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system’s qualitative properties to gain insights into disease dynamics. Addi-
tionally, a sensitivity analysis is conducted to evaluate how climatic conditions,
e.g., rainfall and temperature, influence key model parameters. Statistical
approaches are utilized to estimate parameters and calibrate the model using
empirical data from Sudan, ensuring consistency between the model and
observed trends. Numerical simulations demonstrate the growing influence
of climate variability on the spatial distribution of malaria vectors and the
transmission progression over time. The study establishes a strong association
between climatic changes and the exacerbation of malaria prevalence in Sudan.
These findings emphasize the urgent need for climate-adaptive strategies,
including improved vector control, strengthened surveillance systems, and
climate-resilient public health interventions, to address the increased risks posed
by changing environmental conditions. The research provides valuable insights
to inform evidence-based policies aimed at reducing malaria transmission in
Sudan and other regions that are experiencing similar challenges due to climate
change.
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1 Introduction

Malaria is a lethal disease caused by single-celled parasites, which are primarily transmitted through
the bites of infected female Anopheles mosquitoes. The lifecycle of these parasites is intricately linked
to human hosts, highlighting that humans play a critical role in the disease’s transmission dynamics
[9, 10]. Recent global data indicates an increase in malaria incidence, with cases per 1,000 population at
risk climbing from 57 in 2019 to 82 in 2020 [30]. Notably, Sub-Saharan Africa bears the heaviest toll of
malaria, with Sudan emerging as a large contributor to the ongoing malaria crisis in the region [2, 11].
Research indicates that malaria remains a substantial public health issue in Sudan, marked by concerning
morbidity and mortality rates [3, 26], particularly among at-risk populations, such as children under five
years of age and pregnant women. These groups are disproportionately affected, especially during the
rainy season, which exacerbates the transmission of the disease [13].

Climate change is a critical factor influencing mosquito behavior and breeding patterns, thereby
increasing the likelihood of malaria outbreaks in endemic regions [17, 21]. Numerous studies high-
light how fluctuating climate conditions affect mosquito lifespan and the sporogonic stages of malaria
parasites [12, 27]. Elevated temperatures have been correlated with increased mosquito activity, while
enhanced rainfall leads to greater populations of mosquito larvae [6]. The importance of average temper-
atures under varying environmental conditions is crucial for assessing malaria risk in specific geograph-
ical areas, as these temperatures profoundly impact the disease’s transmission dynamics [8]. Despite
notable advancements in malaria control efforts, the challenges presented by climate change threaten
to undermine these achievements. This scenario underscores the urgent need for increased awareness,
sustained research efforts, and the formulation of effective strategies to mitigate the impact of climate
change on malaria transmission [5].

The authors in [18] focused on malaria dynamics in Burundi whereas our focus is on empirical data
from Sudan, offering specific insights. Although both studies use deterministic models to assess impact
of climate conditions, we develop the model from [25] and incorporated model calibration, sensitivity
analysis, as well as empirical validation. Additionally, by rigorous analysis and computational simu-
lations, we investigated the impact of variations in temperature and rainfall on malaria transmission in
Sudan.

The potential implications of climate change on malaria distribution are of particular concern. Ris-
ing global temperatures may accelerate the spread of malaria to higher altitudes and latitudes, given the
sensitivity of both Anopheles mosquitoes and Plasmodium parasites to temperature variations. These
vectors thrive in warm, humid conditions, and climate alterations can enhance their reproductive and
feeding activities, potentially reshaping local transmission patterns [22]. Consequently, malaria may
re-emerge in areas previously deemed malaria-free, posing significant challenges for public health ini-
tiatives.

In countries like Sudan, the effectiveness of malaria control measures is severely hampered by lim-
ited resources and socio-economic instability. This research is driven by the persistent challenges posed
by malaria in Sudan, despite various control and elimination initiatives. The geographical distribution
of malaria is very diverse often influenced by extreme weather events, rainfall patterns, and humanitar-
ian crises arising from ongoing conflicts. Therefore, an integrative approach is essential for effective
malaria management, guided by a novel, data-driven climate model. Such a model could yield more
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accurate predictions of future malaria incidents, ultimately informing the development of more effective
public health policies and interventions.

Mathematical modelling has played a pivotal role in comprehending the dynamics of malaria and
identifying optimal control and prevention strategies. These models reveal the direct influence of cli-
mate factors, like temperature and rainfall, on vector borne disease (see [1, 6]). Morrise and Hoshen
[17] developed a dynamic malaria model incorporating weather-dependent processes in vectors and
non-weather-dependent processes in hosts. The authors in [21] devised a simulation model utilizing
rule-based modelling to explore climate change’s impact on global malaria transmission. Birley [20]
formulated a mathematical model to explore the effects of species variation and to assess whether tem-
perature influences the transmissibility of the malaria pathogen Plasmodium vivax by the Anopheles
maculipennis mosquito.

