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Abstract. This study introduces an innovative approach for addressing optimal

control problems related to parabolic partial differential equations (PDEs) through

the application of rational radial basis functions (RBFs). Parabolic PDEs, which are

instrumental in modeling time-dependent processes such as heat transfer and diffusion,

pose significant computational challenges in optimal control due to the requirement

for precise approximations of both state and adjoint equations. The proposed approach

exploits the adaptability and spectral accuracy of rational RBFs within a meshless

framework, effectively addressing the limitations of traditional discretization methods.

By enhancing the accuracy and efficiency of control strategies, this method significantly

contributes to advancing the theory and application of optimal control in dynamic sys-

tems. The tunable shape parameters of rational RBFs allow for accurate representation of

solution characteristics, including steep gradients and localized behaviors. Additionally,

their meshless framework adeptly accommodates complex geometries and boundary

conditions, ensuring computational efficiency through the generation of sparse and

well-conditioned system matrices. This paper also introduces a novel hybrid rational

RBF, termed the Gaussian rational hybrid RBF. The efficacy of the proposed approach

is validated through a series of benchmark tests and practical applications, highlighting

its ability to achieve high accuracy with reduced computational effort. The findings

illustrate the potential of rational RBFs as a robust and versatile tool for solving optimal

control problems governed by parabolic PDEs, paving the way for further exploration of

advanced rational RBF-based techniques in the field of computational optimal control.
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1 Introduction

Optimal control problems involving partial differential equations (PDEs) are of significant in-
terest to researchers in computational sciences due to their wide-ranging applications across var-
ious fields, including engineering, mathematics, finance, physics, and biology. Consequently,
there has been extensive theoretical and quantitative research on this topic, particularly concern-
ing the optimal control of elliptic PDEs. However, developing highly accurate mathematical
frameworks for parabolic optimal control problems remains challenging due to the high dimen-
sionality of discrete systems and the limitations of computational power. For comprehensive
discussions on this topic, we direct readers to the works references in [2, 3, 31, 32, 35]. This
study proposes an efficient numerical method to address the parabolic optimal control problems
by utilizing rational radial basis functions (RBFs) [1] in conjunction with the Euler scheme.

The optimal control of parabolic PDEs is critical in various scientific and engineering do-
mains, including heat transfer, diffusion-reaction systems, and financial modeling. However,
solving these problems efficiently and accurately presents significant challenges due to their
high dimensionality, the complexity of their solution space, and the necessity to satisfy both
the state equation and the associated control constraints. Traditional numerical methods, such
as the finite element and finite difference methods, often struggle to yield precise results with-
out substantial computational resources. This issue is particularly pronounced when addressing
problems characterized by steep gradients, localized features, or irregular geometries.

Letw denote the state variable and v the control variable. ConsiderΩ ⊂ R2 to be a bounded
polygonal domain with a Lipschitz boundary, and define Q = Ω × (0, T ]. We formulate the
parabolic optimal control problem as follows [11, 12, 13].

min J(w, v) = 1
2

∫ T
0

∫
Ω(w(.;µ)− wd)

2dΩdt+ α
2

∫ T
0

∫
Ω v

2(.;µ)dΩdt,

subject to
−∂tw + µLw = v, in Q,
w = 0, on Σ,
w(., 0) = 0, in Ω,

where, L represents a spatial differential operator (e.g., the Laplacian) and f(x, t) serves as a
source term. It is crucial to establish appropriate boundary and initial conditions for the prob-
lem. The objective is to minimize the cost functional J(w, v), where w is the state and v is the
control vector, subject to the PDE constraint [22].

To approximate the solution w(x, t), we employ rational RBFs. The general form of an
RBF expansion can be expressed as follows:

w(x, t) ≈
N∑
i=1

ciφ(∥x− xi∥),
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where φ denotes a radial basis function (e.g., Gaussian, inverse multiquadric), and ci are the
unknown coefficients to be determined [21, 37].

Previous research [20] has explored a space-time finite element approach with an itera-
tive solution employing a semi-smooth Newton method, particularly addressing distributed
tracking-type optimal control problems governed by the heat equation and state constraints.
Additionally, the study by [36] presented an efficient parallel splitting method utilizing lin-
ear finite elements for state and control variables, implementing the Crank-Nicolson scheme
for temporal discretization, and a comprehensive Jacobian decomposition method with correc-
tions to improve computational efficiency for parabolic PDE-constrained optimization prob-
lems. The analysis in [8] introduced a space-time finite element technique for addressing
parabolic distributed optimal control problems by employing a coercive variational formula-
tion and Lagrangian multipliers while adhering to Babuška-Brezzi criteria, leading to effective
and reliable numerical approximations. Langer and Schafelner [18] examined locally stabilized
space–time finite element techniques on entirely unstructured simplicial space–time meshes for
the numerical resolution of the parabolic PDE-constrained optimization problems. Moreover,
[9] examined the integral definition of the fractional Laplacian and analyzed a linear quadratic
optimum control problem associated with the fractional heat equation, incorporating control
constraints. For additional insights, we refer to [14, 17, 25, 26, 30].

