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1 Introduction

Financial institutions rely on credit rating models to inform their decision-making processes re-
lated to lending, investment, and risk management. Traditionally, these models are built using
various statistical and machine learning techniques. However, such approaches often require
extensive data and hinge on assumptions about data distribution. To address these limitations,
this study proposes an integrated Pythagorean fuzzy credit rating model that enhances deci-
sion accuracy under uncertainty. Accurate assessment of credit risk is essential for mitigating
potential losses and ensuring the stability and robustness of lending institutions. Traditional
credit risk models predominantly rely on deterministic, crisp inputs, which inadequately cap-
ture the inherent uncertainty and vagueness present in financial decision environments. Recent
advances in fuzzy logic and soft computing offer promising alternatives by accommodating
uncertainty and providing more nuanced predictive capabilities.

Zadeh [32] introduced fuzzy set (FS) theory as a practical and effective method for mod-
eling imprecision in multi-criteria decision analysis (MCDA) through membership functions
within the interval [0, 1]. Nonetheless, in real-world scenarios, the complexity of human sub-
jective assessments often prevents FSs from adequately representing assessment information.
To address this, Atanassov [4] proposed intuitionistic fuzzy sets (IFSs), which extend FSs by
incorporating both membership (MG) and non-membership (NMG) degrees.

In IFSs, assuming that 0 ≤ φ + ϱ ≤ 1, the MG and the NMG are represented by (φ, ϱ).
Recent research by Yager [29] expanded this framework to Pythagorean fuzzy sets (PFSs),
where the pair (φ, ϱ) must satisfy φ2 + ϱ2 ≤ 1, allowing for a broader range of uncertainty
representation. For example, withφ = 0.8 and ϱ = 0.3, these values form a valid PFS, whereas
they do not meet the stricter sum condition φ+ ϱ ≤ 1 required in IFSs. PFSs thus encompass
a larger scope compared to IFSs, making them more flexible for modeling complex, uncertain,
and imprecise real-world situations.

Several methods have been developed to measure the distance between PFSs. Hesamian
[13] proposed a distance measurement technique to fuzzy numbers, while Zhang and Xu [34]
considered only the membership, non-membership, and hesitation degrees—ignoring angles
and the richer structure of PFSs. Li and Zeng [18] introduced a distance measure that accounts
for membership, non-membership, level and direction of commitment, with further refinement
by Zeng et al. [33] to include hesitation degree. However, both approaches primarily derive
from IFSs and overlook the angular component of PFSs.

More recently, Wang et al. [28] presented a bidirectional projection model in PFSs that con-
siders both magnitude and angular distances. Yu et al. [31] proposed a distance measure based
on induced ordered weighted averaging (IOWA) operators, and Adak and Kumar [1] introduced
a spherical distance metric for PFSs, leveraging the triplet (φ, ϱ,ϖ) on the unit sphere, where
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ϖ =
√

1− φ2 − ϱ2. This approach situates PFSs on a spherical surface, capturing their full
geometric structure.

Building on this foundation, research has further explored the application of fuzzy set the-
ory in creditworthiness evaluations. For instance, Polishchuk et al. [24] enhanced fuzzy math-
ematical models to assess corporate creditworthiness, integrating linguistic terms and reflective
decision-maker reasoning. Setiawan and Prihatini [27] simplified loan application evaluations
by considering criteria such as loan amount, income, and collateral value. Makhazhanova et al.
[20] emphasized the importance of operational specifics and financial unpredictability in small
business credit assessments. To tackle these complexities and uncertainties involved, Roy and
Shaw [25] proposed an integrated fuzzy credit rating model utilizing fuzzy best-worst method
(fuzzy-BWM) for weighting factors and fuzzy-TOPSIS-Sort-C for ranking borrowers. Simi-
larly, Yang and Yang [30] introduced a hybrid fuzzy firefly optimization classification (FFOC)
system to improve credit evaluation accuracy. Addressing issues specific to Chinese coastal
cities in Pearl River Delta—such as centralized data, data forgery, and transmission delays—
Zhang et al. [35] developed a CDDC model based on fuzzy sets, while Chen et al. [9] designed
a credit risk assessment index for Chinese real estate firms using hesitant fuzzy linguistic word
sets and the PROMETHEE method.