Research conducted by [28, 29] indicates that mosquitoes are most active around dawn and dusk, and
prolonged sunlight exposure can dehydrate these insects. Although much remains to be learned about
the persistence of diseases transmitted by mosquitoes and malaria transmission in colder seasons, it is
generally observed that mosquito activity decreases when temperatures fall below 10◦C. During winter,
vertebrate hosts serve as themain reservoir for mosquito-borne infections, as the virus remains inactive in
colder climates until warmer temperatures allow for reproduction. Female mosquitoes lay eggs that enter
a dormant state, freezing or becoming inactive when temperatures drop below 10◦C. When the weather
warms up, these dormant eggs thaw and initiate mosquito breeding, posing significant health risks to
humans. In [29], the authors suggests that ambient temperatures and precipitation levels significantly
impact mosquito populations, prompting further investigation into how these factors affect mosquito-
borne diseases. Yang [31] proposed a model for malaria transmission that incorporates human acquired
immunity levels alongside temperature-dependent parameters of mosquito vectors.

There is an increasing interest in studying the impact of climate change on various vector-borne
diseases. The complex relationship between climate variables and malaria transmission requires careful
attention to implement effective interventions for a malaria-free future. Although significant progress
has been made in malaria modelling, no comprehensive study currently examines the relationship be-
tween spatial variations in malaria transmission and climate change in Sudan. Therefore, this study aims
to introduce an innovative data-driven dynamic model for malaria transmission that incorporates sev-
eral key advancements: (i) the use of advanced mathematical techniques combined with climate data
to accurately represent the complex dynamics of malaria transmission, and (ii) the integration of data
assimilation methods through statistical mean to improve model validation and predictive accuracy.

The rest of the paper is organized as follows. We introduce the deterministic mathematical model,
discussing fundamental properties such as positivity, existence of solution, and the derivation of the ba-
sic reproduction number in Section 2. We also discuss model calibration process using data of Sudan’s
weekly malaria cases. We conduct a sensitivity analysis of R0, to identify key parameters influenc-
ing disease transmission In Section 3. In Section 4, we explore the global stability of the disease-free
equilibrium. We present in Section 5 numerical simulations of the model, which we obtain by using
MATLAB solver ode45, to illustrate the system’s behavior under varying conditions. Finally, in Section
6, we present a summery of our key findings and scope for further research.
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2 Mathematical Model Formulation

In this section, we present a deterministic model to illustrate the dynamics of malaria transmission and
various control strategies to help combat the disease. This model utilizes compartments associated with
“transmission rates” that describe the movement of individuals. By analyzing the transition rates and
the size of each compartment over time, it is possible to estimate the overall prevalence and incidence of
the disease. This model elucidates the complex interactions between human and mosquito populations,
highlighting the critical factors that govern disease transmission and recovery conditions can affect the
dynamics of mosquito life cycles but not the host-parasite dynamics.
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Figure 1: Flow diagram for the SEIR− SEI modeling.

The human population, denoted as NH , is subdivided into four distinct classes: susceptible indi-
viduals (SH ), exposed or incubating individuals (EH ), infectious individuals (IH ), and those who have
recovered and possess partial immunity (RH ). The prevalence of infection among susceptible indi-
viduals is determined by the biting rate (ϵ(T,R)) of mosquitoes, which is influenced environmental
conditions, which in this case are, temperature (T ) and rainfall (R). Additionally, the proportion of bites
from infected mosquitoes that successfully lead to infection (bH ) plays a crucial role. Individuals enter
the susceptible population at a constant recruitment rate, denoted by θ, which accounts for both births
and immigration. Upon infection, individuals do not immediately transition to the infectious class due
to the absence of gametocytes. Instead, they enter the exposed class (EH ), during which the parasite
infiltrates the bloodstream in the form of merozoites. Individuals progress from this exposed state to the
infectious class (IH ) at a rate of κH , where they gain the ability to transmit the disease to susceptible
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mosquitoes. The dynamics of infectious diseases in humans are characterized by a gradual build-up of
cases followed by rapid escalation and severity. Within the infectious class, individuals recover at a rate
represented by α, subsequently moving to the recovered class (RH ) during treatment. It should be noted
that not all individuals undergoing treatment will develop temporary immunity. Those who do obtain
temporary immunity may lose it over time at a rate of γ and revert to the susceptible class. In contrast,
individuals who do not receive treatment for the infection face potential mortality at a rate of η. All
compartments of the model are subject to natural mortality, characterized by the rate µH . Furthermore,
while weather conditions significantly influence mosquito life cycles, they do not impact the intrinsic
dynamics of host-parasite interactions.