Numerical methods, including the finite difference, finite element, and finite volume meth-
ods, are extensively utilized for solving PDEs [15]. However, these methods commonly rely on
mesh-based formulations, necessitating grid generation that can be computationally expensive.
Furthermore, their accuracy diminishes in non-smooth and non-regular domains, as the solution
is typically evaluated only at discrete mesh points. To combat these issues, meshless techniques
have been developed. In recent years, RBFs have emerged as a promising alternative in the nu-
merical solution of PDEs, gaining popularity within the engineering and scientific communities
due to their meshless nature and ease of extension to multi-dimensional problems. Meshless
techniques utilize a collection of particles to effectively solve integral or partial differential
equations under various boundary conditions, yielding accurate and stable solutions.

In the study conducted by [6], the authors introduced a rational RBF interpolation technique
for estimating multivariate functions exhibiting poles or singularities in or near the approxima-
tion domain. This approach employed scattered point configurations, demonstrating flexibility
concerning the problem’s geometry. Shiralizadeh et al. [33] applied rational RBFs to solve the
Allen-Cahn equation, particularly for problems characterized by steep fronts or sharp gradi-
ent solutions, utilizing rational RBFs to approximate spatial derivatives. Additionally, in [34],
the authors employed the rational RBFs approach to address the Korteweg-de Vries equation,
particularly in scenarios involving solutions with steep fronts or abrupt slopes. In reference
[4], a local radial basis functions collocation method was introduced for solving the parabolic-
parabolic Patlak-Keller–Segel model. The authors of [23] proposed a hybrid strategy combin-
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ing meshless Galerkin and replicating kernel Hilbert space methods for quasi-linear parabolic
equations. Furthermore, Zeng et al. [38] successfully resolved parabolic equations using a time-
parareal coupled unsymmetric collocation meshless approach. Lastly, the paper [10] presented
an efficient numerical method utilizing arbitrary collocation points for an economic growth
model, employing RBF interpolation to approximate solutions for optimal control problems.

Motivation

Rational RBFs are recognized for their exceptional capability in solving PDEs across a wide
range of frequency spectra. This characteristic renders them particularly effective for capturing
the smoothness and long-range interactions typical of parabolic PDEs. By employing ratio-
nal RBFs, we can achieve accurate and efficient approximations for both the state and adjoint
equations within the optimal control framework. The high accuracy of these approximations
leads to faster convergence rates for optimization algorithms, while the compact support of cer-
tain rational RBFs enhances computational efficiency by producing sparse or well-conditioned
system matrices. Moreover, the meshless nature of RBFs is ideal for numerous optimal con-
trol problems, as it allows for seamless integration of adaptive refinement and multi-resolution
strategies.

In this context, the utilization of rational RBFs represents a promising approach to address-
ing the limitations inherent in traditional methods for optimal control. This flexibility and ef-
ficiency in numerically solving the space-time tracking parabolic optimal control problem de-
fined in (??) is particularly noteworthy, especially when employing standard L2-regularization
as a model problem. It is important to highlight that, to the best of our knowledge, this paper
presents the first meshless method utilizing rational RBFs for optimal control problems gov-
erned by parabolic PDEs.

The structure of this study is organized as follows: Section 2 provides an overview of RBF
interpolation and rational RBFs. Section 3 discusses the application of rational RBFs in solving
the optimal control of parabolic PDEs. Section 4 presents numerical examples to demonstrate
the effectiveness and correctness of the proposed method. Finally, Section 5 offers a concise
conclusion.

2 Radial Basis Functions

This section introduces RBF interpolation and differentiation. A radial basis function is a real-
valued function whose value is determined solely by the distance from a designated point y,
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termed the center, represented mathematically as ψ(x, y) = ϕ(∥x− y∥2). RBFs may incorpo-
rate a free parameter ϵ, known as the shape parameter.

Consider a set of scattered node data defined as:

M = {(xi, gi)|xi ∈ Ω, gi ∈ R, for i = 1, · · · , N},

where g : Ω → R and g(xi) = gi. The RBF interpolant applied to the data from the scattered
nodes is given by:

h(x) =

n∑
i=1

ciϕ(∥x− xi∥2). (1)

By enforcing h(xi) = gi, we can determine the unknown coefficients {ci}ni=1. This leads
to a linear system expressed as Ac = b, where aij = {ϕ(xi − xj)}ni,j=1, and bi = fi for
i = 1, . . . , n. The matrixA is commonly referred to as the RBF interpolation matrix or the RBF
system matrix. For certain RBFs ϕ, this matrix remains consistently nonsingular. Notably, the
completely monotonic multiquadratic RBF yields an invertible RBF system matrix, a property
also shared by strictly positive definite RBFs such as inverse multiquadratics and Gaussians.

