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1 Introduction

Financial institutions rely on credit rating models to inform their decision-making processes related to
lending, investment, and risk management. Traditionally, these models are built using various statistical
and machine learning techniques. However, such approaches often require extensive data and hinge
on assumptions about data distribution. To address these limitations, this study proposes an integrated
Pythagorean fuzzy credit rating model that enhances decision accuracy under uncertainty. Accurate
assessment of credit risk is essential for mitigating potential losses and ensuring the stability and robust-
ness of lending institutions. Traditional credit risk models predominantly rely on deterministic, crisp
inputs, which inadequately capture the inherent uncertainty and vagueness present in financial decision
environments. Recent advances in fuzzy logic and soft computing offer promising alternatives by ac-
commodating uncertainty and providing more nuanced predictive capabilities.

Zadeh [32] introduced fuzzy set (FS) theory as a practical and effective method for modeling im-
precision in multi-criteria decision analysis (MCDA) through membership functions within the inter-
val [0, 1]. Nonetheless, in real-world scenarios, the complexity of human subjective assessments often
prevents FSs from adequately representing assessment information. To address this, Atanassov [4] pro-
posed intuitionistic fuzzy sets (IFSs), which extend FSs by incorporating both membership (MG) and
non-membership (NMG) degrees.

In IFSs, assuming that 0 ≤ φ + ϱ ≤ 1, the MG and the NMG are represented by (φ, ϱ). Recent
research by Yager [29] expanded this framework to Pythagorean fuzzy sets (PFSs), where the pair (φ, ϱ)
must satisfy φ2+ ϱ2 ≤ 1, allowing for a broader range of uncertainty representation. For example, with
φ = 0.8 and ϱ = 0.3, these values form a valid PFS, whereas they do not meet the stricter sum condition
φ+ ϱ ≤ 1 required in IFSs. PFSs thus encompass a larger scope compared to IFSs, making them more
flexible for modeling complex, uncertain, and imprecise real-world situations.

Several methods have been developed to measure the distance between PFSs. Hesamian [13] pro-
posed a distance measurement technique to fuzzy numbers, while Zhang and Xu [34] considered only
the membership, non-membership, and hesitation degrees—ignoring angles and the richer structure of
PFSs. Li and Zeng [18] introduced a distance measure that accounts for membership, non-membership,
level and direction of commitment, with further refinement by Zeng et al. [33] to include hesitation
degree. However, both approaches primarily derive from IFSs and overlook the angular component of
PFSs.

More recently, Wang et al. [28] presented a bidirectional projection model in PFSs that considers
both magnitude and angular distances. Yu et al. [31] proposed a distance measure based on induced
ordered weighted averaging (IOWA) operators, and Adak and Kumar [1] introduced a spherical distance
metric for PFSs, leveraging the triplet (φ, ϱ,ϖ) on the unit sphere, where ϖ =

√
1− φ2 − ϱ2. This

approach situates PFSs on a spherical surface, capturing their full geometric structure.

Building on this foundation, research has further explored the application of fuzzy set theory in
creditworthiness evaluations. For instance, Polishchuk et al. [24] enhanced fuzzy mathematical models
to assess corporate creditworthiness, integrating linguistic terms and reflective decision-maker reason-
ing. Setiawan and Prihatini [27] simplified loan application evaluations by considering criteria such as
loan amount, income, and collateral value. Makhazhanova et al. [20] emphasized the importance of
operational specifics and financial unpredictability in small business credit assessments. To tackle these
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complexities and uncertainties involved, Roy and Shaw [25] proposed an integrated fuzzy credit rating
model utilizing fuzzy best-worst method (fuzzy-BWM) for weighting factors and fuzzy-TOPSIS-Sort-
C for ranking borrowers. Similarly, Yang and Yang [30] introduced a hybrid fuzzy firefly optimiza-
tion classification (FFOC) system to improve credit evaluation accuracy. Addressing issues specific
to Chinese coastal cities in Pearl River Delta—such as centralized data, data forgery, and transmission
delays—Zhang et al. [35] developed a CDDC model based on fuzzy sets, while Chen et al. [9] designed
a credit risk assessment index for Chinese real estate firms using hesitant fuzzy linguistic word sets and
the PROMETHEE method.

