinuities due to their localization properties.
Hence, optimal control problems governed by PDEs or those displaying analogous solution
structures may derive substantial benefits from these characteristics, suggesting a promising
extension to control theory.

While classical polynomials bases are well-established, exploring newer bases such as ChPs
serves to expand the methodological toolkit available to the research community. Their rela-
tive novelty, having been introduced in 2006 [5], indicates potential that remains largely un-
explored in control applications. This paper aims to rigorously evaluate their efficacy in this
domain. Importantly, our motivation extends beyond novelty; the structural properties of ChPs
(e.g., boundary adaptability and sparsity in operational matrices) suggest benefits worthy of
investigation. We recognize the necessity of benchmarking our findings against classical meth-
ods. While this study primarily focuses on establishing feasibility and methodology, we plan to
conduct explicit comparative studies in future work to quantitatively assess convergence rates,
stability, and computational cost relative to Legendre/Chebyshev bases.

Chelyshkov polynomials Pm(t) are defined as follows [19]:

Pm(t) := PM,m(t) =

M−m∑
j=0

am,j t
m+j , m = 0, 1, . . . ,M, (6)

where the coefficients are given by:

am,j = (−1)j
(
M −m

j

)(
M +m+ j + 1

M −m

)
,

and M is a fixed predetermined integer. Under the uniform weight function w(t) = 1, ChPs
are orthogonal on the interval [0, 1]:∫ 1

0
Pn(t)Pm(t) dt =

δmn

m+ n+ 1
, (7)
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where δmn is the Kronecker delta. Additionally, we have:∫ 1

0
Pn(t), dt =

1

M + 1
, n = 0, 1, . . . ,M.

Fixing the integer M , it is evident from Eq. (6) that each polynomial Pm(t) where m =

0, 1, . . . ,M is of degree M . The set of ChPs {Pm(t) |m = 0, 1, . . . ,M} forms an orthog-
onal basis for

∏
M (t), (the space of polynomials of degree at most M ). Consequently, any

function f(t) ∈ L2[0, 1] can be approximated in terms of ChPs follows:

f(t) ≃
M∑

m=0

cm Pm(t) = CTPM (t), (8)

where CT = [c0, c1, . . . , cM ] and the coefficients cm can be approximated as

cm ≃ ⟨f, Pm⟩
∥Pm∥2

= (2m+ 1)

∫ 1

0
f(t)Pm(t) dt,

and PM (t) = [P0(t), P1(t), . . . , PM (t)]T.

Lemma 1. Let N = [µij ](M+1)×(M+1) be a matrix. Then:

PT
M (t)N PM (t) =

µ11P0(t)P0(t) + 2µ12P0(t)P1(t) + 2µ13P0(t)P2(t) + · · ·+ 2µ1,M+1P0(t)PM (t)

+ µ22P1(t)P1(t) + 2µ23P1(t)P2(t) + · · ·+ 2µ1,M+1P0(t)PM (t)

+ µ33P2(t)P2(t) + · · ·+ 2µ1,M+1P0(t)PM (t)

...

+ µ(M+1),(M+1)PM (t)PM (t).

Thus, using (7), we obtain:∫ 1

0
(PT

M (t)N PM (t))dt =
M+1∑
i=1

µii
2i− 1

.

Proof. Based on the properties of matrix (vector) multiplication properties and certain calcula-
tions, the proof is straightforward.

Theorem 1. Suppose u(x) ∈ Cn[0, 1] and un(x) is its expansion in terms of ChPs, as described
in (8). Then we have:

∥u(x)− un(x)∥2 ≤
Mn

(n+ 1)!22n+1
,

whereMn is a constant such that

|u(n+1)(x)| ≤Mn, x ∈ [0, 1].
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Proof. Let pn(t) be the interpolating polynomial for u at the nodes ti, where ti, i = 0, 1, . . . , n

are the roots of the (n+ 1)-degree shifted Chebyshev polynomial on [0, 1]. For any t ∈ [0, 1],
we can express:

u(t)− pn(t) =
u(n+1)(ξt)

(n+ 1)!

n∏
i=0

(t− ti).

Since the interpolating nodes are Chebyshev nodes, we find:

u(t)− pn(t) =
Mn

(n+ 1)!22n+1
, x ∈ [0, 1].

Since un(t) represents the least squares best approximation of u(t), [17, Example 3.4.8] , it
follows that:

∥u(t)− un(t)∥2 ≤ ∥u(t)− pn(t)∥2 =
Mn

(n+ 1)!22n+1
, x ∈ [0, 1].

Thus, we obtain the desired result.

2.3 Iterative Technique

Consider a nonlinear system described by the following equation [21]:

ẋ = f(x) = A(x)x, x(0) = x0 ∈ Rn, (9)

where A(x) is a locally Lipschitz matrix function. This system can be approximated by a
sequence of linear time-varying equations represented as follows:

ẋ(1) = A(x(0))x(1), x(1)(0) = x(0),
...