The following theorem establishes that, under specific conditions, the space of RBFs can
approximate any continuous function arbitrarily precision [24, 28].

Theorem 1. Let ϕ : Rd → R be a RBF (e.g., Gaussian, multiquadric, or inverse multiquadric),
and let F be the space of all functions of the form:

f(x) =
N∑
i=1

wiϕ(∥x− ci∥),

where wi ∈ R, ci ∈ Rd are centers, and ∥ · ∥ denotes the Euclidean norm.
Then, under mild conditions on ϕ (e.g., ϕ is continuous and not a polynomial), the space

F is dense in the space of continuous functions C(Rd) with respect to the topology of uniform
convergence on compact sets. Specifically, for any continuous function g : Rd → R and any
compact setK ⊂ Rd, and for any ϵ > 0, there exists a function f ∈ F such that:

sup
x∈K

|f(x)− g(x)| < ϵ.

This theorem is foundational to the theory of neural networks, interpolation, and approxima-
tion theory, as it justifies the application of RBFs for the approximation of continuous functions.

Rational RBFs represent a class of functions employed in various computational methods,
including interpolation, approximation, and numerical solutions of PDEs. They combine the
desirable features of traditional RBFs with a rational form, offering enhanced flexibility and
regularization.

Common examples of standard RBFs include:
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• Gaussian RBF: ϕ(r) = e−(ϵr)2 , where ϵ is the shape parameter.

• Multiquadric RBF: ϕ(r) =
√
1 + (ϵr)2,

• Inverse Multiquadric RBF: ϕ(r) = 1√
1+(ϵr)2

.

These RBFs are typically utilized for interpolation, surface fitting, and solving PDEs in a mesh-
less manner.

A rational function is defined as the ratio of two polynomials. Rational RBFs are expressed
as:

ϕrational(r) =
p(r)

q(r)
,

where p(r) and q(r) are polynomials, with p(r) usually of lower degree than q(r). This form
of RBF offers several advantages, particularly in handling singularities or controlling decay
behavior more flexibly compared to traditional RBFs.

One prevalent type of rational RBF is the rational quadratic function:

ϕϵ,αrq (r) =
(
1 +

(r
ϵ

)2)−α

,

where r represents the radial distance ∥x − c∥, ϵ is a shape parameter, and α is a positive
real parameter that regulates the decay rate. This function consists of a constant polynomial in
the numerator and a polynomial of degree 2 in the denominator. The rational quadratic RBF is
smooth, and can effectivelymodel both smooth and slightly irregular data compared toGaussian
RBFs.

Rational RBFs can engineered to exhibit faster decay at infinity, making them particularly
useful for applications requiring the solution to diminish at large distances or to mitigate the
bumpy behavior or singularities inherent in some Gaussian RBFs when distances become large.
The rational formulation facilitates better numerical properties, especially in cases where the
data or solution may exhibit singular characteristics. Furthermore, rational RBFs are adept at
managing behavior near domain boundaries or adapting to irregular data distributions.

In terms of regularization, rational RBFs often exhibit greater stability than standard RBFs,
which enhances their robustness in specific numerical methods, especially for solving PDEs or
inverse problems where smoothness and well-behaved solutions are essential. Overall, rational
RBFs extend traditional radial basis functions by introducing a ratio of polynomials, offering
improved flexibility, decay behavior control, and numerical stability. They are particularly
advantageous in applications such as meshless methods for PDEs, surface fitting, and optimal
control problems.
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2.1 Gaussian Rational Hybrid RBF

TheGaussian Rational Hybrid RBFmerges the smoothness characteristic of theGaussian kernel
with the localization flexibility inherent to rational functions. The proposed RBF is given by:

ϕσβ(r) =
exp

(
−
(
r
σ

)2)
1 + βr2

.

The key features of the Gaussian Rational Hybrid RBF are highlighted as follows:

• Smoothness: The function derives its smoothness from the Gaussian kernel, which en-
sures a high degree of continuity.

• Flexibility: The inclusion of the rational term introduces a tunable parameter (β) that
controls the tail behavior of the RBF, thereby enhancing its adaptability for various ap-
plications.

• Compact Support-Like Behavior: For large values of β, the RBF exhibits faster decay,
resembling the properties of functions with compact support.

The derivative of the function with respect to r is expressed as:

ϕ′(r) =
−2r exp

(
−
(
r
σ

)2)
σ2(1 + βr2)

−
2βr exp

(
−
(
r
σ

)2)
(1 + βr2)2

.

The related parameters are defined as below:

1. Shape Parameter (σ): This parameter dictates the spread of the Gaussian component,
where smaller values yield sharper peaks.

2. Rational Parameter (β): This parameter modifies the tail behavior of the RBF, with larger
values facilitating a more rapid decay and thereby localizing the influence of the function.

