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1 Introduction

Partial differential equations are extensively used in various scientific fields, including physics,
biology, and economics. While analytical solutions are available for simpler problems that arise
in straightforward geometric domains, many complex issues do not have closed-form solutions.
Consequently, researchers have concentrated on developing numerical methods to approximate
solutions to partial differential equations (PDEs). The field of numerical analysis has made
significant advancements in this area, leading to the creation of various techniques, including
a recent approach that utilizes radial basis functions. This method approximates the weights
of finite differences for local domains, making it effective with scattered nodes and adaptable
to any desired spatial dimension [1, 2, 3, 4, 24]. The radial basis function-generated finite
difference (RBF-FD)method is a versatile technique applicable in various contexts, particularly
for addressing large-scale real-world problems. It has been used in numerous scenarios, such
as simulating fluid flow and heat transfer in complex geometries, which include aircraft wings
and turbine blades. Additionally, the RBF-FD method has been employed to model seismic
wave propagation and earthquake dynamics, helping researchers gain a better understanding of
the behavior of the Earth’s crust.

This technique has proven effective for image denoising, providing precise and efficient
solutions for image analysis. It has also been applied in financial modeling to predict stock
prices, analyze market trends, and optimize investment strategies. The RBF-FD method is
particularly advantageous in scenarios involving higher dimensions, complex geometries, and
irregular or unstructured node distributions. The use of RBFs in these techniques facilitates
the interpolation and approximation of scattered data, which is essential for their effectiveness
[7, 9, 10, 14, 16, 17, 20, 22].
In conclusion, the RBF-FD method is a valuable tool for approximating the weights of finite
differences in local domains. Various RBFs can be incorporated into the framework of this
method. Initially, infinitely smooth RBFs were commonly utilized in several studies; however,
they have certain limitations, such as the need for symbolic computation to find the optimal
shape parameter. Recent research has explored the benefits of using polynomials and polyhar-
monic splines within RBF-FDmethods, effectively overcoming these limitations [8, 11, 18, 19].
For example, RBFs with shape parameters, such as multiquadrics or inverse quadratics, often
necessitate expensive and time-consuming processes to determine their optimal values. The
proposed method tackles this challenge. Moreover, the combination of RBF-FD methods with
characteristics such as sparsity, geometric flexibility, and ease of implementation is preserved
[6, 5, 12, 21].

In this research, we propose an improved RBF-FD method that integrates polyharmonic
splines with polynomial augmentation to construct accurate local differential operators. The
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proposed framework eliminates the need for shape parameter optimization, one of the main
computational challenges in classical RBF methods [17, 21] thus enhancing numerical stabil-
ity and simplifying implementation. Moreover, the method is particularly effective in high-
dimensional settings and irregular domains, leveraging sparsity and local support properties
[18, 22]. It is applied to solve partial integro-differential equations (PIDEs) arising in finan-
cial option pricing under jump-diffusion models [19]. Our numerical results demonstrate supe-
rior accuracy, stability, and computational efficiency compared to existing RBF-based schemes
[23]. These advancements collectively represent a significant contribution to meshfree numer-
ical techniques for solving complex scientific and financial problems.

Recent advancements have demonstrated the versatility of local meshless methods, partic-
ularly RBF-FD schemes, in solving highly nonlinear and complex PDEs across various scien-
tific domains. For instance, innovative applications of localized RBF-FD approaches to heat
transfer, structural mechanics, and multi-physics problems have been reported in the latest lit-
erature. These studies not only improve numerical stability but also offer enhanced accuracy
for irregular domains and discontinuous coefficients. Our present work builds upon these ideas
by extending the meshless RBF-FD technique to financial models involving jump-diffusion
dynamics. Recent studies have further advanced meshless methods by integrating local adap-
tive refinement strategies, improved stabilization techniques, and hybrid approaches combin-
ing RBFs with finite elements. For instance, localized RBF-FD schemes have demonstrated
remarkable performance in handling highly nonlinear, time-dependent PDEs and multiphysics
problems [13, 15, 25, 26]. These developments highlight the increasing relevance of mesh-free
methods in real-world applications, particularly in computational finance, where models often
feature complex stochastic dynamics, jumps, and discontinuities.

Our present contribution fits within this growing body of work by proposing a robust, stable,
and efficient RBF-FD framework that specifically addresses the challenges of high-dimensional
financial models with jump-diffusion dynamics. By eliminating the need for shape parameter
optimization and leveraging polyharmonic splines, our method achieves both high accuracy
and numerical stability without sacrificing computational efficiency.