Now, the population of mosquitoes, denoted as NM , is also divided into three distinct classes: sus-
ceptible (SM ), exposed (EM ), and infectious (IM ). A susceptible mosquito can become infected through
a process governed by its biting rate and the probability of transmission per bite represented as bM . The
maturation of aquatic mosquito larvae into adult forms occurs at a rate parameterized as η, influenced
by environmental factors such as temperature, rainfall, and the mosquito population’s intrinsic mortality
rate µM . Mosquitoes transition into the exposed class EM when they acquire gametocytes from blood
meals despite the absence of sporozoites in their salivary glands at this stage. A mosquito progresses to
the infectious class IM once it becomes infectious and harbors sporozoites in its salivary glands. These
sporozoites have the potential to infect any susceptible host following fertilization. It is important to
note that infected mosquitoes experience mortality at a rate µM , but they do not clear their infections or
exhibit any detrimental health effects. The proposed model comprehensively incorporates various eco-
logical factors that facilitate the transmission of disease, as well as the influence of climatic variables.
Critical parameters such as ϵ(T,R), a, and µM are dependent on temperature and rainfall, and are de-
tailed in [16]. These parameters can be quantitatively expressed in equations (1)- (3), elucidating their
relationships with climate and impacts on the overall dynamics of mosquito-borne disease transmission,
as illustrated in Figures 3 and 4.

ϵ(T,R) = ϵ0

[
0.48 exp(0.14(T − 23))

exp(−0.14(T − 23)) + exp(0.14(T − 23))

+
−0.48 exp(0.32(T − 37))

exp(−0.32(T − 37)) + exp(0.32(T − 37))

]
· R

R+ β
. (1)

a(T,R) =
3.375 (4R(50−R))

3 exp (−0.00554T + 0.06737)

506
(
2 + (0.00554T − 0.06737)

−1
) . (2)

µM (T,R) = 0.0886 exp

((
−0.01R+ 1.01T − 21.211

14.852

)2
)
. (3)

The malaria transmission can be described by the following non-autonomous system
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dSH

dt = θ + γRH − ΛH(T,R)SH − µHSH ,

dEH

dt = ΛH(T,R)SH − (κH + µH)EH ,

dIH
dt = κHEH − (µH + α+ η)IH ,

dRH

dt = αIH − (γ + µH)RH ,

dSM

dt = a(T,R)− ΛM (T,R)SM − µM (T,R)SM ,

dEM

dt = ΛM (T,R)SM − (κM + µM (T,R))EM ,

dIM
dt = κMEM − µM (T,R)IM ,



(4)

with the initial conditions: SH(0) > 0, SM (0) > 0, EH(0) ≥ 0, EM (0) ≥ 0, IH(0) ≥ 0, IM (0) ≥ 0,
and RH(0) ≥ 0.

Table 1: Model parameters and their corresponding descriptions

Parameters Description

θ human recruitment rate
α human recovery rate
η death rate due to disease per capita
γ rate of immunity loss per capita
bH likelihood of a susceptible person getting

infected from an infected bite
bM likelihood of a susceptible mosquito getting

infected from an infected person
µH human natural death rate per capita
µM (T,R) mosquito mortality rates dependent

on climatic conditions
a(T,R) rate at which aquatic mosquitoes

mature into adults
κH rate of progression for the exposed individuals
κM rate of progression for exposed mosquitoes
ϵ(T,R) mosquito biting rate.

The force of infection rates for humans (ΛH ) and mosquitoes (ΛM ), are defined, respectively, as
ΛH = ϵ(T,R)bHIM

NH
and ΛM = ϵ(T,R)bMIH

NH
, where

NH = SH + EH + IH +RH ,

and
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NM = SM + EM + IM .
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Figure 2: Mosquitoes biting rates as function of (T ) and (R).
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Figure 3: Evolution of mosquito cycles as function of (T ) and (R).
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2.1 Positivity of Solutions

Since the model monitors changes in the human population at all times, it is imperative to show all state
variables are positive. The analysis of the system (4) should be based on a feasible area of biological
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Figure 5: Normalized mosquito biting rate. The color gradient indicates variations in bite rate, with warmer colors
showing higher rates and cooler colors showing lower rates.

interest

Bf =
{
(SH , EH , IH , RH , SM , EM , IM ) ∈ R7 : SH + EH + IH +RH ≤ NH ,

SM + EM + IM ≤ NM

}
.