Sartova et al. [26] proposed a creditworthiness evaluation model based on the Mamdani fuzzy infer-
ence approach, which performs well for uncertain, incomplete , and qualitative data. Similarly, Astuti
et al. [3] applied the Mamdani fuzzy method to assess creditworthiness under the Kredit Usaha Rakyat
(KUR) program as implemented by Bank Rakyat Indonesia (BRI). Biryukov et al. [7] introduced neural
network models for managing bank loan portfolios, offering risk mitigation strategies even during dy-
namic financial changes and borrower instability. Lastly, Krasavtseva [16] proposed innovative credit
risk assessment methods, classifying specialized lending projects using logic- and language-based algo-
rithms for classifying lending projects, enhancing risk analysis.

Incorporating Pythagorean fuzzy sets into the TOPSIS method facilitates the handling of inherent
uncertainty and imprecision when evaluating credit risk. When making a choice that takes into account
more than one criterion, the TOPSIS technique might be helpful since it compares potential solutions to
the best and worst case scenarios. This paper aims to develop a Pythagorean fuzzy TOPSIS framework
for credit risk assessment, providing a robust decision-making tool that accounts for multiple criteria and
their associated uncertainties. To demonstrate its practical utility, a case study is presented; comparing
results obtained via relative proximity and updated index methods.

The remainder of this paper is organized as follows: Section 2 discusses relevant operations on
Pythagorean fuzzy sets and various score functions. Section 3 elaborates on the mathematical formula-
tion of spherical and normalized spherical distances between PFSs and PFSNs. Section 4 presents the
credit risk assessment case study, analyzing factors such as credit history, credit mix credit utilization,
credit history length, , income and employment stability etc., those are important for creditworthiness.
Section 5 integrate Pythagorean fuzzy sets with the TOPSIS technique to address uncertainty in credit
evaluation. Section 6 illustrates the application of the proposed model through a numerical example.
Finally, Section 7 concludes with summary remarks.

2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts of intuitionistic and Pythagorean fuzzy
sets. Additionally, we introduce key score functions for Pythagorean fuzzy numbers that are essential
for the developments discussed in this paper.

Definition 1. [4] An intuitionistic fuzzy set (IFS) I in a universal set X is expressed as

I = {⟨ς, φI(ς), ϱI(ς)⟩ : ς ∈ X},
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where φI : X → [0, 1], ϱI : X → [0, 1] denote the membership grade (MG) and non-membership grade
(NMG), respectively. They satisfy the condition 0 ≤ φI(ς) + ϱI(ς) ≤ 1, for all ς ∈ X . The degree of
Indeterminacy is given by πI(ς) = 1− φI(ς)− ϱI(ς).

Definition 2. [29] A Pythagorean fuzzy set (PFS) P in X is defined as

P = {⟨ς, φP (ς), ϱP (ς)⟩|ς ∈ X},

whereφP (ς) : X → [0, 1] and ϱP (ς) : X → [0, 1] denoteMGandNMG, respectively. ThesesatisfythePythagoreancondition0 ≤
(φP (ς))

2 + (ϱP (ς))
2 ≤ 1. The indeterminacy is ϖP (ς) =

√
1− (φP (ς))2 − (ϱP (ς))2, and the order

pair (φ, ϱ) represents a Pythagorean fuzzy number (PFN).

A visual representation of the spaces occupied by IFSs and PFSs is provided in Figure 1.

Figure 1: Spaces for IFSs and PFSs.

Yager introduced an alternative formulation for PFNs using a pair p = ⟨r, d⟩, where, r ∈ [0, 1]

indicates the commitment strength, with higher values reflecting greater certainty and less ambiguity.
d represents the direction of commitment, linked to the degree of hesitancy. In this representation, the
components φ and ϱ relate to r and an angle θ via:

φ = r cos θ, ϱ = r sin θ,

with the angle d given by
d = 1− 2

π
θ.

Example 1. Consider PFN p = ⟨0.6, 0.5⟩. Then, the parameters are computed as follows:

φp = 0.6, ϱp = 0.5, ϖp =
√

1− (0.6)2 − (0.5)2 = 0.39,

r =
√
(0.6)2 + (0.5)2 = 0.61, θ = arctan

(
0.5

0.6

)
= 0.695,

and
d = 1− 2× 0.695

π
= 0.557.
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2.1 Operations on PFNs

Let p = ⟨φ, ϱ⟩, p1 = ⟨φ1, ϱ1⟩, and p2 = ⟨φ2, ϱ2⟩ be three PFNs. The following operations are defined:

i. p̄ = ⟨ϱ, φ⟩,

ii. p1 ∪ p2 = ⟨max{φ1, φ2},min{ϱ1, ϱ2}⟩,

iii. p1 ∩ p2 = ⟨min{φ1, φ2},max{ϱ1, ϱ2}⟩.