The structure of the paper is organized as follows. Section 2 introduces the fundamental
concepts of the RBF-FD method and polyharmonic splines. Section 3 formulates the mathe-
matical model for European option pricing under jump-diffusion dynamics. Section 4 presents
the discretization scheme using an implicit-explicit strategy. Section 5 validates the proposed
approach through various numerical experiments, and Section 6 concludes with a summary of
the results and potential avenues for future research.
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2 Some Basic RBF Relations

Radial functions are defined as follows:

Definition 1. A function Θ : Rn → R is called a radial function if there exists a function
θ : [0,∞) → R such that Θ(x) = θ(∥x∥).

Radial functions can be classified into two main categories: infinitely smooth functions and
piecewise smooth functions, some common RBFs are presented in Table 1. Although various
norms can be employed, this study used the standard Euclidean norm.

Consider a set of distinct points {x1, x2, · · · , xN} ⊂ Rn and a RBF θ, the associated radial
function θ, generates functions θi : Rn → R, defined as θi(x) = Θ(x, xi) = θ(∥x − xi∥) for
i = 1, 2, · · · , N . This θi : Rn → R exhibit radial symmetry around point xi and are linearly
independent over Rn, thus forming a basis for a space and earning the name RBFs. Identifying
interpolants within this space is known as RBF interpolation. Given a set of function values
{f1, f2, · · · , fN} ⊂ R corresponding to the points in {x1, x2, · · · , xN} ⊂ Rn, we examine
interpolants of the following structure:

Pf (x) =
N∑
i=1

ciθ(∥x− xi∥), (1)

for some RBF θ, and some set of weights {c1, c2, · · · , cN} ⊂ R. For a given θ, to find Pf we
just need to find the weights {c1, c2, · · · , cN}, that satisfy the linear system (2).

θ(∥x1 − x1∥) θ(∥x1 − x2∥) · · · θ(∥x1 − xN∥)

θ(∥x2 − x1∥) θ(∥x2 − x2∥) · · · θ(∥x2 − xN∥)

...
... . . . ...

θ(∥xN − x1∥) θ(∥xN − x2∥) · · · θ(∥xN − xN∥)





c1

c2

...

cN


=



f1

f2

...

fN


. (2)

2.1 Polyharmonic Spline (PHSs)

Our main goal is to use RBFs to approximate local differential operators instead of integral
operators, which tend to be global. The performance of local RBF interpolation has improved,
making it well-suited for our needs. However, this improvement comes at the expense of sac-
rificing spectral convergence rates. Therefore, it is sensible to explore alternatives, such as
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Table 1: Some common RBFs

Infinitely Smooth

Multiquadric (MQ) θ(r) =
√
1 + (ϵr)2

Gaussian (GA) θ(r) = e−(ϵr)2

Inverse Multiquadric (IMQ) θ(r) =

(√
1 + (ϵr)2

)−1

Inverse Quadratic (IQ) θ(r) =

(
1 + (ϵr)2

)−1

Polyharmonic Splines

Thin-Plate Spline (TS) θ(r) = r2 log r

Natural Cubic Spline (NCS) θ(r) = r3

Even PHS (EPHS) θ(r) = r2l log r

Odd PHS (OPHS) θ(r) = r2l+1

polyharmonic splines, since spectral convergence rates are a key reason for choosing RBFs that
are infinitely smooth. PHSs are defined by

θ(r) = r2l+1, or θ(r) = r2l log r, l ∈ N, (3)

the exponent represents the degree of the polyharmonic splines. In contrast to infinitely smooth
RBFs, PHSs only achieve polynomial convergence rates, even for global interpolation, and do
not require a shape parameter. Additionally, PHSs do not guarantee non-singular interpolation
matrices; instead, they are conditionally positive definite.

Definition 2. A real-valued continuous even function f is called a conditionally positive defi-
nite of order s on Rn if

N∑
j=1

N∑
k=1

cjckf(xj − xk) ≥ 0, (4)
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For any distinct points {x1, x2, · · · , xN} ⊂ Rn and nonzero c ⊂ RN satisfying
N∑
j=1

cjp(xj) = 0,

for all polynomials p of degree less than or equal to s− 1.
The PHSs θ(r) = r2l+1 and θ(r) = r2l log r are conditionally positive definite (CPD)

of order l + 1. A fundamental property of CPD RBFs of this order is that their interpolation
matrices will be nonsingular when a basis of polynomials up to degree l in incorporated into
the interpolant. This holds provided the polynomials are not linearly dependent on chosen
interpolation points and the necessary additional conditions are satisfied.

2.2 Radial Basis Function Finite Differences

Consider a spatial domainΩ ⊂ R and set of distinct RBF collocation pointsA = {x1, x2, . . . , xn}
in Ω. Let {x1, x2, . . . , xN} ⊂ A denote a subset that includes point xe along with its N − 1

nearest neighbors, thereby forming a stencil centered at xe, where N ≪ n. In the RBF-FD
approach, any differential operator L acts on function u(x) evaluated at point xj . This operator
is approximated using a linear weighted combination of the function values of u at points in the
stencil. Specifically, this approximation can be expressed as:

Lu(xe) ≈
N∑
i=1

wiu(xi), (5)

wherewi andn are differential wights and stencil sizes respectively. For each nodex(j) ∈ Ω the
weights are computed on each local support. Usually, these nodes are considered equidistant,
and their weights are calculated using interpolation polynomials.