ẋ(i) = A(x(i−1))x(i), x(i)(0) = x(0),

(10)

for i = 1, 2, . . ..
This formulation allows us to avoid directly addressing the complexities inherent in the nonlin-
ear system by expressing it as a series of linear equations that evolve over time. Consequently,
this approach simplifies the analysis and control of the system, thereby facilitating the predic-
tion and optimization of its behavior. Such a technique is particularly advantageous in control
theory and engineering, where linear models are typically more tractable and can yield signifi-
cant insights into the dynamics of more complex nonlinear systems.

Theorem 2. [20]. Suppose that A(x) : Rn → Rn is locally Lipschitz and that the nonlinear
equation (9) possesses a unique solution x(t) on the interval [0, T ]. Then the sequence defined
by (10) converges uniformly to x(t).
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3 Main Results

We employ the iterative method to address the OCP defined in equations (1)–(5), leading to the
following reformulated problem:

J [k] = x[k](1)t S x[k](1) +

∫ 1

0
(x[k](t)tQx[k](t) + u[k](t)t, R u[k](t))dt, (11)

subject to

ẋ[k](t) = A(x[k−1](t))x[k](t) +B(x[k−1](t))u[k](t), x[k](0) = 0, (12)

with the terminal condition given by

λ(x[k](1), 1) = 0, (13)

and bounds constraints for k = 1, 2, . . . represented as:

Xm ≤ x[k](t) ≤ XM , Um ≤ u[k](t) ≤ UM . (14)

The constrained linear time-varying quadratic OCPs, as delineated in Equations (11)–(14),
can be effectively resolved by transforming them into quadratic programming problems. This
transformation is facilitated through the application of state parameterization which simplifies
the original control problems and makes them more tractable to computational solutions. For
a comprehensive discussion and detailed explanation of the state parameterization technique,
refer to e.g., [15].

Next, we approximate both the state and control variables using ChPs as follows [19]:

x[k](t) =M [k]
x PN (t), (15)

u[k](t) =M [k]
u PN (t), (16)

where, PN (t) = [P0(t), P1(t), . . . , PN (t)]T is the vector of ChPs,Mx ∈ Rn×(N+1) and Nu ∈
Rm×(N+1) are matrices of unknown parameters that will be determined later, and N denotes
the degree of the ChPs.

Substituting (15) and (16) in Equation (11) yields:

J [k] = PT
N (1)M [k]T

x SM [k]
x PN (1)

+

∫ 1

0
(PT

N (t)M [k]T
x QM [k]

x PN (t) + PT
N (t)M [k]T

u RM [k]
u PN (t))dt. (17)

Noting that PN (1) = [(−1)N , (−1)N+1, . . . , (−1)2N ]T, we can express as

J [k] =

N∑
i=0

N∑
j=0

(−1)i+jγij +

N+1∑
i=1

ηii + ζii
2i− 1

, (18)
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where M [k]T
x SM

[k]
x = [γij ](N+1)×(N+1), ηii and ζii are diagonal entries of M

[k]T
x QM

[k]
x =

[ηij ](N+1)×(N+1) andM
[k]T
u RM

[k]
u = [ζij ](N+1)×(N+1) respectively. The last term in Equation

(18) can be rewritten as:
N+1∑
i=1

ηii + ζii
2i− 1

= PT
N (1)D̄PN (1),

where D̄ is a diagonal matrix whose elements are defined as d̄ii = ηii+ζii
2i−1 .

Consequently, based on the preceding discussion and referencing results from [9], [12] and
[13], Equation (17) or equivalently Equation (18) can be represented in the following quadratic
form:

J [k] =
1

2
yTHy, (19)

where y is a vector containing the unknown elements of matrices Mx and Mu arranged in
suitable order, andH is a positive definite Hessian matrix. Since the matricesA(x[k−1](t)) and
B(x[k−1](t)) are time-dependent, each element can be expressed as Aij(t) = fA(x

[k−1](t), t)

and Bij(t) = gB(x
[k−1](t), t). These can then be approximated using ChPs as follows:

Aij(t) =WTPN (t), (20)

Bij(t) = V TPN (t). (21)

The initial and terminal conditions x[k](0) = 0 and λ(x[k](1), 1) = 0 can also be expressed in
terms of ChPs. Now, considering the imposed constraints, we have:

x[k](t) ≤ XM ,

−x[k](t) ≤ −Xm,

u[k](t) ≤ UM ,

−u[k](t) ≤ −Um.

Currently, we utilize collocation method by discretizing the interval [0, 1] into r+ 1 points
as follows :

0 = t0 < t1 < · · · < tr = 1.