Theorem 2. The Gaussian Rational Hybrid RBF (GRH-RBF) defined as

ϕσβ(r) =
exp

(
−
(
r
σ

)2)
1 + βr2

, σ > 0, β ≥ 0,

is strictly positive definite for any set of distinct nodes {xi}Ni=1 ⊂ Rd. Consequently, the
interpolation matrixA, defined byAij = ϕσβ(∥xi−xj∥), is both positive definite and invertible.

Proof. A function ϕ : Rd → R is classified as strictly positive definite if for any distinct points
{xi}Ni=1, the quadratic form satisfies:

N∑
i,j=1

cicjϕ(∥xi − xj∥) > 0 ∀c ̸= 0.
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To analyze ϕσβ(r), we rewrite it as a product:

ϕσβ(r) = exp
(
−
( r
σ

)2)
︸ ︷︷ ︸

Gaussian term ϕG(r)

· 1

1 + βr2︸ ︷︷ ︸
Rational term ϕR(r)

.

The Gaussian ϕG(r) = e−(r/σ)2 is known to be strictly positive definite, and its Fourier trans-
form is another Gaussian, which is non-negative and integrable, thus adhering to Bochner’s
theorem. Consequently, the matrix AG with entries AG,ij = ϕG(∥xi − xj∥) is positive defi-
nite.

Additionally, the rational term ϕR(r) = (1 + βr2)−1 is completely monotone. A function
ψ(r) is considered completely monotone if (−1)kψ(k)(r) ≥ 0 for all k ≥ 0 and r > 0. For
ϕR(r), the derivatives alternate in sign:

ϕ′R(r) = − 2βr

(1 + βr2)2
≤ 0, ϕ′′R(r) ≥ 0, etc.

By the Bernstein-Widder theorem, ϕR(r) is the Laplace transform of a non-negative measure,
ensuring its complete monotonicity. According to Schaback’s theorem, if ϕG(r) is strictly posi-
tive definite andϕR(r) is completelymonotonewithϕR(0) > 0, then their productϕG(r)ϕR(r)
is strictly positive definite. In this case, ϕR(0) = 1 > 0, and ϕG is strictly positive definite,
which implies that ϕσβ(r) inherits strict positive definiteness. The positive definiteness of A
guarantees that cTAc > 0 for all c ̸= 0, ensuring that A is non-singular and thus provides a
unique solution to the RBF interpolation problem.

Theorem 3. For any function f ∈ C∞([0, 1]), the GRH-RBF interpolant sf satisfies the in-
equality:

∥f − sf∥L∞ ≤ Ce−c/
√
h,

where h denotes the fill distance, and C, c > 0 depend on σ, β, and f .

Proof. The analysis commences with the GRH-RBF given by

ϕ(r) =
e−(r/σ)2

1 + βr2
.

The native space Nϕ employs the norm defined as:

∥f∥2ϕ =
∑
k∈Z

|f̂(k)|2

ϕ̂(k)
,

where ϕ̂(k) denotes the Fourier transform of ϕ. The Fourier transform of ϕ exhibits dual decay
behavior:
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ϕ̂(k) ∼

e−σ2k2/4 (Gaussian),

|k|−3 (Rational tail).

This hybrid decay ensures the exponential accuracy for smooth functions f and manages con-
trolled conditioning through the rational term. By applying the sampling inequality:

∥f − sf∥L∞ ≤ P (h)∥f∥ϕ,

where the power function P (h) is bounded by:

P (h) ≤ sup
k

(
1− |ϕ̂(k)|∑

j |ϕ̂(k − jh−1)|

)
.

For the GRH-RBF, we arrive at:

P (h) ≤ C1e
−c1/h + C2h

3.

As h→ 0, the exponential term predominates, resulting in:

∥f − sf∥L∞ ≤ Ce−c/
√
h.

The constantsC and c depend on σ, β, properties of ∥f∥Ck , with higher derivatives of f further
amplifying C.

3 Methodology

The RBF interpolation of scattered data serves as the underlying framework for the meshless
method that employs RBFs. The function w(x) can be approximated using an RBF through a
linear combination expressed as follows:

w(x) =
n∑

i=1

ciϕ(ri). (2)

In this formulation, ϕ denotes the RBF, n represents the total count of data points, and ci for
i = 1, . . . , n are coefficients that need to be determined. It is noteworthy that most RBF-
based methods are significantly influenced by the shape parameters associated with RBFs. The
selection of the shape parameter is critical for ensuring the accuracy of the interpolation results,
as various shape parameter values yield different RBF results within the same computational
domain.

This section delineates the procedure for solving a parabolic optimal control problem. The
approach begins with discretizing the time domain, followed by the spatial discretization utiliz-
ing rational radial basis functions. This approach facilitates a structured resolution of the state
and adjoint equations based on the optimality conditions.
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We consider the standard optimal control problem governed by a parabolic PDE as follows
[19]

min
w, v

J(w, v) =
1

2

∫ T

0

∫
Ω
(w(x, t)− wd(x, t))

2 dx dt+
α

2

∫ T

0

∫
Ω
v(x, t)2 dx dt,

subject to:
∂w

∂t
−∆w = f(x, t) + v(x, t), in Ω× (0, T ],

with initial and boundary conditions:

w(x, 0) = w0(x), w|∂Ω = 0.