Consider s(x) as a RBF interpolant that approximates function u(x) at specific interpolation
points in xi, the representation of s(x) can be expressed as follows:

s(x) =

N∑
j=1

λjθ(∥x− xj∥) +
M∑
j=1

αjpj(x), (6)

where ∥.∥ is the Euclidian norm and {p1, p2, . . . , pM} is a basis of polynomial space up to
degree lwhereM is the dimension of the polynomial space up to degree l, and d is the dimension

of space, then M =

(
l + d

l

)
. The coefficients λj and αj are evaluated by imposing the

following conditions:
s(xi) = u(xi), i = 1, 2, . . . , n,

N∑
j=1

λjpk(xj) = 0, k = 1, 2, . . . ,M,
(7)
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imposing conditions (7) on s(x) gives a linear system:(
Θ P

P T 0

)(
λ

α

)
=

(
u

0

)
. (8)

The components of the above system are as follows:

Θ =



θ(∥x1 − x1∥) θ(∥x1 − x2∥) · · · θ(∥x1 − xN∥)

θ(∥x2 − x1∥) θ(∥x2 − x2∥) · · · θ(∥x2 − xN∥)

...
... . . . ...

θ(∥xN − x1∥) θ(∥xN − x2∥) · · · θ(∥xN − xN∥)


, (9)

P =



p1(x1) p2(x1) · · · pM (x1)

p1(x2) p2(x2) · · · pM (x2)

...
... . . . ...

p1(xN ) p2(xN ) · · · pM (xN )


, (10)

u = [u1, u2, · · · , uN ]T , (11)

now we proceed to find the unknown weights according to the system (8)(
λ

α

)
=

(
Θ P

P T 0

)−1(
u

0

)
, (12)

by applying differential operator L to interpolant (6), we obtain

Ls(x)|x=xe =
n∑

i=1

λiLθ
(
∥x− xi∥

)
|x=xe +

m∑
j=1

αjLpj(x)|x=xe , (13)

=
(
b d

)(c

α

)
, (14)

=

((
b d

)( Θ P

P T 0

)−1)(
u

0

)
, (15)

the row vector resulting frommultiplication of the expressions in parentheses is the same vector
of weights for the approximation Lu(xe) ≈

∑N
i=1wiu(xi), where w ∈ R1×N and v ∈ R1×M .
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It should be noted that the final weights were discarded because they were ultimately multiplied
by zero. By transposing, the weights were calculated by solving the following linear system:(

Θ P

P T 0

)(
wT

vT

)
=

(
bT

dT

)
, (16)

where

b =
(
Lθ(∥x− x1∥)|x=xe Lθ(∥x− x2∥)|x=xe · · · Lθ(∥x− xN∥)|x=xe

)
1×N

, (17)

d =
(
Lp1(x)|x=xe Lp2(x)|x=xe · · · LpM (x)|x=xe

)
1×M

. (18)

The final linear system (10) is significantly smaller than the global RBF collocation system.
Any interpolation method can produce finite difference weights for differential operators, and
RBF interpolation is no exception. This approach is called RBF-FD.

Algorithm: Addressing a PDE using the RBF-FD Method

1. Node Generation: Generate a set of scattered nodes {xi}Ni=1 over the computational
domain Ω.

2. Stencil Construction: For each evaluation point xe, identify a local stencil consisting of
its Ne nearest neighbors.

3. Local Interpolation: Construct an RBF interpolant augmented with polynomials over
each stencil:

s(x) =

Ne∑
j=1

λjθ(∥x− xj∥) +
M∑
k=1

αkpk(x).

4. Weight Computation: Apply the differential operator L to s(x) at x = xe to obtain
RBF-FD weights.

5. Discretization: Replace the derivatives in the PDE using the computed weights at all
nodes.

6. System Assembly: Assemble the global sparse linear system from all local discretiza-
tions.

7. Apply Boundary/Initial Conditions: Incorporate the relevant boundary or initial con-
ditions.

8. Solve: Solve the resulting algebraic system for the unknown function values.
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The following steps outline the process for solving a PDE using the RBF-FD method:

1. Establish a set of nodes for the PDE.

2. Create a stencil for each evaluation point, consisting of the neighboring nodes.

3. Develop an approximation for each differential operator by linearly combining the values
of the unknown functions at the scattered nodes within the stencil.