In decision-making applications, ranking PFNs based on their MG and NMG is essential. Several
functions serve this purpose:

Definition 3. For p = ⟨φ, ϱ⟩, the score function s(p) is defined as:

s(p) = (φ)2 − (ϱ)2, (1)

where s(p) ∈ [−1, 1].

Definition 4. The accuracy function a(p) for p = ⟨φ, ϱ⟩ is given by:

a(p) = (φ)2 + (ϱ)2, (2)

where h(p) ∈ [0, 1].

Definition 5. The modified accuracy function v(p) is expressed as:

v(p) =
1

2
+ r

(
d− 1

2

)
=

1

2
+ r

(
1

2
− 2θ

π

)
. (3)

3 Distance Measurement Methods for PFNs

In this section, we introduce various distance measurement techniques—namely, spherical, normalized
spherical, and weighted spherical distances— for PFSs and PFNs. These distance measure are integral
to the proposed integrated TOPSIS framework.

3.1 Spherical Distance Measurement Method for PFNs

Let p = ⟨φ, ϱ⟩ be a PFN satisfying the condition 0 ≤ φ2 + ϱ2 ≤ 1, with the hesitancy degree ϖ =√
1− φ2 − ϱ2. Consequently, the relation φ2 + ϱ2 +ϖ2 = 1 holds, placing the triplet (φ, ϱ,ϖ) on the

surface of a unit sphere centered at the origin.
Assuming these parameters delineate a point on the spherical surface of unit radius, the spherical

distance between two points on this surface can be defined as follows:
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Figure 2: Spherical distance illustration.

Definition 6. [1] The spherical distance between two points A = (x1, y1, z1) and C = (x2, y2, z2) on
the same spherical surface is given by:

DSP (A,C) = arccos
{
1− 1

2

[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
]}

. (4)

Incorporating this expression, the spherical distance between two PFNs p1 = ⟨φ1, ϱ1⟩ and p2 =

⟨φ2, ϱ2⟩ (with associated hesitancy degrees ϖ1 and ϖ2) is defined as:

Definition 7. [1] The spherical distance calculated as:

DSP (p1, p2) =
2

π
arccos

{
1− 1

2
[(φ1 − φ2)

2 + (ϱ1 − ϱ2)
2 + (ϖ1 −ϖ2)

2]

}
. (5)

The factor 2
π is introduced to obtain the distance value within the range [0, 1].

Given that φ2
i + ϱ2i +ϖ2

i = 1 for i = 1, 2, this expression can be simplified to:

DSP (p1, p2) =
2

π
arccos [φ1φ2 + ϱ1ϱ2 +ϖ1ϖ2] . (6)

Furthermore, when comparing sets of PFNs over the universe of discourse X = ς1, ς2, . . . , ςn, the
set-level spherical distances are defined as follows:

Definition 8. [1] For two PFN sets

P = {ςi, ⟨φP (ςi), ϱP (ςi)⟩ : ςi ∈ X},

and
Q = {ςi, ⟨φQ(ςi), ϱQ(ςi)⟩ : ςi ∈ X} ,

within the universe of discourseX = {ς1, ς2, . . . , ςn}. The spherical and normalized spherical distances
are given by:

• Spherical Distance:
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DSP (P,Q) =
2

π

n∑
i=1

arccos [φP (ςi)φQ(ςi) + ϱP (ςi)ϱQ(ςi) +ϖP (ςi)ϖQ(ςi)] , (7)

where 0 ≤ DSP (P,Q) ≤ n.

• Normalized Spherical Distance:

DNSP (P,Q) =
2

nπ

n∑
i=1

arccos [φP (ςi)φQ(ςi) + ϱP (ςi)ϱQ(ςi) +ϖP (ςi)ϖQ(ςi)] , (8)

where 0 ≤ DNSP (P,Q) ≤ 1.