The first-order necessary optimality conditions are given by [16]:

1. State Equation:

∂w

∂t
−∆w = f(x, t) + v(x, t), (3)

2. Adjoint Equation:

−∂p
∂t

−∆p = w − wd, p(x, T ) = 0, (4)

3. Control Update Rule:

v(x, t) = − 1

α
p(x, t). (5)

3.1 Time Discretization Using Finite Difference Method

To address the optimal control for parabolic PDEs using the rational RBF approach, we assume
there are nI inner points and nB border nodes among the n total collection points within the
domain, where n = nI +nB . Let∆t = ti+1 − ti denote the time step, with ti representing the
time value at stage i [5]. For all ti ≤ t ≤ ti+1, the parabolic Equation (??) is discretized using
the following expression.

We discretize the time domain [0, T ] intoNt intervals, where the step size is given by∆t =
T/Nt. The time steps are defined as tn = n∆t for n = 0, 1, . . . , Nt.

1. State Equation (Forward Time Discretization): The state equation is discretized as fol-
lows:

wn+1(x)− wn(x)

∆t
−∆wn+1(x) = fn(x) + vn(x).

Rearranging this equation yields the update for wn+1(x):

wn+1(x) = ∆t (∆wn+1(x) + fn(x) + vn(x)) + wn(x). (6)
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2. Adjoint Equation (Backward Time Discretization): The adjoint equation is discretized
as:

−p
n+1(x)− pn(x)

∆t
−∆pn(x) = wn(x)− wn

d (x).

Rearranging this equation provides the update for pn(x):

pn(x) = ∆t (∆pn(x) + wn(x)− wn
d (x)) + pn+1(x). (7)

3.2 Spatial Discretization Using Rational RBFs

For spatial discretization, we express both wn(x) and pn(x) in terms of rational RBFs as fol-
lows:

wn(x) ≈
N∑
i=1

cni ϕi(x), pn(x) ≈
N∑
j=1

dnj ϕj(x),

where ϕi(x) is the selected RBF with centers at xi, and cni and dnj are coefficients correspond-
ing to time step n that require determination. By substituting these expansions into the time-
discretized equations and applying Galerkin projection, we derive a system of algebraic equa-
tions for the coefficients cni and dnj . The following outlines a comprehensive approach for
implementing the RBF spectral technique in the optimal control of a PDE problem.

This method ensures that the time-stepping procedure integrates seamlessly with the spatial
discretization utilizing rational RBFs, resulting in efficient and accurate solutions.

3.3 Selection of Shape Parameter

The selection of the shape parameter ϵ in the RBF collocation methods plays a crucial role in
determining both the accuracy and stability of the approximation. There is no global optimal
shape parameter; rather, its optimal value is influenced by factors such as the geometry of the
problem, the spatial distribution of data points, and the desired trade-off between approximation
accuracy and numerical stability [7].

Strategies for Selecting ϵ include the following:

1. Cross-Validation:

• Conduct numerical experiments by solving the problem with different values of ϵ
and evaluate the accuracy of the solutions using error metrics, such as L2 and L∞

norms.

• Select the value of ϵ that yields the minimal error.
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Algorithm 1 Optimal Control’s Algorithm.

• Initialize w0(x), v0(x), and pNt(x).

• Select an appropriate RBF, specify the RBF centers, determine the collocation sites, and
establish a time step.

• Construct the required RBF interpolation and differentiation matrices outside of the pri-
mary time-stepping loop.

for n = 0 : Nt − 1 do

1. Solve for wn+1(x) using the state equation (6).

2. Solve for pn(x) utilizing the adjoint equation (7).

3. Update vn(x) according to the control update rule (5).

end for

• After completing the time-stepping, compute the error at the final time T to evaluate the
accuracy.

2. Domain-Based Rules of Thumb: A common rule is to set ϵ in relation to the average
distance d between neighboring data points, such that:

ϵ ∼ median(d2) or ϵ ∼ max(d2)
k

,

where k is a tuning constant (e.g., k = 10).

3. Adaptive Techniques: Implement an adaptive shape parameter that varies across the do-
main tomore effectively capture local characteristics. This approach is particularly useful
for problems characterized by highly non-uniform solutions.

4. Optimization: Optimize ϵ as a component of the solution process using numerical tech-
niques, such as gradient descent or Bayesian optimization.

A general procedure for selecting ϵ includes the following steps:

• Begin with an initial estimate of ϵ ≈ 0.5 or ϵ ≈ 1.0.