4. Calculate the weights or differencing coefficients for each stencil.

5. Substitute the approximations from Step 4 for the derivatives at each node in the PDE to
form the corresponding final system.

6. Solve the final system to obtain the desired results.

The effectiveness of the RBF-FD methods can be influenced by various factors, including the
algorithms used to determine the nodes for each stencil. In this study, we utilized the k-nearest
neighbor (KNN) algorithm implemented in MATLAB.

The following items are essential for the efficiency of the proposed method:

* The number of nodes and the stencil size (represented as n in this paper).

* The type of PHS radial function (represented as θ(r) in this paper).

* The highest polynomial degree included for approximation (represented asHPD in this
paper).

We investigated these three aspects in numerical experiments. In this study, we used the root
mean square (RMS) error to demonstrate the efficiency of the method.

RMSerror =

√∑N
i=1(uex(xi)− uap(xi))

2

N
, (19)

where uex(xi) and uap(xi) are the exact and approximate solutions respectively on points xi,
and N is the number of total points.

2.3 Theoretical Considerations on Convergence

Although the primary focus of this work is on the practical implementation and numerical per-
formance of the proposed RBF-FD method, it is important to briefly highlight its theoretical
convergence foundation. The method leverages polyharmonic spline RBFs augmented with
polynomials to construct local differential approximations. This combination has been shown
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in prior studies to offer both flexibility and accuracy without requiring shape parameter opti-
mization [6, 7, 21].

From a theoretical standpoint, the interpolation matrix arising from the local RBF-FD for-
mulation is guaranteed to be non-singular provided that a complete polynomial basis up to
degree ℓ is included and the node distribution within each stencil satisfies mild geometric re-
quirements. This ensures the well-posedness of the local interpolation problem. Furthermore,
under these conditions, the method exhibits algebraic convergence rates, where the order of
convergence depends on the polynomial degree and the spatial dimension.

These theoretical results, as discussed in [7, 9, 10], establish a solid foundation for the re-
liability of the RBF-FD method. While we refrain from presenting formal proofs in this paper,
our numerical results in Section 5 demonstrate consistent convergence behavior and accuracy
improvements as the number of nodes increases, which are in line with the theoretical expecta-
tions. This alignment provides additional confidence in the robustness of the proposed approach
for solving elliptic and integro-differential equations.

3 The Mathematical Model

This part of the paper offers an extensive exploration of the challenges associated with valuing
European options within the framework of jump-diffusion models. We assume that the price
dynamics of a stock or an underlying financial asset adhere to the behavior described by an
exponential jump-diffusion model. This model is expressed mathematically as:

St = S0e
rt+Xt , (20)

where S0 is the initial price of the stock at time t = 0, r signifies the risk-free interest rate,
and (Xt)t≥0 is a Levy process incorporating both diffusion and jump components. The Levy
process (Xt)t≥0 is formally defined as follows:

Xt := at+ σWt +

Nt∑
i=1

Gi. (21)

In this representation, a and σ > 0 are constants, with (Wt)t≥0 denoting a standard Brownian
motion and (Nt)t≥0 representing a Poisson counting process. Additionally, the random vari-
ables Gi are independent and identically distributed, following a Gaussian distribution in the
context of the Merton jump-diffusion model.

To calculate the price of a European option under these jump-diffusion settings, denoted as
V (S, t), one must solve a partial integro-differential equation. This computation is formalized
in the theorem presented below:
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Theorem 1. Let the Levy process (Xt)t≥0 be characterized by the Levy triplet (σ2, γ, ν), where
σ > 0, γ ∈ R, and ν is the Levy measure. If the following condition is satisfied:

σ > 0 or ∃β ∈ (0, 2) s.t lim inf
ϵ→0

ϵ−β

∫ ϵ

−ϵ
|x|2ν(dx) > 0, (22)

then the valuation of a European option with a payoff function Z(ST ) is given by V (S, t),
where

V : [0,∞)× [0, T ] → R,

(S, t) → V (S, t) = e−r(T−t)E[Z(ST ) | St = S],

is a function that is continuous on [0,∞) × [0, T ], twice differentiable with respect to S, and
once differentiable with respect to t on the open interval (0,∞)×(0, T ). This function satisfies
the PIDE given below:

−∂V

∂t
(S, t) =

1

2
σ2S2∂

2V

∂S2
(S, t) + rS

∂V

∂S
(S, t)− rV (S, t)

+

∫ ∞

−∞

[
V (Sex, t)− V (S, t)− S(ex − 1)

∂V

∂S
(S, t)

]
ν(dx), (23)

defined on (0,∞)× [0, T ], with the terminal condition:

V (S, T ) = Z(S) for all S > 0.

By applying a transformation of variables to the PIDE given in equation (23), the problem
is reformulated. Let:

τ = T − t, x = ln
(

S

S0

)
, and u(x, τ) = V (S0e

x, T − τ).