Sartova et al. [26] proposed a creditworthiness evaluation model based on the Mamdani
fuzzy inference approach, which performs well for uncertain, incomplete , and qualitative data.
Similarly, Astuti et al. [3] applied the Mamdani fuzzy method to assess creditworthiness under
the Kredit Usaha Rakyat (KUR) program as implemented by Bank Rakyat Indonesia (BRI).
Biryukov et al. [7] introduced neural network models for managing bank loan portfolios, offer-
ing risk mitigation strategies even during dynamic financial changes and borrower instability.
Lastly, Krasavtseva [16] proposed innovative credit risk assessment methods, classifying spe-
cialized lending projects using logic- and language-based algorithms for classifying lending
projects, enhancing risk analysis.

Incorporating Pythagorean fuzzy sets into the TOPSIS method facilitates the handling of
inherent uncertainty and imprecision when evaluating credit risk. When making a choice that
takes into account more than one criterion, the TOPSIS technique might be helpful since it
compares potential solutions to the best and worst case scenarios. This paper aims to develop a
Pythagorean fuzzy TOPSIS framework for credit risk assessment, providing a robust decision-
making tool that accounts for multiple criteria and their associated uncertainties. To demon-
strate its practical utility, a case study is presented; comparing results obtained via relative
proximity and updated index methods.

The remainder of this paper is organized as follows: Section 2 discusses relevant operations
on Pythagorean fuzzy sets and various score functions. Section 3 elaborates on themathematical
formulation of spherical and normalized spherical distances between PFSs and PFSNs. Section
4 presents the credit risk assessment case study, analyzing factors such as credit history, credit
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mix credit utilization, credit history length, , income and employment stability etc., those are
important for creditworthiness. Section 5 integrate Pythagorean fuzzy sets with the TOPSIS
technique to address uncertainty in credit evaluation. Section 6 illustrates the application of
the proposed model through a numerical example. Finally, Section 7 concludes with summary
remarks.

2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts of intuitionistic and Pythagorean
fuzzy sets. Additionally, we introduce key score functions for Pythagorean fuzzy numbers that
are essential for the developments discussed in this paper.

Definition 1. [4] An intuitionistic fuzzy set (IFS) I in a universal set X is expressed as

I = {⟨ς, φI(ς), ϱI(ς)⟩ : ς ∈ X},

where φI : X → [0, 1], ϱI : X → [0, 1] denote the membership grade (MG) and non-
membership grade (NMG), respectively. They satisfy the condition 0 ≤ φI(ς) + ϱI(ς) ≤ 1,
for all ς ∈ X . The degree of Indeterminacy is given by πI(ς) = 1− φI(ς)− ϱI(ς).

Definition 2. [29] A Pythagorean fuzzy set (PFS) P in X is defined as

P = {⟨ς, φP (ς), ϱP (ς)⟩|ς ∈ X},

where φP (ς) : X → [0, 1] and ϱP (ς) : X → [0, 1] denote MG and NMG, respectively.
ThesesatisfythePythagoreancondition0 ≤ (φP (ς))

2 + (ϱP (ς))
2 ≤ 1. The indeterminacy

is ϖP (ς) =
√

1− (φP (ς))2 − (ϱP (ς))2, and the order pair (φ, ϱ) represents a Pythagorean
fuzzy number (PFN).

A visual representation of the spaces occupied by IFSs and PFSs is provided in Figure 1.
Yager introduced an alternative formulation for PFNs using a pair p = ⟨r, d⟩, where, r ∈

[0, 1] indicates the commitment strength, with higher values reflecting greater certainty and less
ambiguity. d represents the direction of commitment, linked to the degree of hesitancy. In this
representation, the components φ and ϱ relate to r and an angle θ via:

φ = r cos θ, ϱ = r sin θ,

with the angle d given by

d = 1− 2

π
θ.
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Figure 1: Spaces for IFSs and PFSs.

Example 1. Consider PFN p = ⟨0.6, 0.5⟩. Then, the parameters are computed as follows:

φp = 0.6, ϱp = 0.5, ϖp =
√

1− (0.6)2 − (0.5)2 = 0.39,

r =
√

(0.6)2 + (0.5)2 = 0.61, θ = arctan
(
0.5

0.6

)
= 0.695,

and
d = 1− 2× 0.695

π
= 0.557.