• Gradually adjust ϵ, either increasing or decreasing it, and monitor its impact on accuracy
and stability.
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An improperly selected ϵ can lead to ill-conditioned system matrices during the interpolation or
collocation process. Therefore, it is advisable to monitor the condition number of the matrices
while adjusting ϵ. For time-dependent problems, it may be beneficial to adopt different ϵ values
for various time steps or to adaptively adjust the parameter based on the behavior of the solution.
The authors in [27] demonstrated the application of neural networks to determine optimal shape
parameters for RBFs. They developed a multilayer perceptron using an unsupervised learning
approach to predict shape parameters for inverse multiquadric and Gaussian kernels.

4 Numerical Examples

This section presents three numerical examples to illustrate the effectiveness of our proposed
technique. The focus is on one-dimensional problems defined over the interval Ω = [0, 1]. The
optimality system defined by equations (3) and (4) yields accurate approximations for both the
state and control functions. The L2 norm assesses the overall error across the entire domain,
providing a holistic perspective on the method’s accuracy, while the L∞ norm highlights the
maximum error at any single point, thereby demonstrating the method’s efficacy in regions
characterized by abrupt changes or fine details. All examples utilize the Gaussian rational
hybrid RBF with a shape parameter of 0.5. The parameters for the optimal control problem for
this section are established as follows:

α = 10−6, N = 32,∆t = 0.1, β = 1, σ = 1.

Example 1. For the parabolic optimal control problem, consider the exact solution for the state
function given by:

w = t2(1− t)2(2− t)2 sin(πx).

The optimality system generates the control function u, the desired function wd, and the initial
conditionw0. Figure 1 illustrates the computational associated with the adjoint function and the
state function for Example 1. The results obtained indicate that the solutions are quite accurate.

Figure 2 investigates the convergence of the proposed method applied to Example 1.
Figure 2 compares the exact and approximate state functions at various time steps in Ex-

ample 1, demonstrating the accuracy of the proposed method using rational RBFs. The exact
solution serves as a benchmark against which the performance of the method can be evaluated
in capturing the dynamics of the state function over time. The figure reflects an excellent cor-
respondence between the exact and approximated solutions throughout all time intervals. This
comparison reinforces the robustness of the rational RBF method in solving time-dependent
parabolic PDEs. The results confirm that the method not only retains the essential physical
features of the solution but also achieves high accuracy consistently during the time evolution.
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Figure 1: Approximation error of the adjoint and state functions in Example 1.
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Figure 2: Comparisons of analytical and approximate solutions of w(x, t) at t = 0.2s, t = 0.5s, t = 0.7s and
t− 0.9s (left) and the error plot as a function of N (right) in Example 1.

Table 1: Values of L2 and L∞ errors for the state and adjoint functions at various time points in Example 1

Error t = 0.2 t = 0.5 t = 0.7 t = 0.9

∥w − w̄∥L2 0.0072-E3 0.0146-E3 0.0128-E3 0.1477-E3
∥w − w̄∥L∞ 0.0018 0.0031 0.0025 0.0010
∥v − v̄∥L2 0.5549-E6 0.8523-E6 0.6547-E6 0.2178-E6
∥v − v̄∥L∞ 0.0806-E5 0.1301-E5 0.1024-E5 0.0357-E5

Table 1 provides the L2 and L∞ norm errors for the calculated computed state and adjoint
functions at different time points in Example 1. The results presented in the table highlights the
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high degree of accuracy attained by the rational RBF method across all time steps. The errors
remain consistently small, underscoring the method’s robustness in solving the state and adjoint
equations. Notably, theL∞ errors are well-controlled, indicating the ability of the rational RBFs
to effectively manage steep gradients and localized variations.

The table illustrates that the error patterns conform to expectations based on the properties
of rational RBFs, such as their accuracy and adeptness in handling complex solution landscapes.
The gradual variation of errors over time further emphasizes the stability of the method when
applied to time-dependent parabolic PDEs. These results affirm that the proposed approach is
not only precise but also computationally efficient, rendering it a viable option for addressing
optimal control problems constrained by parabolic PDEs. Additionally, in Table 2, the coeffi-
cients utilized in the approximation of the state function are detailed.

Table 2: Values of coefficients ci for i = 1, 5, 10, 15 used to approximate the state function at various values time
points in Example 1

Coefficient t = 0.2 t = 0.5 t = 0.7 t = 0.9

c1 -0.1367 -0.2170 -0.1756 -0.0561
c5 0.1411 0.2233 0.1807 0.1120
c10 0.1661 0.2541 0.2056 0.0997
c15 0.0244 0.0381 0.0308 0.0104

Example 2. Consider the exact solution for the state function in this parabolic optimal control
problem defined as follows:

w = t3(1− t)3 sin(πx).

In this example, we will similarly analyze the performance of the proposed method, focusing
on the accuracy of the approximated state and control functions against the exact solutions. The
optimality system yields the control function u, the desired functionwd, and the initial condition
w0. Figure 3 illustrates the computational error with both the adjoint and the state functions for
Example 2. The results indicate a high level of accuracy.
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Figure 3: Approximation error of the adjoint and state functions in Example 2.