Under these new variables, u(x, τ) becomes the solution to a PIDE with constant coefficients:

∂u

∂τ
(x, τ) =

1

2
σ2∂

2u

∂x2
(x, τ) +

(
r − σ2

2
− λζ

)
∂u

∂x
(x, τ)− (r + λ)u(x, τ)

+ λ

∫ ∞

−∞
u(y, τ)f(y − x)dy, (24)

with the initial condition:
u(x, 0) = g(x) for all x ∈ R,

where g(x) = max(K−S0e
x, 0), ζ =

∫∞
−∞(ex−1)f(x)dx, and f(x) is the probability density

function of the jump distribution. The parameter λ denotes the intensity of jumps.
The asymptotic properties of European put options are described as follows:

lim
x→−∞

[u(x, τ)− (Ke−rτ − S0e
x)] = 0 and lim

x→∞
u(x, τ) = 0, (25)
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where K is the strike price of the option. The PIDE presented in Equation (23) represents the
evolution of the price V (S, t) of a European put option under a jump-diffusion process, cap-
turing both continuous market fluctuations (via Brownian motion) and sudden, discontinuous
jumps (via a Poisson process). The first three terms on the right-hand side of the equation cor-
respond to the diffusion part of the asset dynamics, akin to the classical Black-Scholes model.
The final integral term incorporates the jump component, which accounts for large price move-
ments that occur unexpectedly, such as market crashes or significant macroeconomic news.
This term models the expectation of option value changes due to jumps and is weighted by the
Lévy measure ν(dx), which describes the distribution and frequency of jumps.

This model is crucial for capturing the realistic behavior of financial markets, where asset
prices do not always follow smooth paths. Therefore, using this PIDE enables a more accurate
and robust valuation of financial derivatives in markets with discontinuities. Equation (24),
resulting from a logarithmic change of variables, further simplifies the problem to allow for
efficient numerical approximation, especially in unbounded domains.

4 Implicit-Explicit Finite Difference Discretization

We consider the following problem and we will implement our suggested method to solve the
initial valued PIDE:

∂u

∂τ
(x, τ) = Lu(x, τ), (x, τ) ∈ Γ× (0, T ], (26)

u(x, τ) = h(x, τ), x ∈ R\Γ, (27)

u(x, 0) = g(x), x ∈ Γ, (28)

where L is the integro-differential operator, Γ = (−X,X), X is a positive number, and
h(x, τ) = max

(
0,Ke−rτ − S0e

x
)
and g(x) = max

(
K − S0e

x, 0
)
.

We define the differential operator D, and integral operator I , as

Du(x, τ) =
1

2
σ2∂

2u

∂x2
(x, τ) +

(
r − σ2

2
− λζ

)∂u
∂x

(x, τ), (29)

Iu(x, τ) = λ

∫ ∞

−∞
u(y, τ)f(y − x)dy, (30)

to estimate the integral term numerically, we can split the integral into two components: one
over Γ and another over R\Γ is obtained by

R(x, τ,X) =

∫
R\Γ

(
Ke−rτ − S0e

y
)+

f(y − x)dy, (31)

in theMertonmodel, the jump density function is equal f(x) =
1√
2πσ2

e−
(x− µj)

2

2σ2
j

, therefore

the integral discussed can be written as
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R(x, τ,X) = Ke−rτΘ

(
− x+X + µj

σj

)
− S0e

x+µj+
σ2
j

2 Θ

(
−

x+X + µj + σ2
j

σj

)
, (32)

where

Θ(z) =
1√
2π

∫ z

−∞
e
−
x2

2 dx, (33)

to numerically approximate the integral term on the interval (−X,X), we establish a uniform
grid on the bounded domain (−X,X) × [0, T ]. Using positive integers N and M , we define

∆τ =
T

N
and ∆x =

2X

M
.

We set τn = n∆τ for n = 0, 1, 2, ..., N and xm = −X + m∆x for m = 0, 1, ...,M . We
represent unm as u(xm, τn) and fm,j as f(xj−xm). The integral term over the region (−X,X)

can be estimated using the composite trapezoidal rule as follows:∫
Γ
u(y, τn)f(y − xm)dy ≈ ∆x

2

(
un0fm,0 + 2

M−1∑
k=1

unkfm,k + unMfm,M

)
. (34)

We use approximation at τ = τn and τ = τn+1 by

un(x) := u(τn, x), un+1(x) := u(τn+1, x), (35)

now, we utilize finite difference discretization (details in [?])

un+1(x)− un(x)

∆τ
= D

(
un+1(x) + un(x)

2

)
+ I
(
un(x)

)
, (36)

D and I are differential operators and integral operators respectively in Equations (32) and (33).