2.1 Operations on PFNs

Let p = ⟨φ, ϱ⟩, p1 = ⟨φ1, ϱ1⟩, and p2 = ⟨φ2, ϱ2⟩ be three PFNs. The following operations are
defined:

i. p̄ = ⟨ϱ, φ⟩,

ii. p1 ∪ p2 = ⟨max{φ1, φ2},min{ϱ1, ϱ2}⟩,

iii. p1 ∩ p2 = ⟨min{φ1, φ2},max{ϱ1, ϱ2}⟩.

In decision-making applications, ranking PFNs based on their MG and NMG is essential.
Several functions serve this purpose:

Definition 3. For p = ⟨φ, ϱ⟩, the score function s(p) is defined as:

s(p) = (φ)2 − (ϱ)2, (1)

where s(p) ∈ [−1, 1].
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Definition 4. The accuracy function a(p) for p = ⟨φ, ϱ⟩ is given by:

a(p) = (φ)2 + (ϱ)2, (2)

where h(p) ∈ [0, 1].

Definition 5. The modified accuracy function v(p) is expressed as:

v(p) =
1

2
+ r

(
d− 1

2

)
=

1

2
+ r

(
1

2
− 2θ

π

)
. (3)

3 Distance Measurement Methods for PFNs

In this section, we introduce various distance measurement techniques—namely, spherical, nor-
malized spherical, and weighted spherical distances— for PFSs and PFNs. These distance mea-
sure are integral to the proposed integrated TOPSIS framework.

3.1 Spherical Distance Measurement Method for PFNs

Let p = ⟨φ, ϱ⟩ be a PFN satisfying the condition 0 ≤ φ2 + ϱ2 ≤ 1, with the hesitancy degree
ϖ =

√
1− φ2 − ϱ2. Consequently, the relation φ2 + ϱ2 +ϖ2 = 1 holds, placing the triplet

(φ, ϱ,ϖ) on the surface of a unit sphere centered at the origin.
Assuming these parameters delineate a point on the spherical surface of unit radius, the

spherical distance between two points on this surface can be defined as follows:

Definition 6. [1] The spherical distance between two points A = (x1, y1, z1) and C =

(x2, y2, z2) on the same spherical surface is given by:

DSP (A,C) = arccos
{
1− 1

2

[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]}

. (4)

Incorporating this expression, the spherical distance between two PFNs p1 = ⟨φ1, ϱ1⟩ and
p2 = ⟨φ2, ϱ2⟩ (with associated hesitancy degreesϖ1 and ϖ2) is defined as:

Definition 7. [1] The spherical distance calculated as:

DSP (p1, p2) =
2

π
arccos

{
1− 1

2
[(φ1 − φ2)

2 + (ϱ1 − ϱ2)
2 + (ϖ1 −ϖ2)

2]

}
. (5)

The factor 2
π is introduced to obtain the distance value within the range [0, 1].

Given that φ2
i + ϱ2i +ϖ2

i = 1 for i = 1, 2, this expression can be simplified to:

DSP (p1, p2) =
2

π
arccos [φ1φ2 + ϱ1ϱ2 +ϖ1ϖ2] . (6)
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Figure 2: Spherical distance illustration.

Furthermore, when comparing sets of PFNs over the universe of discourseX = ς1, ς2, . . . , ςn,
the set-level spherical distances are defined as follows:

Definition 8. [1] For two PFN sets

P = {ςi, ⟨φP (ςi), ϱP (ςi)⟩ : ςi ∈ X},

and
Q = {ςi, ⟨φQ(ςi), ϱQ(ςi)⟩ : ςi ∈ X} ,

within the universe of discourse X = {ς1, ς2, . . . , ςn}. The spherical and normalized spherical
distances are given by:

• Spherical Distance:

DSP (P,Q) =
2

π

n∑
i=1

arccos [φP (ςi)φQ(ςi) + ϱP (ςi)ϱQ(ςi) +ϖP (ςi)ϖQ(ςi)] , (7)

where 0 ≤ DSP (P,Q) ≤ n.

• Normalized Spherical Distance:

DNSP (P,Q) =
2

nπ

n∑
i=1

arccos [φP (ςi)φQ(ςi) + ϱP (ςi)ϱQ(ςi) +ϖP (ςi)ϖQ(ςi)] , (8)

where 0 ≤ DNSP (P,Q) ≤ 1.