When the system (4) has non-negative initial data, the solution remains within the set Γ for all time
t > 0. This means that the set Bf is positively invariant. The following theorem can be derived from
this result.

Theorem 1. Consider the system defined in (4), assuming that the initial conditions for all t satisfy:

SH(0) > 0, EH(0) ≥ 0, IH(0) ≥ 0, RH(0) ≥ 0, SM (0) > 0, EM (0) ≥ 0, IM (0) ≥ 0,

then:

(1) The solution vector (SH(t), EH(t), IH(t), RH(t), SM (t), EM (t), IM (t)) remains positive for all
t > 0.

(2) limt→∞NH(t) = θ
µH

,

(3) if NH(0) ≤ θ
µH

, then NH(t) ≤ θ
µH

,

Consequently, the region Bf is positively invariant.

Proof. We will demonstrate this by contradiction. DefineX as a bounded set

X = {T ≥ 0|SH(t) > 0, EH(t) > 0, IH(t) > 0, RH(t) > 0 0 ≤ t ≤ T}. (5)

Let us denote the supremum of X as T . Given that the initial state variables for all T > 0,

SH(0) > 0, EH(0) > 0, IH(0) > 0, RH(0) > 0, SM (0) > 0, EM (0) > 0, andIM (0) > 0,

we follow the first equation in (4):

dSH

dt
= θ + γRH − ΛHSH − µHSH . (6)

Now, consider the function
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B(t) = exp
[
µHt+

∫ t

0

ΛH(s) ds

]
, (7)

where B(0) = 1. Consequently, we have

d

dt
[SH(t) ·B(t)] = ṠH(t) ·B(t) + SH(t) ·B(t) (µH + ΛH(t)) ,

= [θ + γRH(t)]B(t). (8)

This yields

SH(T ) ·B(T )− SH(0) ·B(0) =

∫ T

0

[θ + γRH(t)]B(t) dt. (9)

Thus, we can rewrite SH(T ) as

SH(T ) = B(T )−1

[
SH(0) +

∫ T

0

[θ + γRH(t)]B(t) dt

]
. (10)

Since B(T ) > 0, RH(t) > 0, and SH(0) ≥ 0, we conclude that SH(T ) > 0.
By utilizing a similar approach, it can be established that EH(t), IH(t), RH(t), SM (t), EM (t) and

IM (t) will also remain positive for t > 0. This finding contradicts the premise that T is the supremum
of X . Similarly, we conclude that the solutions SH(t), EH(t), IH(t), RH(t), SM (t), EM (t), and
IM (t) from the system described in (4) with non-negative initial conditions will continue to remain
non-negative for all times T > 0.

Since NH = SH + EH + IH +RH , the equations in (4) can be summed, yielding:

dNH

dt
= θ − µHNH .

Then, a standard principle [7], the following results are obtained:

NH(t) =
θ

µH
+

[
NH(0)− θ

µH

]
e−µt.

Therefore,

lim sup
t→∞

NH(t) =
θ

µH
,

In this context, N(0) denotes the initial value of N(t). It can be noted that if N(0) ≤ θ
µ , then N(t)

will also satisfyN(t) ≤ θ
µ as t approaches infinity. This indicates that θ

µ acts as an upper limit forN(t)

and, by extension, for all solutions of the system. Conversely, if N(0) > θ
µ , then N(t) will gradually

decrease to θ
µ as time progresses toward infinity, indicating that all solutions of the system ultimately

converge to θ
µ . In both scenarios,

θ
µ remains the upper bound for all solutions. From these findings, it is

clear that any solution beginning in the region Bf will stay within that region indefinitely. Additionally,
solutions that start near Bf will either enter the region immediately or approach it asymptotically over
time. Consequently, Bf is characterized as positively invariant and biologically significant in relation to
the flow dictated by the system (4). This ensure the invariance of X .
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2.2 The Basic Reproduction Number

To assess the model (4) stability, we analyze it as an autonomous system. We start by identifying both
trivial and nontrivial equilibrium points in the reduced system. The trivial point, referred to as the
disease-free equilibrium (DFE) and denoted by E0 (see more details in [4]), is obtained by setting all
infectious classes to zero in the system (4).

E0 =
( θ

µH
, 0, 0, 0;

a

µM
, 0, 0

)
.