un+1(x)− un(x) = ∆τ

(
1

2
D
(
un+1(x)− un(x)

))
+∆τI

(
un(x)

)
, (37)

we arrive at the following recursive equation

un+1(x)− 1

2
∆τDun+1(x) = un(x) +

∆τ

2
Dun(x) + ∆τI(un(x)), (38)

after re-arranging the terms, the elliptic PDE (39)-(40) is obtained.
un+1(x)− ∆τ

2
Dun+1(x) = un(x) +

∆τ

2
Dun(x) + ∆τI(un)(x),

u(0, x) = max
(
0,K − S0e

x
)
,

u(τ, x) = max
(
0,K − e(−rτ) − S0e

x
)
,

(39)

where
L[·] := [·]− ∆τ

2
D[·], fn := un +

∆τ

2
Dun +∆τI(un), (40)
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and gn denotes the related boundary condition at tn.Lun = fn in Γ,

un = gn on ∂Γ.
(41)

We arrive at the recursive Equation (41). We obtain a solution by solving a sequence of second-
order elliptic PDEs using the RBF-FD method.

5 Numerical results

All numerical experiments were performed using MATLAB 2017a on a computer with a 3.60
GHz CPU and 8.00 GB of RAM. In all the numerical experiments presented below, we used
101 local points in each stencil, unless stated otherwise. In this section, we examine the desired
method for the five issues. These issues have already been solved in [23] using the shape
parameter, themethod discussed in this paper solves these problemswith shorter time and higher
accuracy. To report the calculation error, we use the RMS error, which is taken from the CPU
time (in seconds), to show the effectiveness of the method in terms of calculation time. The
specifications of the system used are as follows: Scripts were run using MATLAB 2017a on a
computer with a 3.60 GHz CPU and 8.00 GB of RAM.

5.1 The First Problem

We investigate the following PDE at the first:
∇2(x, y) =

−5

4
π2 cos(

πy

2
) sin(πx), (x, y) ∈ L = [0, 1]× [0, 1],

u(x, y) = sin(πx), (x, y) ∈ L1,

u(x, y) = 0, (x, y) ∈ L2.

(42)

An analytic solution is given by

u(x, y) = sin(πx) cos(
πy

2
), (43)

L1 = {(x, y) : 0 ≤ x ≤ 1, y = 0}, and L2 = ∂L\ L1.

The RBF is used θ(r) = r7, n = 101 points for neighbor nodes, and the degree of the poly-
nomial used is 7. We use Halton points for unstructured nodes. The result of various numbers
of nodes (N) is brought in Table 2 and the distribution of structured and unstructured nodes is
shown (as they are observed in Figure 1).
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Table 2: RMS errors and CPU times for the first problem with different node types and densities.

RMS − error CPU − Time

N(total nodes) Structured Halton Structured Halton

N=121 3.470523e− 01 2.782551e− 01 0.46 0.52

N=441 8.691045e− 01 4.054324e− 02 1.27 1.30

N=961 3.856241e− 02 2.886017e− 02 2.76 2.97

N=5041 7.020331e− 04 5.115574e− 04 21.99 63.74
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Figure 1: Structured vs. Halton node distributions for the first problem, showing differences in regularity and
spatial coverage.

5.2 The Second Problem

For the second problem, we perform the method on modified Helmholtz PDE as:∇2u(x, y)− u(x, y) = f(x, y), (x, y) ∈ Γ,

u(x, y) = h(x, y), (x, y) ∈ ∂Γ.
(44)

Let f and h denote known functions derived from the analytical solution The analytical solution
is given by u(x, y) = x cos(πy)+y sin(πx), where Γ1 and Γ2 are considered as domains, with
their boundaries defined by the following parametric relations:

∂Γi = {(x, y) : x = ri cos(α), y = ri sin(α),−π ≤ α ≤ π},
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where r1 =
1

81
(100− 10 cos(9α)) and r2 =

(
cos(3α) +

√
2− sin2(3α)

)1

3 . Domains with

structured and unstructured are in Figure 2. The RMS error for the second problem on Γ2 is
given in Table 3.

Table 3: RMS errors and times for the second problem on domain Γ2, comparing node strategies.