Example 2. Let p1 = ⟨0.9, 0.2⟩ and p2 = ⟨0.7, 0.3⟩ be two PFNs. Their spherical distance is
computed as:
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Definition 9. Given two sets of PFNs: P1 = (φ1j , ϱ1j), P2 = (φ2j , ϱ2j), j = 1, 2, . . . , n, be
two sets of PFNs, with criteria weights w = (w1, w2, . . . , wn)

T such that 0 ≤ wi ≤ 1 and
n∑

i=1
wi = 1, the weighted normalized spherical distance is defined as:

D′
NSP (P1, P2) =

2

nπ

n∑
j=1

wj arccos [φ1jφ2j + ϱ1jϱ2j +ϖ1jϖ2j ] . (9)

Example 3. Suppose
P1 = {⟨0.6, 0.3⟩, ⟨0.8, 0.2⟩, ⟨0.5, 0.4⟩},

and

P2 = {⟨0.7, 0.2⟩, ⟨0.7, 0.3⟩, ⟨0.9, 0.1⟩},

with weights w = {0.2, 0.5, 0.3}. The weighted distance computes as:

D′
NSP (P1, P2) =

2

3π

[
0.2× arccos

(
(0.6× 0.7) + (0.3× 0.2) + (

√
1− 0.62 − 0.32 ×

√
1− 0.72 − 0.22)

)
+ 0.5× arccos

(
(0.8× 0.7) + (0.2× 0.3) + (

√
1− 0.82 − 0.22 ×

√
1− 0.72 − 0.32)

)
+ 0.3× arccos

(
(0.5× 0.9) + (0.4× 0.1) + (

√
1− 0.52 − 0.42 ×

√
1− 0.92 − 0.12)

)]
= 0.0499.

4 Case Study

Creditworthiness refers to the capacity of a borrower to fulfill debts and loanobligations punc-
tually. It serves as an indicator of the individual’s credibility and reliability in managing credit-
related responsibilities. The assessment of creditworthiness involves analyzing multiple fac-
tors, including:

i. Payment history reflects an individual’s record of settling credit accounts, loans, and other
debts. It constitutes a fundamental element of credit reports and credit scores, accounting
for approximately 35% of the overall score. This indicator encompasses data such as:

• Bankruptcies and foreclosures,

• Missed or late payments (including frequency and duration),

• Accounts transferred to collections,

• Consistent on-time payments.
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A positive payment history is characterized by timely payments, absence of late or
missed payments, and no collections or bankruptcies. Conversely, a poor record in-
volves frequent delays or missed payments, collections, and negative credit events such
as bankruptcies. To uphold a strong payment history, borrowers are advised to make
punctual payments, utilize reminders or automate transactions, and communicate proac-
tively with lenders regarding any financial difficulties. An exemplary payment history
demonstrates financial responsibility and can enhance credit scores, while a negative
record may adversely impact future credit access.

ii. Credit utilization or the utilization ratio, measures the proportion of credit relative to the
total available credit line. It is computed as:

Credit Utilization Ratio =

(
Total Outstanding Credit Balance

Total Credit Limit

)
× 100.

This metric is pivotal in credit scoring models, indicating the borrower’s management
of credit. Optimal utilization levels are generally considered below 30%, categorized
as good, while ratios between 30% and 50% are fair, and exceeding 50% is deemed
poor. Maintaining a low utilization ratio demonstrates responsible credit behavior and
can positively influence credit scores.

iii. Credit history length:
The duration of an individual’s credit activity, often referred to as the length of credit
history, accounts for approximately 15% of the credit score. It considers factors such as:

• The average age of all credit accounts,

• The age of the oldest account,

• T he overall length of credit history.

A more extended credit history typically suggests experience in managing credit respon-
sibly, indicating stability. Shorter histories may imply limited experience and are often
viewed less favorably by lenders due to perceived higher risk. Longer credit histories
tend to correlate with greater financial stability and better credit scores.

iv. Credit mix, also known as credit diversity, refers to the variety of credit types held by an
individual, including:

• Credit cards,

• Installment loans (e.g., personal loans, mortgages, car loans),

• Revolving credit (e.g., lines of credit, home equity loans),

• Open credit accounts (e.g., utility bills, rent).
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A diversified credit profile demonstrates the borrower’s ability to handle different types of
credit responsibly, reducing perceived risk. Limited diversitymight indicate inexperience
with various credit forms, which can negatively influence credit evaluations. A well-
managed, diverse credit portfolio supports a higher credit score.

v. Credit Inquiries:
Inquiries refer to the instances where lenders or creditors access a borrower’s credit report
in the past two years. They are categorized as:

• Soft inquiries: Do not impact credit scores and include checks made by borrowers
themselves, pre-approval assessments, and employment background verifications.