Example 2. Let p1 = ⟨0.9, 0.2⟩ and p2 = ⟨0.7, 0.3⟩ be two PFNs. Their spherical distance is computed
as:

Definition 9. Given two sets of PFNs: P1 = (φ1j , ϱ1j), P2 = (φ2j , ϱ2j), j = 1, 2, . . . , n, be two sets

of PFNs, with criteria weights w = (w1, w2, . . . , wn)
T such that 0 ≤ wi ≤ 1 and

n∑
i=1

wi = 1, the

weighted normalized spherical distance is defined as:

D′
NSP (P1, P2) =

2

nπ

n∑
j=1

wj arccos [φ1jφ2j + ϱ1jϱ2j +ϖ1jϖ2j ] . (9)

Example 3. Suppose
P1 = {⟨0.6, 0.3⟩, ⟨0.8, 0.2⟩, ⟨0.5, 0.4⟩},

and
P2 = {⟨0.7, 0.2⟩, ⟨0.7, 0.3⟩, ⟨0.9, 0.1⟩},

with weights w = {0.2, 0.5, 0.3}. The weighted distance computes as:

D′
NSP (P1, P2) =

2

3π

[
0.2× arccos

(
(0.6× 0.7) + (0.3× 0.2) + (

√
1− 0.62 − 0.32 ×

√
1− 0.72 − 0.22)

)
+ 0.5× arccos

(
(0.8× 0.7) + (0.2× 0.3) + (

√
1− 0.82 − 0.22 ×

√
1− 0.72 − 0.32)

)
+ 0.3× arccos

(
(0.5× 0.9) + (0.4× 0.1) + (

√
1− 0.52 − 0.42 ×

√
1− 0.92 − 0.12)

)]
= 0.0499.

4 Case Study

Creditworthiness refers to the capacity of a borrower to fulfill debts and loanobligations punctually. It
serves as an indicator of the individual’s credibility and reliability in managing credit-related responsi-
bilities. The assessment of creditworthiness involves analyzing multiple factors, including:
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i. Payment history reflects an individual’s record of settling credit accounts, loans, and other debts. It
constitutes a fundamental element of credit reports and credit scores, accounting for approximately 35%
of the overall score. This indicator encompasses data such as:

• Bankruptcies and foreclosures,

• Missed or late payments (including frequency and duration),

• Accounts transferred to collections,

• Consistent on-time payments.

A positive payment history is characterized by timely payments, absence of late or missed payments,
and no collections or bankruptcies. Conversely, a poor record involves frequent delays or missed pay-
ments, collections, and negative credit events such as bankruptcies. To uphold a strong payment history,
borrowers are advised to make punctual payments, utilize reminders or automate transactions, and com-
municate proactively with lenders regarding any financial difficulties. An exemplary payment history
demonstrates financial responsibility and can enhance credit scores, while a negative record may ad-
versely impact future credit access.

ii. Credit utilization or the utilization ratio, measures the proportion of credit relative to the total available
credit line. It is computed as:

Credit Utilization Ratio =

(
Total Outstanding Credit Balance

Total Credit Limit

)
× 100.

This metric is pivotal in credit scoring models, indicating the borrower’s management of credit. Optimal
utilization levels are generally considered below 30%, categorized as good, while ratios between 30%
and 50% are fair, and exceeding 50% is deemed poor. Maintaining a low utilization ratio demonstrates
responsible credit behavior and can positively influence credit scores.

iii. Credit history length:
The duration of an individual’s credit activity, often referred to as the length of credit history, accounts
for approximately 15% of the credit score. It considers factors such as:

• The average age of all credit accounts,

• The age of the oldest account,

• T he overall length of credit history.

A more extended credit history typically suggests experience in managing credit responsibly, indicating
stability. Shorter histories may imply limited experience and are often viewed less favorably by lenders
due to perceived higher risk. Longer credit histories tend to correlate with greater financial stability and
better credit scores.

iv. Credit mix, also known as credit diversity, refers to the variety of credit types held by an individual,
including:

• Credit cards,

• Installment loans (e.g., personal loans, mortgages, car loans),
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• Revolving credit (e.g., lines of credit, home equity loans),

• Open credit accounts (e.g., utility bills, rent).