The readers may note that the basic reproduction number, denoted as R0, represents the average
count of new infections generated when a contagious individual enters a population that is entirely sus-
ceptible to the disease [15]. Following the notation and approach used in [23], we will use a specific
method to calculate the basic reproduction numberR0 for the system (4). Consequently, the system (4)
can be rewritten as follows: Here’s a clearer and properly formatted version of your equations:{

Ad = f(Ad, As),

As = g(Ad, As),
(11)

where Ad = (EH , IH , RH , EM , IM )T are the infectious compartments and As = (SH , SM )T are the
disease free. Thus, the DFE of system (4) will be

A∗
0 =

(
A∗

d, A
∗
s

)
=

(
EH , IH , RH , EM , IM , SH , SM

)
=

(
0, 0, 0, 0, 0, θ/µH , a/µH

)
. (12)

According to [15, 19], determining the basic reproduction number requires only involves the com-
partments of infected individuals. Therefore, utilizing dAd

dt , the system can be expressed as

Ad = F(A)− V(A),

where

F(A) =



ϵbHIMSH

SH+EH+IH+RH

0

0
ϵbMIHSM

SH+EH+IH+RH

0

 , V(A) =


(κH + µH)EH

−κHEH + (µH + α+ η)IH

−αIH + (γ + µH)RH

(κM + µM )EM

−κMEM + µMIM

 . (13)

At DFE A∗
0, the Jacobian matrices F and V are as follows:

F =

[
∂Fi

∂Aj

∣∣∣∣
A∗

0

]
=


0 0 0 0 ϵbH

0 0 0 0 0

0 0 0 0 0

0 Γ1 0 0 0

0 0 0 0 0

 , and (14)



Farah, et al./ COAM, 10 (1), Winter-Spring (2025) 43

V =

[
∂Vi

∂Aj

∣∣∣∣
A∗

0

]
=


(κH + µH) 0 0 0 0

−κH (µH + α+ η) 0 0 0

0 −α (γ + µH) 0 0

0 0 0 (κM + µM ) 0

0 0 0 −κM µM

 . (15)

Hence,

V−1 =


Γ3 0 0 0 0

Γ4 Γ5 0 0 0

Γ2 Γ6 Γ7 0 0

0 0 0 1
kM+µM

0

0 0 0 κM

µM (kM+µM )
1

µM

 , and (16)

FV−1 =


0 0 0 Γ8 Γ9

0 0 0 0 0

0 0 0 0 0

Γ10 Γ11 0 0 0

0 0 0 0 0

 , (17)

where

Γ1 =
abH
µM

, Γ2 =
ακHκM + ακHµ

2
M

µM (κM + µM )(κH + µH)(µH + α+ η)(γ + µH)
,

Γ3 =
1

κH + µH
, Γ4 = − −γκH − κHµH

(κH + µH)(µH + α+ η)(γ + µH)
,

Γ5 =
1

µH + α+ η
, Γ6 = − −ακH − αµH

(γ + µH)(µH + α+ η)(κH + µH)
,

Γ7 =
1

γ + µH
, Γ8 =

abHκM
µM (κM + µM )

,

Γ9 =
ϵbH
µM

, Γ10 = − abH(−γκH − κHµH)

µM (γ + µH)(µH + κH)(µH + α+ η)
,

Γ11 = Γ1Γ5.

The basic reproduction number,R0, is defined as the spectral radius of the next-generation matrix:

R0 = ρ(FV−1)

=

√
ϵ2bHbMκHκMa

µM (µH + κH)(κM + µM )(µH + α+ η)
. (18)

Lemma 1. The disease-free equilibrium point, denoted asE0, for the system represented by (4) demon-
strates local stability whenR0 < 1 and exhibits instability whenR0 > 1.

2.3 Model Fitting

We used the SEIR-SEI model, as described in the system (4), to calibrate malaria cases in Sudan and
project the transmission of the infection over time, with a primary focus on Al-Jazeera state. Our analysis
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Figure 6: Basic reproduction number ( R0) as a function of temperature (T) and rainfall (R). The colormap
highlights variations inR0 under different environmental conditions.

utilized empirical data obtained from the National Malaria Control Program (NMCP) surveillance coor-
dinator at the Federal Ministry of Health (FMOH) in Sudan. This dataset encompasses weekly records
of infected individuals over five years, from 2018 to 2022 [24]. We recognize that the data collection
process may have inherent limitations, including potential reporting delays, underreporting of cases, and
inconsistencies stemming from variable access to healthcare and differences in record-keeping practices
across regions. Additionally, external factors such as environmental conditions and socio-economic in-
fluences may introduce biases that are challenging to quantify. To mitigate these issues, we validated
the data by modeling daily malaria case counts as a Poisson process with a reporting rate denoted by
γ. Given the incomplete collection rate, we assumed this reporting rate γ did not exceed 45%. With
Poisson observations and constant population size, we utilized the fitR package to fit our model using a
‘fitmodel‘ object, which stores relevant variables and functions. We successfully calibrated the model
to the initial dataset employing the maximum likelihood estimation method, as illustrated in Figure 7.