• Hard inquiries: Can temporarily reduce credit scores and occur when applying for
new credit products, such as loans, credit cards, or mortgages.

While inquiries, especially hard ones, can influence credit scores slightly, their impact is
generally minor compared to factors like payment history and utilization.

vi. Income and Employment Stability:
Income levels and employment stability are critical in credit risk evaluation, as they re-
flect the borrower’s capacity to meet ongoing obligations. Factors considered include:

• Income amount and consistency over time,

• Income growth or decline,

• Duration of current employment,

• Employment stability and industry stability,

• Job history and frequency of transitions.

Demonstrating consistent employment and sufficient income bolsters confidence in the
borrower’s repayment ability.

vii. Debt-to-income ratio:
The Debt-to-Income (DTI) ratio compares monthly debt obligations to gross monthly
income and is a significant indicator of financial health. It is calculated as:

DTI ratio =
Total Monthly Debt Payments

Gross Monthly Income
.

Lower DTI ratios are favored, as they suggest better capacity to service debt, thereby
improving the likelihood of loan approval.
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4.1 Linguistic Variables in Terms of PFNs

Decision-makers have translated linguistic assessments into PFNs to quantitatively estimate
customer performance across various criteria.

Figure 3 illustrates the relationship between evaluation criteria and their corresponding lin-
guistic variables:

Figure 3: Criteria and linguistic variable.

Table 1 presents the linguistic concepts expressed through PFNs:

Table 1: Linguistic concepts expressed through PFNs

Linguistic Term PFNs
Outstanding ⟨0.98, 0.20⟩
Superb ⟨0.87, 0.35⟩
Highly commendable ⟨0.70, 0.40⟩
Commendable ⟨0.65, 0.45⟩
Satisfying ⟨0.50, 0.55⟩
Acceptable ⟨0.40, 0.70⟩
Partly Acceptable ⟨0.36, 0.80⟩
Inadequate ⟨0.25, 0.87⟩
Highly Inadequate ⟨0.20, 0.98⟩

Table 1 demonstrates how decision-makers assign linguistic evaluations to each customer
across different criteria, utilizing the PFNs specified above.
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5 Methodology

This section presents a multi-criteria decision-making issue using information represented by
PFNs and use the spherical distance measurement approach for resolution. For each criterion
and alternative, construct a decision matrix using PFSs. Each entry of matrix represents mem-
bership and non-membership grade of each alternative concerning each criterion.

LetA = {A1,A2, . . . ,Am}, wherem ≥ 2 and Γ = {Γ1,Γ2, . . . ,Γn}, with n ≥ 2, denote
set of alternatives and criteria respectively. Weight w = (w1, w2, . . . , wn)

T with 0 ≤ wi ≤ 1

for all i, satisfies
n∑

i=1
wi = 1.

Let the PFNs ⟨φij , ϱij⟩ represent the assessment value of i-th alternative and j-th criterion,
such that Γj(ςi) = ⟨φij , ϱij⟩. Additionally, R = (Γj(ςi))m×n, where

R =


⟨φ11, ϱ11⟩ ⟨φ12, ϱ12⟩ · · · ⟨φ1n, ϱ1n⟩
⟨φ21, ϱ21⟩ ⟨φ22, ϱ22⟩ · · · ⟨φ2n, ϱ2n⟩

· · · · · · · · · · · ·
⟨φm1, ϱm1⟩ ⟨φm2, ϱm2⟩ · · · ⟨φmn, ϱmn⟩

 .

5.1 Process of the Proposed Method

To addressmulti-criteria decisionmaking (MCDM) problems under a Pythagorean fuzzy frame-
work, we propose a Pythagorean fuzzy TOPSIS technique. The fundamental principle of TOP-
SIS is that the optimal alternative should be closest to the positive ideal solution (PIS) while
simultaneously while being farthest from the negative ideal solution (NIS).