A diversified credit profile demonstrates the borrower’s ability to handle different types of credit respon-
sibly, reducing perceived risk. Limited diversity might indicate inexperience with various credit forms,
which can negatively influence credit evaluations. A well-managed, diverse credit portfolio supports a
higher credit score.

v. Credit Inquiries:
Inquiries refer to the instances where lenders or creditors access a borrower’s credit report in the past
two years. They are categorized as:

• Soft inquiries: Do not impact credit scores and include checks made by borrowers themselves, pre-
approval assessments, and employment background verifications.

• Hard inquiries: Can temporarily reduce credit scores and occur when applying for new credit products,
such as loans, credit cards, or mortgages.

While inquiries, especially hard ones, can influence credit scores slightly, their impact is generally minor
compared to factors like payment history and utilization.

vi. Income and Employment Stability:
Income levels and employment stability are critical in credit risk evaluation, as they reflect the borrower’s
capacity to meet ongoing obligations. Factors considered include:

• Income amount and consistency over time,

• Income growth or decline,

• Duration of current employment,

• Employment stability and industry stability,

• Job history and frequency of transitions.

Demonstrating consistent employment and sufficient income bolsters confidence in the borrower’s re-
payment ability.

vii. Debt-to-income ratio:
The Debt-to-Income (DTI) ratio compares monthly debt obligations to gross monthly income and is a
significant indicator of financial health. It is calculated as:

DTI ratio =
Total Monthly Debt Payments

Gross Monthly Income
.

Lower DTI ratios are favored, as they suggest better capacity to service debt, thereby improving the
likelihood of loan approval.



184 Pythagorean Fuzzy Sets for Credit Risk Assessment .../ COAM, 10 (1), Winter-Spring (2025)

4.1 Linguistic Variables in Terms of PFNs

Decision-makers have translated linguistic assessments into PFNs to quantitatively estimate customer
performance across various criteria.

Figure 3 illustrates the relationship between evaluation criteria and their corresponding linguistic
variables:

Figure 3: Criteria and linguistic variable.

Table 1 presents the linguistic concepts expressed through PFNs:

Table 1: Linguistic concepts expressed through PFNs

Linguistic Term PFNs
Outstanding ⟨0.98, 0.20⟩
Superb ⟨0.87, 0.35⟩
Highly commendable ⟨0.70, 0.40⟩
Commendable ⟨0.65, 0.45⟩
Satisfying ⟨0.50, 0.55⟩
Acceptable ⟨0.40, 0.70⟩
Partly Acceptable ⟨0.36, 0.80⟩
Inadequate ⟨0.25, 0.87⟩
Highly Inadequate ⟨0.20, 0.98⟩

Table 1 demonstrates how decision-makers assign linguistic evaluations to each customer across
different criteria, utilizing the PFNs specified above.
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5 Methodology

This section presents a multi-criteria decision-making issue using information represented by PFNs and
use the spherical distance measurement approach for resolution. For each criterion and alternative, con-
struct a decision matrix using PFSs. Each entry of matrix represents membership and non-membership
grade of each alternative concerning each criterion.

Let A = {A1,A2, . . . ,Am}, where m ≥ 2 and Γ = {Γ1,Γ2, . . . ,Γn}, with n ≥ 2, denote set
of alternatives and criteria respectively. Weight w = (w1, w2, . . . , wn)

T with 0 ≤ wi ≤ 1 for all i,

satisfies
n∑

i=1

wi = 1.

Let the PFNs ⟨φij , ϱij⟩ represent the assessment value of i-th alternative and j-th criterion, such
that Γj(ςi) = ⟨φij , ϱij⟩. Additionally, R = (Γj(ςi))m×n, where

R =


⟨φ11, ϱ11⟩ ⟨φ12, ϱ12⟩ · · · ⟨φ1n, ϱ1n⟩
⟨φ21, ϱ21⟩ ⟨φ22, ϱ22⟩ · · · ⟨φ2n, ϱ2n⟩

· · · · · · · · · · · ·
⟨φm1, ϱm1⟩ ⟨φm2, ϱm2⟩ · · · ⟨φmn, ϱmn⟩

 .

5.1 Process of the Proposed Method

To address multi-criteria decision making (MCDM) problems under a Pythagorean fuzzy framework,
we propose a Pythagorean fuzzy TOPSIS technique. The fundamental principle of TOPSIS is that the
optimal alternative should be closest to the positive ideal solution (PIS) while simultaneously while being
farthest from the negative ideal solution (NIS).