Table 2: Parameters values and references

Parameters Values Sources

µH 0.0000066 fitted data
µM 0.00006166 fitted data
ϵ 0.57 fitted data
bH 0.01 fitted data
bM 0.02 fitted data
θ 0.0089 fitted data
γ 0.127 fitted data
α 0.250 fitted data
κH 0.35 fitted data
κM 0.6 fitted data
η 0.00320 fitted data
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Figure 7: Fitting of Model (4), showing a comparison between the model assessment (represented by the red line)
and the data from Sudan (shown as a black dotted line). The parameter estimates obtained from the fitting process
are detailed in Table 2.

3 Sensitivity Analysis ofR0

Sensitivity analysis serves as an essential tool for identifying parameters that significantly influence
the dynamics of a system and, consequently, the potential effectiveness of various interventions. In
the preceding section, we examined the sensitivity of three parameters to temperature and rainfall. In
this section, we expand on this by conducting a sensitivity analysis to evaluate the impact of these key
parameters, along with others, on critical model outcomes, specifically focusing on their effect onR0.To
assess the model’s sensitivity, we compute the partial derivatives of the output variables with respect to
the input parameters, normalizing the results. For a given parameterm, the normalized sensitivity index
is defined as follows:

Φm
R0

=
∂R0

∂m
· m
R0

. (19)

The parameters impactingR0 in equation (18) in relation to climate include ϵ, and µM and a , while α,
bH , bM , κH , κM , and η are identified as a parameter that does not exhibit sensitivity to climatic factors.
The sensitivity indices for each of these parameters, calculated using formula (19) and illustrated in
Figure 8, are as follows:

Φϵ
R0

=
∂R0

∂ϵ
· ϵ

R0
, ΦµH

R0
=
∂R0

∂µH
· µH

R0
, ΦµM

R0
=
∂R0

∂µM
· µM

R0
, Φa

R0
=
∂R0

∂a
· a

R0
.

Following, those without climate effect are

ΦbH
R0

=
∂R0

∂bH
· bH
R0

, ΦbM
R0

=
∂R0

∂bM
· bM
R0

, ΦκH

R0
=
∂R0

∂κH
· κH
R0

, ΦκM

R0
=
∂R0

∂κM
· κM
R0

,

Φα
R0

=
∂R0

∂α
· α

R0
, Φη

R0
=
∂R0

∂η
· η

R0
.



46 Mathematical Modelling of Malaria Spread .../ COAM, 10 (1), Winter-Spring (2025)

This analysis provides a systematic framework for quantifying the effects of parameter variations on the
R0 and other critical outcomes. Using the aforementioned expression equation (19), we calculate the
sensitivity index ofR0 in relation to temperature and rainfall based on the parameter values presented in
Table 2. The results are visually represented in Figures (9, 10). Parameters exhibiting positive sensitivity
indices imply that reducing their values could effectively contribute to reducing malaria transmission.
Conversely, increasing the values of parameters with negative index may also help mitigate the spread
of the disease.
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Figure 8: Sensitivity indices of parameters relatedR0.

Analysis of these figures demonstrates that indicate that the sensitivity index of R0 in relation to
rainfall is not significantly influenced by temperature and tends to decrease as rainfall increases. In
contrast, the sensitivity index of R0 concerning temperature shows that as temperatures rise, the index
shifts from positive to negative once it exceeds 28.8◦C. This finding suggests that moderate increases
in temperature can enhance malaria transmission, while higher temperatures tend to suppress it. Addi-
tionally, the sensitivity index of R0 concerning temperature exhibits only slight changes when rainfall
levels vary.
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Figure 9: Sensitivity index of the basic reproduction number (R0) in relation to temperature (T). The graph shows
the impact of temperature fluctuations on the disease’s potential for transmission.
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Figure 10: The sensitivity index of the basic reproduction number (R0) concerning rainfall (R) is depicted in the
plot. It highlights the impact of varying rainfall patterns on disease transmission dynamics.

4 The Global Stability of Disease-Free Equilibrium

We examine the global stability of the DFE as follows.

Lemma 2. From (11), the system can be expressed as:

{
dAd

dt = f(Ad, As),
dAs

dt = g(Ad, As),
(20)

whereAd = (EH , IH , RH , EM , IM )T represents the infectious compartments including the recovering
population, and As = (SH , SM )

T corresponds to the disease-free compartments. Let A∗
0 = (A∗

s, 0)

denotes the DFE of the system. Assume the following conditions:

• C1: dAs

dt = f(As, 0), and A∗
s is globally asymptotically stable.