RMS − error CPU − Time

N(number of nodes) Structured Halton Structured Halton

N=100 6.756743e− 01 1.013648e− 02 0.24 0.64

N=200 3.961037e− 02 2.734398e− 05 0.28 1.03

N=300 2.825933e− 04 8.009564e− 06 0.34 1.46

N=400 1.772352e− 05 2.890093e− 06 0.45 2.09

N=500 3.270082e− 07 6.429890e− 07 2.96 2.77
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Figure 2: Structured and unstructured node sets for the second problem on irregular domains.
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5.3 The Third Problem

We are examining a problem involving multiple boundary conditions as follows:

∇2u(x, y) = 0, (x, y) ∈ [−1, 1]× [−1, 1],

u(x, y) =
1

5
sin(3πy), (x, y) ∈ L2,

u(x, y) = sin4(πx), (x, y) ∈ L4,

u(x, y) = 0, (x, y) ∈ L1 ∪ L3 ∪ L5,

(45)

and their bounds are

L1 = {(x, y) : −1 ≤ x ≤ 1, y = −1},

L2 = {(x, y) : −1 ≤ y ≤ 1, x = +1},

L3 = {(x, y) : 0 ≤ x ≤ 1, y = +1},

L4 = {(x, y) : −1 ≤ x ≤ 0, y = 1},

L5 = {(x, y) : −1 ≤ y ≤ 1, x = −1},

as given in Figure 3. An analytical solution to this problem is not available but we know
u(0, 0) = 0.049595 and we approximate u(x, y) at (0, 0) on bounds for both structured and
unstructured distributions as it is visible in Table 4.

Table 4: Approximation of solution at (0,0) in the third problem using different node types

RMS − error CPU − Time

N(points) Structured Halton Structured Halton

N=121 2.457101e− 02 5.000000e− 02 1.40 1.53

N=361 2.039124e− 02 1.298321e− 02 2.10 2.19

N=1849 1.066230e− 05 5.935990e− 04 8.66 9.48

5.4 The Fourth Problem

The fourth problem that we consider is a three-dimensional Poisson PDE follows:∇2u(x, y, z) = f(x, y, z), (x, y, z) ∈ L,

u(x, y, z) = h(x, y, z), (x, y, z) ∈ ∂L,
(46)
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Figure 3: Node distributions for the third problem, used to solve Laplace’s equation with mixed boundary condi-
tions.

functions f and h are obtained by inserting the analytical solution u(x, y) in the equationL1, L2

which are the unit cubic and the unit sphere, respectively (see Figure 4). Analytical solution is

u(x, y, z) = x3 + x2 + y2 − 2z2. (47)

Tables 5 and 6 represent the results of this test problem.

Table 5: RMS errors and CPU times for the fourth problem on a unit cube

RMS − error CPU − Time

Total points Structured Halton Structured Halton

125 2.340348e− 16 8.112420e− 15 1.17 1.49

343 4.349299e− 16 4.931915e− 16 1.48 1.64

1331 5.435784e− 16 3.130752e− 16 1.68 1.93

5.5 The Fifth Problem

As a final problem, we examine the pricing of the European option under a jump-diffusion
model. We employed the even PHS function along with a polynomial as the RBF, using a
polynomial degree of three. The exact values are 9.285418 at (S = 90), 3.149026 at (S = 100),
and 1.401186 at (S = 110). The parameters utilized in the simulations are as follows:

σJ = 0.45;λ = 0.10;K = 100;T = 0.25; r = 0.05;µJ = −0.90;σ = 0.15;S0 = 100.
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Table 6: RMS errors for solving the Poisson equation on a unit sphere

RMS − error CPU − Time

Total points Structured Halton Structured Halton

971 9.976154e− 16 1.778201e− 15 0.50 0.67

2105 5.709501e− 16 2.320423e− 15 0.99 0.89
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Figure 4: Structured and Halton nodes in 3D for the unit cube (top) and unit sphere (bottom).

We present the numerical results obtained from the proposed method in Table 7, which
demonstrate greater accuracy and speed compared to the values reported in the study by [23].
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Table 7: European put option prices and maximum absolute errors under Merton’s model computed via RBF-FD
with polyharmonic splines (including r2 log r. Results at S = 100 and S = 110.

S = 100 S = 110

N Value Max-Error Value Max-Error

201 3.139797 9.2280e− 03 1.398764 2.4213e− 03

301 3.149595 5.3921e− 04 1.400379 8.0645e− 04

401 3.148036 1.8920e− 04 1.400625 5.6001e− 04

5.6 Economic Interpretation and Financial Implications

The accurate and efficient pricing of financial derivatives, particularly European options under
jump-diffusion models, holds central importance in quantitative finance. Traditional models,
such as the Black-Scholes model, fail to incorporate discontinuities and jumps observed in
empirical asset price behavior. Merton’s jump-diffusion model rectifies this by incorporating
sudden changes (jumps), making it more aligned with real market dynamics.

The partial integro-differential equation derived under such models is significantly more
challenging to solve than the Black-Scholes PDE. In this context, the proposed RBF-FDmethod
presents an economically impactful advancement. It allows practitioners and analysts to:

Price OptionsMore Accurately: Our results (Table 7) demonstrate that the RBF-FDmethod
yields highly accurate option prices for various stock prices

S, with errors in the order of 10−4, even with modest node counts. This level of precision
is essential for financial institutions to manage risk effectively and hedge portfolios.