In Figure 4, we examine the convergence of the proposed method as applied to Example 2.
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Figure 4: Comparison of analytical and approximate solutions of w(x, t) at t = 0.2s, t = 0.5s, t = 0.7s and
t− 0.9s (left), the error plot as a function of N (right) in Example 2.

Figure 4 presents a comparison of the exact and estimated state functions from Example
2 across various time instances, demonstrating the accuracy of the proposed method utilizing
rational RBFs. The exact solution, positioned alongside the approximated solution, serves as
a benchmark for evaluating the method’s performance in accurately capturing the dynamics of
the state function over time. The figure exhibits a remarkable alignment between the exact and
approximated solutions throughout all time intervals.
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Table 3: Values of L2 and L∞ norm errors for state and control functions at various time points in Example 2

Error t = 0.2 t = 0.5 t = 0.7 t = 0.9

∥w − w̄∥L2 0.0120-E4 0.0181-E4 0.0137-E4 0.1372-E4
∥w − w̄∥L∞ 0.0642-E3 0.1093-E3 0.0884-E3 0.0835-E3
∥v − v̄∥L2 0.561-E7 0.8888-E7 0.6928-E7 0.2445-E7
∥v − v̄∥L∞ 0.0851-E6 0.1353-E6 0.1054-E6 0.0354-E6

Table 3 reports the L2 and L∞ norm errors for the computed state and control functions at
various time points in Example 2. The results displayed in the table highlight the high accuracy
degree of accuracy achieved by the rational RBF method across all time steps. The errors
remain consistently low, reinforcing the robustness of themethod in solving the state and control
equations. Notably, the L∞ errors are well-controlled, indicating the capability of the rational
RBFs to effectively manage steep gradients and localized variations. Additionally, Table 4,
presents the coefficients utilized in the approximation of the state function.

Table 4: Values of coefficients ci, i = 1, 5, 10, 15 used to approximate the state function at various values time
points in Example 2

Coefficient t = 0.2 t = 0.5 t = 0.7 t = 0.9

c1 -0.0078 -0.0130 -0.0105 -0.0030
c5 0.0134 0.0227 0.0184 0.0112
c10 0.0120 0.0202 0.0164 0.0083
c15 0.0053 0.0089 0.0072 0.0026

In Table 5, we compare the performance of the multi-quadratic RBF method, as highlighted
in [29] with that of rational RBF method.

Table 5: Comparison between multi-quadratic RBF method and the rational RBF method in Example 2

Error t = 0.2 t = 0.5 t = 0.7 t = 0.9

∥w − w̄∥L2(MQ) 0.1115-E3 0.0379-E3 0.0309-E3 0.0121-E3
∥w − w̄∥L2(Rational) 0.1213-E4 0.0181-E4 0.0137-E4 0.1372-E4

∥v − v̄∥L2(MQ) 0.1172-E6 0.3681-E6 0.3706-E6 0.2329-E6
∥v − v̄∥L2(Rational) 0.5662-E7 0.8888-E7 0.6928-E7 0.2445-E7

The comparison in Table 5 illustrates the performance differences between the multi-
quadratic and rational RBF methods, emphasizing the advantages of the latter in terms of accu-
racy and reliability across the evaluated time points. Through this analysis, it is evident that the
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rational RBF method provides superior performance in solving the parabolic optimal control
problem, successfully capturing the underlying solution dynamics while maintaining computa-
tional efficiency and accuracy.

Example 3. Consider the exact solution for the state function in the context of the parabolic
optimal control problem, expressed as:

w = t2(1− t)2x4(1− x)5.

The optimality system generates the control function u, the desired function wd, and the initial
condition w0. Figure 5 illustrates the computational errors associated with both the adjoint and
the state functions for Example 3. The results presented indicate a high level of accuracy in the
solutions.
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Figure 5: Approximation error of the adjoint and state functions in Example 3.

In Figure 6, the convergence behavior of the proposed method applied in Example 3 is
examined.
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Figure 6: Comparisons of analytical and approximate solutions of w(x, t) at t = 0.2s, t = 0.5s, t = 0.7s and
t = 0.9s (left), along with the error plot as a function of N (right) in Example 3.

Figure 6 presents a comparison of the exact and approximated state functions for various
time instances in Example 3, showcasing at different times, the effectiveness of the proposed
rational RBFs. The exact solution is depicted alongside the approximated solution to serve as
a benchmark for evaluating the method’s performance in accurately capturing the dynamics of
the state function over time. The figure illustrates excellent correspondence between the exact
and approximated solutions across all time intervals.