This approach involves the computation of the Pythagorean fuzzy positive ideal solution (PFPIS)
and the Pythagorean fuzzy negative ideal solution (PFNIS). Let J1 and J2 denote the sets of benefit
criteria and cost criteria respectively. The determination of PFPIS and PFNIS is performed utilizing a
modified accuracy function v(p). We denote the PFPIS and PFNIS as ς+ and ς−, respectively, calculated
as follows:

ς+ =

{
Γj = maxi S(Γj(ςi)) for j ∈ J1,

Γj = mini S(Γj(ςi) for j ∈ J2,
(10)

ς− =

{
Γj = maxi S(Γj(ςi)) for j ∈ J1,

Γj = mini S(Γj(ςi)) for j ∈ J2.
(11)

Subsequently, the distances of each alternative ςi from PFPIS and PFNIS are computed as:

DNSP (ςi, ς
+) and DNSP (ςi, ς

−),

using the formulas below, derived from the normalized Pythagorean fuzzy similarity measure:

DNSP (ςi, ς
+) =

n∑
j=1

DNSP (Γj(ςi),Γj(ς
+))
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=
2

nπ

n∑
j=1

wj arccos(φijφ
+
j + ϱijϱ

+
j +ϖijϖ

+
j ), i = 1, 2, . . . , n. (12)

DNSP (ςi, ς
−) =

n∑
j=1

DNSP (Γj(ςi),Γj(ς
−))

=
2

nπ

n∑
j=1

wj arccos(φijφ
−
j + ϱijϱ

−
j +ϖijϖ

−
j ), i = 1, 2, . . . , n. (13)

where a smaller value of DNSP (ςi, ς
+) indicates a preferable alternative, and conversely, a larger

DNSP (ςi, ς
−) is desirable for the negative ideal. We define the minimum and maximum distances

across all alternatives as:

Dmin(ςi, ς
+) = min

{
DNSP (ςi, ς

+) : i = 1, 2, . . . , n
}
,

Dmax(ςi, ς
+) = maxDNSP

{
(ςi, ς

+) : i = 1, 2, . . . , n
}
.

The relative closeness coefficient, RC(ςi), of each alternative with respect to PFPIS and PFNIS is
then computed as per the classical TOPSIS approach:

RC(ςi) =
DNSP (ςi, ς

−)

DNSP (ςi, ς+) +DNSP (ςi, ς−)
. (14)

A higher value of RC(ςi) signifies a preferable alternative, as it indicates greater proximity to the
PIS and distance from the NIS.

To further refine the ranking, Zhang and Xu [34] proposed a modified index ξ(ςi), defined as:

ξ(ςi) =
DNSP (ςi, ς

−)

Dmax(ςi, ς−)
− DNSP (ςi, ς

+)

Dmin(ςi, ς+)
. (15)

Based on either RC(ςi) or ξ(ςi), the alternatives are ranked, with the optimal choice being the one that
maximizes these values.

5.2 Algorithm for Proposed Method

The traditional TOPSIS method, as introduced by Hwang and Yoon [14], serves as a foundational and
effective approach for addressing MCDM problems involving precise numerical data. Building upon
this, Zhang and Xu [34] proposed an enhanced version of TOPSIS tailored to handle MCDM challenges
involving the Pythagorean fuzzy data. The approach involves the following key steps:

Step 1. In addressing anMCDM problem involving PFNs, the first step is to construct the decision matrix
R = (Γj(ςi))m×n. Here,Γj(ςi) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, represents the evaluation
of ςi in relation to criterion Γj .

Step 2. A new scoring function is employed to ascertain determine the PFPIS denoted by (ς+) and the
PFNIS denoted by (ς−).
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Step 3. Utilizing Equations (12) and (13), compute the weighted spherical distances of each alternative
ςi relative to both the PFPIS (ς+) and the PFNIS (ς−).

Step 4. Apply Equations (14) and (15) to calculate the relative closeness RC(ςi) and the modified close-
ness measure ξ(ςi) for each alternative ςi.

Step 5. Rank the options based on the descending order of the relative proximity RC(ςi) and ξ(ςi). The
highest value indicates the most preferable alternative, with greater RC(ςi) corresponding to a
more favorable ςi where i = 1, 2, . . . ,m.