• C2: dAd

dt = g(As, Ad) = Ad − ĝ(As, Ad), where ĝ(As, Ad) ≥ 0 for (As, Ad) ∈ Γ.

The Jacobian matrix A = ∂g
∂Ad

(A∗
s, 0) is an M-matrix (Metzler matrix with non-negative diagonal ele-

ments). In the region Γ, the model is considered biologically plausible.

Theorem 2. The disease-free equilibrium point (E0) of the system (4) is globally asymptotically stable
ifR0 < 1.

Proof. Consider the model system (4), and let

As = (SH , SM )T and Ad = (EH , IH , RH , EM , IM )T .

Then

dAs

dt
= f(A∗

s, 0) =


θ − µHSH

0

0

η − µMSM

0

 . (21)
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As a result, condition C1 is clearly met. Next, we verify condition C2

AAd =


−(κH + µH) 0 0 0 0

κH −(µH + α+ η) 0 0 0

0 α −(γ + µH) 0 0

0 0 0 −(κM + µM ) 0

0 0 0 κM −µM




EH

IH

RH

EM

IM

 , (22)

It is evidently an M-matrix, characterized by positive off-diagonal elements. Now,

g(As, Ad) =


ΛHSH − (κH + µH)EH

κHEH − (µH + α+ η)IH

αIH − (γ + µH)RH

ΛMSM − (κM + µM )EM

κMEM − µMIM

 . (23)

From Lemma 2, we have
ĝ(As, Ad) = AAd − g(As, Ad),

yields

ĝ(As, Ad) =


−(κH + µH)EH

κHEH − (µH + α+ η)IH

αIH − (γ + µH)RH

−(κM + µM )EM

κMEM − µMIM

−


ΛHSH − (κH + µH)EH

κHEH − (µH + α+ η)IH

αIH − (γ + µH)RH

ΛMSM − (κM + µM )EM

κMEM − µMIM

 . (24)

Simplifying

ĝ(As, Ad) =


ΛHSH

0

0

ΛMSM

0

 . (25)

Since 0 ≤ SH ≤ SM ≤ N , we have ĝ(As, Ad) ≥ 0. As a result, condition C2 is met. Hence, the DFE
of the model is globally asymptotically stable wheneverR0 < 1.

5 Numerical Simulations

This section explores the complex interplay between climate change and malaria dynamics, highlight-
ing the importance of a robust mathematical model in guiding effective control measures and policy
decisions to mitigate the global impact of malaria. To investigate the impact of climatic variables on
malaria prevalence within a community, we utilize MATLAB solver ode45 to simulate the equations
in our system. Matlab offers a variety of built-in solvers for differential equations, which are partic-
ularly beneficial for initial value ordinary differential equation problems. Among these, ode45 stands
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out as a sophisticated and widely adopted function renowned for delivering highly accurate solutions.
This solver simultaneously employs fourth- and fifth-order Runge-Kutta methods, specifically using the
Dormand-Prince pair. As a one-step solver, ode45 is often the preferred choice for many problems, ef-
ficiently managing non-stiff equations. By default, it utilizes extended step sizes and calculates solution
values at four equally spaced points within each natural step interval.
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Figure 11: Malaria dynamics in the human population in the system (4) by varying the mosquito bite rate ϵ due
to climate dependence.
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In our research approach, we concurrently adjust multiple climate variables to evaluate the parameter
of interest (see Figures 3 and 4). In Figure 2, ϵ0 reflects the baseline biting rate, while β is a parameter that
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Figure 12: Malaria dynamics in the mosquito population in the system (4) through an examination of varying ϵ

due to climate dependence.
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Figure 13: Profile of infectious human population IH .

modulates the saturation effect, acknowledging the potential decrease in mosquito breeding habitats that
can occur with excessive rainfall. The accompanying color map effectively visualizes the fluctuations
in biting rate relative to varying temperature and rainfall scenarios. We also designate a specific climate
variable as a constant to gauge the impact of each parameter on the outcomes while averaging the effects
of the remaining variables (refer to Figure 5). This experimental framework is designed to identify
the parameters of greatest significance. By assuming a monotonic relationship between each parameter
and the number of preventions achieved, we can investigate these relationships through partial rank
correlations between each parameter and the number of infections averted. This experimental analysis
underscores the varying influences of different parameters on the efficacy of vector control strategies,
highlighting the critical roles of temperature and relative humidity in malaria transmission dynamics. We
observed that when the extrinsic incubation period (the time that a mosquito needs to become infectious
after feeding on an infected host) is shorter than the average lifespan of a mosquito, control efforts should
prioritize reducing the frequency of mosquito bites.