Table 6: Values of RMS and L∞ errors for the state and control functions at various time points in Example 3

Error t = 0.2 t = 0.5 t = 0.7 t = 0.9

∥w − w̄∥L2 0.1879-E5 0.1194-E5 0.1289-E5 0.0554-E5
∥w − w̄∥L∞ 0.0492-E5 0.1859-E5 0.0550-E5 0.0123-E5
∥v − v̄∥L2 0.2070-E8 0.2676-E8 0.1780-E8 0.0497-E8
∥v − v̄∥L∞ 0.2680-E8 0.3481-E8 0.2294-E8 0.0642-E8

Table 6 provides the L2 and L∞ norm errors for the computed state and adjoint functions
at various time points in Example 3. The results in the table indicate a high degree of accuracy
achieved by the rational RBF method across all time steps. The errors remain consistently low,
highlighting the robustness in solving both the state and adjoint equations. Importantly, the L∞

errors are well-controlled, demonstrating the rational RBFs’ efficacy in effectively managing
steep gradients and localized variations. The results affirm that the proposed approach not
only retains essential solution characteristics but also maintains high accuracy throughout the
temporal domain, thereby validating its applicability in optimal control problems governed by
parabolic partial differential equations.
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Example 4. Consider the exact solution for the state function in the context of the parabolic
optimal control problem, defined as follows:

w = (t
√
2 + t2.5)x3.

The optimality system generates the control function u, the desired function wd, and the initial
condition w0. Figure 7 illustrates the computational errors associated with both the adjoint
and the state functions for Example 4. The results indicate a high degree of accuracy in the
approximations.
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Figure 7: Approximation errors of the adjoint and state functions in Example 4.

In Figure 8, we examine the convergence behavior of the proposed method for Example 4.
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Figure 8: Comparison of analytical and approximate solutions of w(x, t) at t = 0.2s, t = 0.5s, t = 0.7s and
t = 0.9s (left), along with error plots based on values of N (right) in Example 4.
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Figure 8 offers a comparison between the exact and approximated state functions for vari-
ous time points in Example 4, at demonstrating the accuracy of the proposed method utilizing
rational RBFs. The exact solution, presented alongside the approximated solution, serves as a
benchmark for evaluating themethod’s performance in capturing the dynamics of the state func-
tion over time. The figure illustrates excellent agreement between the exact and approximated
solutions across considered all time intervals.

Table 7: Values of RMS and L∞ errors for state and control functions at various time points in Example 4

Error t = 0.2 t = 0.5 t = 0.7 t = 0.9

∥w − w̄∥L2 0.0019 0.1194 0.1289 0.0109
∥w − w̄∥L∞ 0.1229-E5 0.2828-E5 0.3565-E5 0.3918-E5
∥v − v̄∥L2 0.0050 0.0037 0.0101 0.0478
∥v − v̄∥L∞ 0.2364-E5 0.5427-E5 0.6773-E5 0.7250-E5

Table 7 summarizes theL2 andL∞ norm errors for the computed state and adjoint functions
at various time points in Example 4. The results presented in the table demonstrate the high
accuracy achieved by the rational RBF method across all time steps. The errors are consistently
low, underscoring the method’s robustness in solving the state and adjoint equations. Further-
more, the L∞ errors are effectively well-controlled, indicating the rational RBFs’ capability to
manage steep gradients and localized variations adeptly.

This example demonstrates the effectiveness of the proposed method in accurately solv-
ing the parabolic optimal control problem, achieving high precision in both state and adjoint
functions over various time intervals. The results highlight the robustness of the rational RBF
approach and its applicability in addressing complex dynamic systems.

5 Conclusion

This paper introduces a meshless approach utilizing rational radial basis functions (RBFs) to
address the optimal control problem associated with parabolic partial differential equations
(PDEs). By using the precise and adaptable characteristics of rational RBFs, the proposed
method effectively navigates the computational challenges inherent in these complex, dynamic
problems. Furthermore, we have developed a hybrid rational RBF interpolation technique for
diverse applications. This hybrid approach capitalizes on the strengths of both Gaussian and
quadratic RBFs, allowing for enhanced flexibility and accuracy depending on the specific na-
ture of the problem. The numerical results demonstrate the robustness and efficacy of the pro-
posed method, with the estimated state and adjoint functions closely approximating the exact
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solutions. The observed small L2 and L∞ errors across various time points, coupled with the
method’s ability to handle sharp transitions and intricate solution features, indicate its poten-
tial as a reliable tool for solving parabolic PDEs in optimal control scenarios. Notably, the
meshless nature of the rational RBF approach facilitates the management of complex geome-
tries and boundary conditions while ensuring computational efficiency. These attributes make
the method especially advantageous in applications where traditional grid-based techniques
may falter or prove or computationally prohibitive. In summary, the proposed rational RBF
framework presents a powerful, precise, and flexible methodology for solving optimal control
problems involving parabolic PDEs. Future research could expand this approach encompass to
more complex systems, such as nonlinear PDEs or multiphysics problems, while also exploring
the integration of adaptive strategies to further enhance efficiency and scalability.
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