This approach involves the computation of the Pythagorean fuzzy positive ideal solution
(PFPIS) and the Pythagorean fuzzy negative ideal solution (PFNIS). Let J1 and J2 denote the
sets of benefit criteria and cost criteria respectively. The determination of PFPIS and PFNIS is
performed utilizing a modified accuracy function v(p). We denote the PFPIS and PFNIS as ς+

and ς−, respectively, calculated as follows:

ς+ =

{
Γj = maxi S(Γj(ςi)) for j ∈ J1,

Γj = mini S(Γj(ςi) for j ∈ J2,
(10)

ς− =

{
Γj = maxi S(Γj(ςi)) for j ∈ J1,

Γj = mini S(Γj(ςi)) for j ∈ J2.
(11)

Subsequently, the distances of each alternative ςi from PFPIS and PFNIS are computed as:

DNSP (ςi, ς
+) and DNSP (ςi, ς

−),
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using the formulas below, derived from the normalized Pythagorean fuzzy similarity measure:

DNSP (ςi, ς
+) =

n∑
j=1

DNSP (Γj(ςi),Γj(ς
+))

=
2

nπ

n∑
j=1

wj arccos(φijφ
+
j + ϱijϱ

+
j +ϖijϖ

+
j ), i = 1, 2, . . . , n. (12)

DNSP (ςi, ς
−) =

n∑
j=1

DNSP (Γj(ςi),Γj(ς
−))

=
2

nπ

n∑
j=1

wj arccos(φijφ
−
j + ϱijϱ

−
j +ϖijϖ

−
j ), i = 1, 2, . . . , n. (13)

where a smaller value of DNSP (ςi, ς
+) indicates a preferable alternative, and conversely, a

largerDNSP (ςi, ς
−) is desirable for the negative ideal. We define the minimum and maximum

distances across all alternatives as:

Dmin(ςi, ς
+) = min

{
DNSP (ςi, ς

+) : i = 1, 2, . . . , n
}
,

Dmax(ςi, ς
+) = maxDNSP

{
(ςi, ς

+) : i = 1, 2, . . . , n
}
.

The relative closeness coefficient, RC(ςi), of each alternative with respect to PFPIS and
PFNIS is then computed as per the classical TOPSIS approach:

RC(ςi) =
DNSP (ςi, ς

−)

DNSP (ςi, ς+) +DNSP (ςi, ς−)
. (14)

A higher value ofRC(ςi) signifies a preferable alternative, as it indicates greater proximity
to the PIS and distance from the NIS.

To further refine the ranking, Zhang and Xu [34] proposed a modified index ξ(ςi), defined
as:

ξ(ςi) =
DNSP (ςi, ς

−)

Dmax(ςi, ς−)
− DNSP (ςi, ς

+)

Dmin(ςi, ς+)
. (15)

Based on either RC(ςi) or ξ(ςi), the alternatives are ranked, with the optimal choice being the
one that maximizes these values.

5.2 Algorithm for Proposed Method

The traditional TOPSIS method, as introduced by Hwang and Yoon [14], serves as a foun-
dational and effective approach for addressing MCDM problems involving precise numerical



In
Pr
es
s

14 Pythagorean Fuzzy Sets for Credit Risk Assessment ...

data. Building upon this, Zhang and Xu [34] proposed an enhanced version of TOPSIS tailored
to handle MCDM challenges involving the Pythagorean fuzzy data. The approach involves the
following key steps:

Step 1. In addressing an MCDM problem involving PFNs, the first step is to construct the de-
cision matrix R = (Γj(ςi))m×n. Here, Γj(ςi) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,
represents the evaluation of ςi in relation to criterion Γj .

Step 2. A new scoring function is employed to ascertain determine the PFPIS denoted by (ς+)
and the PFNIS denoted by (ς−).

Step 3. Utilizing Equations (12) and (13), compute the weighted spherical distances of each al-
ternative ςi relative to both the PFPIS (ς+) and the PFNIS (ς−).

Step 4. Apply Equations (14) and (15) to calculate the relative closenessRC(ςi) and themodified
closeness measure ξ(ςi) for each alternative ςi.

Step 5. Rank the options based on the descending order of the relative proximity RC(ςi) and
ξ(ςi). The highest value indicates the most preferable alternative, with greater RC(ςi)

corresponding to a more favorable ςi where i = 1, 2, . . . ,m.