Our analysis spans a time frame from t = 0 to t = 100, revealing trends in the patterns illustrated
in Figures 11 and 12 for human and mosquito populations, respectively. The detailed parameters em-
ployed in these simulations are presented in Table 2. Through the analysis of simulations with diverse
parameter values, we have gleaned significant insights into the behavioral patterns and transmission dy-
namics of malaria in Sudan, particularly in light of environmental factors. This exploration highlights
the complex interplay between various ecological elements and malaria epidemiology, offering a deeper
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understanding of the disease’s spread and potential control measures. Data suggests that rainfall ex-
erts little influence on the survival rates of adult mosquitoes, whereas temperature significantly impacts
their longevity. These simulations corroborate our theoretical findings, emphasizing the relevance of
our proposed mathematical methodologies in advancing the understanding of malaria transmission and
informing effective control strategies. Our comprehensive numerical simulations have elucidated the
theoretical concepts, establishing a solid foundation for future investigations in this essential domain of
public health.

A qualitative examination of the malaria transmission model provided insights into the stability of
the disease-free equilibrium at both local and global scales, while also allowing for a detailed assessment
of equilibrium solutions through the computation of the basic reproduction number. Figure 13 illustrate
the effects of environmental factors, i.e., temperature and rainfall, on the dynamics of mosquito-borne
disease, with a particular focus on the infected human population over time. The study particularly
emphasizes the impact of rainfall and temperature variations on human transmission dynamics. The
findings reveal that the highest abundance of mosquitoes occurs within a temperature range of 25◦C and
30◦C and rainfall measurements between 120 and 150mm. Through simulations across different pa-
rameter ranges, we assessed the efficacy of various intervention strategies aimed at reducing the malaria
burden (see Figures 11 and 12).

The basic reproductive number on Figure 6 provides a basis for further refinement and prediction
of the effect of climate variability on the intensity of malaria transmission. We can see in Figure 8 the
impact for each parameter (positive sign and negative sign as mentioned above) inR0. Figures 9 and 10
show the sensitivity indexR0 concerning T and R. We observe that when the rainfall averages 50 mm,
temperatures below 35.7◦C lead to a proportional decrease in the disease transmission, with the disease
course declining as temperatures increase, reaching zero when the temperature reaches 32.6◦C. We also
note that when rainfall is around 90 or 110 mm, temperatures below 28.8◦C have a more positive effect.
Furthermore, as the temperature increases, the relative increase decreases to zero when the temperature
reaches 28.8◦C.

6 Concluding Remarks and Future Research Directions

This study has explored the critical link between climate change and malaria transmission in Sudan. The
findings indicates a concerning rise in malaria cases in recent years, with Sudan experiencing the heav-
iest burden among affected nations. Through the use of a deterministic mathematical model, we have
rigorously analyzed the complex interactions between climatic variables—particularly temperature and
rainfall— and the dynamics of malaria transmission. The results underscore the significant influence of
these environmental factors on the growth and distribution of malaria vectors, highlighting the necessity
for immediate actions to mitigate the adverse effects of climate change. By assessing the stability of
various equilibrium solutions under different scenarios, we have gained valuable insights into the re-
silience of malaria transmission patterns amid evolving climatic conditions. The calculation of the basic
reproduction number R� further illuminated how sensitive malaria transmission is to fluctuations in
temperature and rainfall. Simulation results, based on calibrated parameters, confirm the increasing role
of climate factors in shaping the epidemiological landscape of malaria. These findings emphasize the



52 Mathematical Modelling of Malaria Spread .../ COAM, 10 (1), Winter-Spring (2025)

importance of integrated strategies that combine climate change adaptation with robust malaria control
measures. Addressing the primary drivers of transmission—especially climate variability—will facili-
tate the development of more effective interventions to reduce disease burden. Looking forward, contin-
ued research and collaboration are essential for safeguarding public health and strengthening resilience
against the shifting malaria landscape in the context of climate change.

Future Research Scope

We intend to incorporate stochastic approaches alongside deterministic models to better capture the prob-
abilistic nature of transmission determinants, which are not always predictable through deterministic
frameworks. Depending on the data availability and research objectives, spatial modeling of disease
spread—either continuous or discrete—will be explored. This dual approach allows a deeper understand-
ing of the complex dynamics governing transmission and their impact on disease spread. Additionally,
spatial modeling techniques, whether continuous or discrete, can be augmented with artificial neural
networks, (e.g., see more in [14]) to analyze and predict disease spread more effectively, addressing the
multifaceted nature of transmission processes.
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