Subsequently, applying the ChP approximations leads to:

M [k]
x PN (t) ≤ XM , (22)

−M [k]
x PN (t) ≤ −Xm, (23)

M [k]
u PN (t) ≤ UM , (24)

−M [k]
u PN (t) ≤ −Um. (25)

Equations (22)–(25) are subsequently replaced by the following inequality constraints:
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M [k]
x PN (ts) ≤ XM , (26)

−M [k]
x PN (ts) ≤ −Xm, (27)

M [k]
u PN (ts) ≤ UM , (28)

−M [k]
u PN (ts) ≤ −Um, (29)

for s = 0, 1, . . . , r.
Consequently, we can formulate the following standard quadratic programming problem:

min
y

1

2
yTHy (30)

subject to the constraints:

A1y = b1, (31)

A2y ≤ b2, (32)

where the equality constraints are arise from the initial and terminal conditions, alongside Equa-
tions (20) and (21), while the inequality constraints stem from the saturation constraints as
expressed in Equations (26)–(29).

At this point, the problem defined by Equations (30)–(32) can be solved using relevant
software or implemented in any suitable programming language. In this study, we utilize the
NMinimize command inWOLFRAMMATHEMATICA 14.0 to address the optimization prob-
lem.

4 Illustrative Examples

Example 1. Consider the well-known Van der Pol oscillator problem, which can be articulated
as follows:

Min J =
1

2

∫ 5

0
(x21 + x22 + u2)dt

s.t :

ẋ1 = x2, x1(0) = 1,

ẋ2 = −x1 + (1 + x21)x2 + u,

x2(0) = 0, x1(5) = −1, x2(5) = 0,

|u(t)| ≤ 3

4
.

In this context, we define the matrix A(x) as:
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A(x) = A(

(
x1
x2

)
) =

(
0 1

−1 1 + x21

)
.

Assuming x =
(
x1

x2

)
, y =

(
y1
y2

)
and ∥x− y∥ < r, we have:

∥A(x)−A(y)∥ = |x21 − y21| = |x1 + y1| |x1 − y1| < 2r |x1 − y1| ≤ 2r ∥x− y∥.

Thus, A(x) is locally Lipschitz and meets the conditions of Theorem 2, confirming that the
method converges. The problem was solved using the proposed iterative method with N = 7

and r = 10, and the results are displayed in Table 1 and illustrated in Figure 1.

Table 1: Values of J with N = 7 and r = 10 for the Van der Pol oscillator problem (Example 1)

k J [k]

0 1.450427989

1 2.411326825

2 2.264578128

3 2.780074587

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
 

 

 

Figure 1: Results for x[k]
1 (t), x[k]

2 (t) and u[k](t) from the Van der Pol oscillator problem (Example 1 withN = 7

and r = 10 and for k = 1, 2, 3, 4, 5, 6.

Example 2. We now consider the following nonlinear optimal control problem as discussed in
[6, 18]:

Min J =
1

2

∫ 1

0
(x2 + u2) dt
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s.t :

u(t) = ẋ,

x(0) = 0, x(1) =
1

2
,

The exact solution to this problem is given by:

x(t) =
e(et − e−t)

2(e2 − 1)
,

u(t) =
e(et + e−t)

2(e2 − 1)
,

J = 0.328258821374830.

In the problem, we have A(x) = 0, which is evident and satisfies the conditions of locally
Lipschitz. The results obtained from solving this problem using the proposed method and com-
paring them with the results obtained in the [6, 18] are summarized in the Table 2. Additionally,
Figure 2 illustrates the behavior of theL∞ error as a function ofN . As supported by theoretical
expectations, the error decreases with an increase in N .

7.3974×10-8

3.35193×10-7

1.3671×10-6

5.886×10-5

9.46008×10-3

4 5 6 7 8

10-7

10-6

10-5

10-4

0.001

0.010

Figure 2: L∞ error for the nonlinear optimal control problem (Example 2) with varying N = 4, 5, 6, 7, 8 and
r = 8 for k = 5.

Table 2: L∞ Error of J with N = 5 and r = 8 for the nonlinear optimal control problem (Example 2).

Proposed method Method in [6] Method in [18]
L∞ Error 5.886× 10−5 2.03089× 10−4 2.1× 10−4
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5 Conclusions

In this study, we have introduced a hybrid approach for effectively solving optimal control prob-
lems (OCPs). Our approach integrates three approximation techniques: an iterative method,
Chebyshev polynomial approximation, and collocation. The numerical examples serve to illus-
trate the computational efficiency and accuracy inherent in the proposed method, highlighting
its effectiveness in addressing complex OCPs. Looking ahead, future research will focus on
several key areas. These include the exploration of Chelyshkov wavelet approximation to en-
hance the flexibility and accuracy of our solutions; testing the method across a broader spectrum
of OCPs to validate its robustness and adaptability; extending the framework to accommodate
multi-objective optimization problems, which are vital in various application domains; and de-
vising adaptive parameter selection strategies to further refine themethod’s performance. These
advancements hold the promise of significantly enhancing the method’s efficacy and expanding
its applicability across diverse fields, ultimately contributing to the resolution of increasingly
intricate optimization challenges.
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