6 Illustrative Example

For a practical application, suppose you are evaluating several loan applicants based on criteria
such aspayment history (Γ1), credit utilization (Γ2), credit history length (Γ3), credit mix (Γ4),
inquiries (Γ5), income and employment stability (Γ6), debt to income ratio (Γ7). By applying
the TOPSIS method with Pythagorean fuzzy sets, rank these applicants more effectively, ac-
counting for the inherent uncertainty in their financial profiles and improving the accuracy of
the credit risk assessment.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

ς1 ⟨.8, .3⟩ ⟨.4, .7⟩ ⟨.7, .5⟩ ⟨.6, .4⟩ ⟨.3, .7⟩ ⟨.8, .4⟩ ⟨.5, .6⟩
ς2 ⟨.7, .4⟩ ⟨.5, .6⟩ ⟨.9, .3⟩ ⟨.8, .4⟩ ⟨.5, .8⟩ ⟨.7, .6⟩ ⟨.6, .5⟩
ς3 ⟨.9, .2⟩ ⟨.3, .6⟩ ⟨.8, .5⟩ ⟨.7, .4⟩ ⟨.5, .5⟩ ⟨.8, .5⟩ ⟨.4, .7⟩
ς4 ⟨.8, .4⟩ ⟨.4, .8⟩ ⟨.6, .4⟩ ⟨.9, .3⟩ ⟨.3, .8⟩ ⟨.6, .5⟩ ⟨.6, .6⟩
ς5 ⟨.7, .5⟩ ⟨.3, .9⟩ ⟨.7, .5⟩ ⟨.8, .4⟩ ⟨.4, .7⟩ ⟨.7, .5⟩ ⟨.4, .8⟩

where for ς1 and criterion Γ1 the membership degree is .8 and the non-membership degree is
.3.
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Considering that payment history, credit history length, credit mix, income and employment
stability as benefit criteria J1 = {Γ1,Γ3,Γ4,Γ6} and credit utilization, inquiries, debt to income
ratio are as the cost criteria J2 = {Γ2,Γ5,Γ7}.

Modified accuracy function v(p) is used to calculate score type PFPIS (ς+) and PFNIS
(ς−), we utilize formula (10) and (11). The values are

ς+ = {⟨.5, .8⟩, ⟨.7, .2⟩, ⟨.6, .2⟩, ⟨.9, .2⟩}

ς− = {⟨.7, .3⟩, ⟨.5, .8⟩, ⟨.5, .4⟩, ⟨.5, .3⟩}

Next, utilize equation (12) and DNSP of each alternatives ςi from PFPIS and PFNIS as

DNSP (ςi, ς
+) DNSP (ςi, ς

−)

ς1 .0590 .0554

ς2 .0593 .0475

ς3 .0561 .0475

ς4 .0712 .0359

ς5 .0290 .0742

Equation (14) and (15) used to calculate RC(ςi) and ξ(ςi) listed bellow:

RC(ςi) (Rank) ξ(ςi)(Rank)
ς1 .4842(2) −1.2878(3)

ς2 .4447(4) −1.4046(4)

ς3 .4642(3) −1.2794(2)

ς4 .3352(5) −1.9713(5)

ς5 .7189(1) 0(1)

Based on RC(ςi) rank of the alternatives are ς5 ≻ ς1 ≻ ς3 ≻ ς2 ≻ ς4 and ς5 is the best
alternative. With respect to ξ(ςi) ranking of the alternatives are ς5 ≻ ς3 ≻ ς1 ≻ ς2 ≻ ς4. Here
also, the best alternative is ς5.

7 Conclusion

The proposed Pythagorean fuzzy set (PFS)-based model offers several significant advance-
ments over traditional credit risk assessment methods. Primarily, it enhances predictive ac-
curacy by providing a more flexible and sophisticated framework for handling uncertainty,
accommodating the nuanced nature of financial judgments. Furthermore, it bolsters the robust-
ness of the credit scoring process by integrating a wider spectrum of information, thereby more
effectively capturing the complexity inherent in real-world financial Environments. The in-
corporation of Pythagorean fuzzy sets into credit risk evaluation not only advances theoretical
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understanding but also yields tangible benefits for practical financial decision-making. Fu-
ture research should aim to further refining this model and exploring its applicability across
diverse financial sectors and datasets. Additionally, exploring hybrid approaches—combining
PFS with other machine learning techniques—may present avenues for achieving even greater
improvements in the accuracy and reliability of credit risk predictions.
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