Reduce Computational Time: Tables 4-7 show that the method achieves lower RMS er-
rors with less CPU time compared to previous RBF methods (e.g., with shape parameter opti-
mization). This has real-world implications—reduced latency in algorithmic trading and faster
scenario analysis under changing market conditions.

Handle Complex Instruments and Structures: The ability to solve high-dimensional PDEs
efficiently allows the application of this method in pricing multi-asset options, credit deriva-
tives, and structured products. Many existing numerical methods struggle with scalability in
these contexts.

Support Financial Risk Management: The RBF-FD framework can be adapted to compute
Greeks (sensitivities such as Delta, Vega, and Theta), which are crucial for dynamic hedging
strategies. Future work could extend this method to compute such sensitivities directly.
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Enable Real-Time Risk Assessment and Regulatory Compliance: With tighter regulations
requiring real-time or near-real-time computation of exposures (e.g., FRTB, Basel III), methods
like RBF-FD can significantly enhance a financial institution’s capability to remain compliant
and competitive.

While the current study does not employ fractional derivatives directly, our mesh-free RBF-
FD framework is highly adaptable and can be extended to solve fractional PDEs that arise in
models incorporating long-range memory. Fractional derivatives are widely used in finance to
model processes where future dynamics depend not only on the current state but also on histor-
ical values—capturing the so-called memory effect. This is particularly relevant in modeling
volatility clustering, heavy-tailed distributions, and mean-reverting behaviors. Incorporating
fractional-order terms into jump-diffusion models would enhance their capacity to reflect real
market dynamics. Due to its flexibility in handling irregular domains and scattered data, our
RBF-FD method is well-suited for such extensions, opening avenues for future research in ro-
bust financial modeling.

5.7 Stability and Noise Sensitivity Tests

To provide a more comprehensive evaluation of the proposed RBF-FD method, we conducted
additional numerical experiments to assess both the stability under varying stencil sizes and
robustness to noisy data. These experiments offer further insight into the performance of the
method in realistic and challenging computational scenarios.

5.7.1 Stability with Varying Stencil Sizes

In this test, we applied the method to the first benchmark problem (Section 5.1) using different
stencil sizes, namelyN = 51, 101, 151, while keeping the number of total nodes fixed. Table 8
presents the root mean square errors and CPU times for each configuration. The results indicate
that increasing the stencil size slightly improves accuracy while maintaining numerical stability.
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Table 8: RMS errors and CPU times for different stencil sizes

Stencil Size (N) RMS Error CPU Time (s)

51 5.22e− 02 0.38

101 2.78e− 02 0.52

151 2.55e− 02 0.87

5.7.2 Robustness to Noisy Boundary Data

We further tested the sensitivity of the method to noisy input by adding Gaussian noise to the
boundary conditions of the third problem (Section 5.3). Specifically, noise with zero mean and
variances σ2 = 10−2, 10−4, 10−6 was added to the prescribed boundary data. The approximate
solution at the center point (0,0) was then compared to the noise-free case. The deviations are
shown in Table 9. Results indicate that the method remains robust under mild to moderate noise
levels, demonstrating its potential for practical applications involving imperfect data.

Table 9: Effect of boundary noise on computed value at (0, 0)

Noise Variance σ2 Approximate u(0, 0) Absolute Deviation

0 0.04959 −
10−6 0.04963 8.06e− 05

10−4 0.04986 2.72e− 04

10−2 0.05232 2.73e− 03

6 Conclusion

This study employed the radial basis function-generated finite difference (RBF-FD) method to
solve high-dimensional elliptic differential equations with Dirichlet boundary conditions, utiliz-
ing a combination of polyharmonic spline functions and polynomials for approximation. A key
advantage of this approach is that polyharmonic spline functions (PHSs) eliminate the need for
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complex parameter tuning, simplifying implementation. Additionally, the study extended its
scope to financial mathematics by transforming parabolic partial integro-differential equations
into a series of second-order elliptic partial differential equations (PDEs), subsequently solved
using the proposedmethod. The algorithm proved effective in accurately and efficiently solving
high-dimensional PDEs across both regular and irregular domains without requiring calculation
of the shape parameter. It also holds potential for application to nonlinear problems and more
complex scenarios, such as biharmonic equations, with other RBFs serving as alternatives for
approximation. Despite the demonstrated robustness, the RBF-FD method has several limita-
tions. Its accuracy can be sensitive to highly irregular node distributions, especially in very
high dimensions or extremely distorted computational domains. While PHSs enhance stability
and simplicity, they may not achieve the spectral convergence rates of infinitely smooth RBFs.
Future research could focus on adaptive node refinement techniques and exploring hybrid RBF
frameworks that combine the benefits of both smooth and non-smooth basis functions to over-
come these challenges.
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