6 Illustrative Example

For a practical application, suppose you are evaluating several loan applicants based on criteria such
aspayment history (Γ1), credit utilization (Γ2), credit history length (Γ3), credit mix (Γ4), inquiries (Γ5),
income and employment stability (Γ6), debt to income ratio (Γ7). By applying the TOPSIS method with
Pythagorean fuzzy sets, rank these applicants more effectively, accounting for the inherent uncertainty
in their financial profiles and improving the accuracy of the credit risk assessment.

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7

ς1 ⟨.8, .3⟩ ⟨.4, .7⟩ ⟨.7, .5⟩ ⟨.6, .4⟩ ⟨.3, .7⟩ ⟨.8, .4⟩ ⟨.5, .6⟩
ς2 ⟨.7, .4⟩ ⟨.5, .6⟩ ⟨.9, .3⟩ ⟨.8, .4⟩ ⟨.5, .8⟩ ⟨.7, .6⟩ ⟨.6, .5⟩
ς3 ⟨.9, .2⟩ ⟨.3, .6⟩ ⟨.8, .5⟩ ⟨.7, .4⟩ ⟨.5, .5⟩ ⟨.8, .5⟩ ⟨.4, .7⟩
ς4 ⟨.8, .4⟩ ⟨.4, .8⟩ ⟨.6, .4⟩ ⟨.9, .3⟩ ⟨.3, .8⟩ ⟨.6, .5⟩ ⟨.6, .6⟩
ς5 ⟨.7, .5⟩ ⟨.3, .9⟩ ⟨.7, .5⟩ ⟨.8, .4⟩ ⟨.4, .7⟩ ⟨.7, .5⟩ ⟨.4, .8⟩

where for ς1 and criterion Γ1 the membership degree is .8 and the non-membership degree is .3.
Considering that payment history, credit history length, credit mix, income and employment stability

as benefit criteria J1 = {Γ1,Γ3,Γ4,Γ6} and credit utilization, inquiries, debt to income ratio are as the
cost criteria J2 = {Γ2,Γ5,Γ7}.

Modified accuracy function v(p) is used to calculate score type PFPIS (ς+) and PFNIS (ς−), we
utilize formula (10) and (11). The values are

ς+ = {⟨.5, .8⟩, ⟨.7, .2⟩, ⟨.6, .2⟩, ⟨.9, .2⟩}

ς− = {⟨.7, .3⟩, ⟨.5, .8⟩, ⟨.5, .4⟩, ⟨.5, .3⟩}

Next, utilize equation (12) and DNSP of each alternatives ςi from PFPIS and PFNIS as

DNSP (ςi, ς
+) DNSP (ςi, ς

−)

ς1 .0590 .0554

ς2 .0593 .0475

ς3 .0561 .0475

ς4 .0712 .0359

ς5 .0290 .0742
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Equation (14) and (15) used to calculate RC(ςi) and ξ(ςi) listed bellow:

RC(ςi) (Rank) ξ(ςi)(Rank)
ς1 .4842(2) −1.2878(3)

ς2 .4447(4) −1.4046(4)

ς3 .4642(3) −1.2794(2)

ς4 .3352(5) −1.9713(5)

ς5 .7189(1) 0(1)

Based on RC(ςi) rank of the alternatives are ς5 ≻ ς1 ≻ ς3 ≻ ς2 ≻ ς4 and ς5 is the best alternative. With
respect to ξ(ςi) ranking of the alternatives are ς5 ≻ ς3 ≻ ς1 ≻ ς2 ≻ ς4. Here also, the best alternative is
ς5.

7 Conclusion

The proposed Pythagorean fuzzy set (PFS)-based model offers several significant advancements over
traditional credit risk assessment methods. Primarily, it enhances predictive accuracy by providing a
more flexible and sophisticated framework for handling uncertainty, accommodating the nuanced na-
ture of financial judgments. Furthermore, it bolsters the robustness of the credit scoring process by
integrating a wider spectrum of information, thereby more effectively capturing the complexity inherent
in real-world financial Environments. The incorporation of Pythagorean fuzzy sets into credit risk evalu-
ation not only advances theoretical understanding but also yields tangible benefits for practical financial
decision-making. Future research should aim to further refining this model and exploring its applicabil-
ity across diverse financial sectors and datasets. Additionally, exploring hybrid approaches—combining
PFS with other machine learning techniques—may present avenues for achieving even greater improve-
ments in the accuracy and reliability of credit risk predictions.
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