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1 Introduction

Linear Singularly Perturbed Systems (LSPSs) are extensively utilized in modeling complex
physical systems that involve both fast and slow dynamics. These systems are characterized
by the presence of a small perturbation parameter that introduces significant coupling between
the fast and slow states. While this structure provides a powerful framework for describing
real-world phenomena, it also presents substantial challenges in control design, particularly in
achieving numerical stability and computational efficiency. Consequently, the optimal control
of LSPSs has attracted significant attention in the field of control theory [20]. Traditional meth-
ods for controlling LSPSs often rely on solving the Algebraic Riccati Equation (ARE) or using
iterative algorithms such as the Kleinman algorithm [12]. These approaches have been shown
to perform well in certain cases but can encounter severe difficulties when the system exhibits
ill-conditioning or indefinite quadratic terms in the ARE [15, 20]. Additionally, these methods
are computationally expensive for high-dimensional systems, which further motivate the need
for innovative control strategies that address these limitations.
One promising approach to tackling the complexity of LSPSs is the application of singular per-
turbation theory. This method decomposes the original system into reduced-order subsystems
corresponding to the fast and slow dynamics. Such decomposition simplifies the control design
process, as demonstrated in [13, 14, 23]. For instance, [23] proposed a decentralized composite
control strategy for two-time-scale networks, effectively addressing the ill-conditioning and di-
mensionality challenges by combining model-based fast controllers with data-driven slow con-
trollers. Similarly, [13] introduced a novel dual-input control strategy, where separate inputs
are used for fast and slow states, enabling more flexible and efficient control of these systems.

Recent advancements in reinforcement learning (RL) have provided a model-free alter-
native for controlling LSPSs, particularly when system dynamics are partially or entirely un-
known. In RL- based methods, neural networks are used to approximate given cost functions
and reconstruct unmeasurable states, which enable the design of adaptive controllers without
relying on precise system models [14, 16]. Despite their effectiveness, RL-based approaches
often suffer from high computational costs and extended learning times, which limit their prac-
tical applicability, especially for systems with stringent performance requirements [14, 21].
In [5], a mixedH2/H∞ feedback approach using reduced-order models achieved near-optimal
performance with lower computational effort. Similarly, [4] employed balanced model reduc-
tion and perturbation approximations to simplify feedback control problems, alleviating numer-
ical stiffness and ensuring robust performance for large-scale systems.

One of the methods for controlling linear systems is to use the pole assignment method in
linear systems with state feedback. Karbassi and Bell [11] introduced an algorithm to derive an
explicit parametric controller matrix through elementary similarity transformations that convert
the controllable pair into a primary vector companion form.
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This paper introduces a novel approach to the optimal control of LSPSs by leveraging eigen-
value placement through the Certainty Matrix. Unlike traditional methods that rely on reduced-
order modeling [22] or RL-based algorithms [20], the proposed method directly incorporates
the system’s eigenstructure into the control design. By doing so, it provides a robust framework
for addressing the ill-posedness of Riccati equations and ensuring the convergence of iterative
algorithms such as Kleinman’s method. Furthermore, the proposed method facilitates the op-
timal placement of eigenvalues, enabling simultaneous control of fast and slow dynamics with
guaranteed stability and effective computational cost reduction.

In recent years, several notable advancements in the field of optimal control have been pro-
posed that offer novel perspectives on dealing with time delays, fractional dynamics, and non-
linearities.For instance, an efficient finite difference method has been applied to handle optimal
control problems with time-varying delays [8], and a new modal series representation was pro-
posed to solve nonlinear optimal control problems [9]. Moreover, a novel fractional model and
control framework has been introduced for tumor-immune systems using non-singular deriva-
tives [2], while a precise finite difference formula was recently developed for numerically solv-
ing fractional optimal control problems with delay dependencies [1]. These advancements re-
flect the evolving nature of optimal control theory and further motivate the development of
robust and generalizable approaches such as the one presented in this paper.

Also significant attention has been devoted to the design of precise and robust control
strategies for nonlinear systems and the optimization of their performance. In this regard,
Ebrahimipour and Mirhosseini-Alizamini [6] proposed an optimal adaptive sliding mode con-
troller for a class of nonlinear affine systems, ensuring system stability and desired performance.
Furthermore, Hashemi Borzabadi et al. [7] introduced a sub-ordinary approach to obtain near-
exact solutions for optimal control problems, demonstrating high accuracy and computational
efficiency.

In this paper, a new robust optimal algorithm based on eigenvalue assignment in a pre-
scribed region is designed. The proposed method is free on ill-conditioned numerical issue and
guarentee the stability of the system for the purpose a theorem is proved for stability analysis and
analytical support of the proposed method. Compared to model reduction techniques that may
compromise performance by ignoring high-frequency dynamics, our approach fully preserves
the system’s structure and ensures robustness against singular perturbations. This distinction
makes the proposed method more reliable and efficient for real-time and high-dimensional con-
trol tasks.

The proposed method assigns the best eigenvalues of the LSPS, which overcomes to numer-
ical ill-conditioning, in an inverse parametric optimal control approach. Additionally, a novel
algorithm is developed based on the invers parametric optimal control approach to ensure ro-
bustness and stability of the LSPS control. Also, the computational efficiency of the method
is increased by avoiding solving complex the Riccati equation. This paper is organized in five
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sections. Linear singularly perturbed system dynamic and its challenges are introduced in sec-
tion 2. Section 3 presents an inverse optimal control method, a theorem and a new algorithm to
facilitate application of the proposed method. Two example are simulated in section 4. Finally,
the conclusion of this paper is presented in section 5.

2 Problem Statement

Consider the following linear singularly perturbed optimal control system:[
ẋ1(t)

ϵẋ2(t)

]
=

[
A11 A12

A21 A22

][
x1(t)

x2(t)

]
+

[
B1

B2

]
u(t), (1)

where the objective is to minimize the cost function:

J(x, t) =

∫ ∞

t

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
dτ, (2)

with weighting matrices Q ≥ 0 and R > 0. The singular perturbation parameter satisfies
0 < ϵ ≪ 1 . The state vector is defined as x(t) =

[
xT1 (t), x

T
2 (t)

]T ∈ Rn, where x1(t) ∈ Rn1

contains the fast states and x2(t) ∈ Rn2 the slow states, with n = n1 + n2. The control input
is denoted by u(t) ∈ Rm, and the system matrices Aij and Bi (for i, j = 1, 2) have suitable
dimensions. Let

Aϵ =

[
A11 A12

ϵ−1A21 ϵ−1A22

]
, Bϵ =

[
B1

ϵ−1B2

]
, (3)

where the dimensions of the matrices Aij and Bi are specified as follows:

• A11 ∈ Rn1×n1 : interactions among fast states.

• A12 ∈ Rn1×n2 : coupling from slow to fast states.

• A21 ∈ Rn2×n1 : effect of fast states on slow states.

• A22 ∈ Rn2×n2 : interactions among slow states.

• B1 ∈ Rn1×m: control input influence on fast states.

• B2 ∈ Rn2×m: control input influence on slow states.

The dimensions of the matrices above play a crucial role in formulating the system’s dy-
namics and guiding the analysis of the perturbation effects in both fast and slow subsystems.
This formulation provides a proper modeling of singularly perturbed systems, allowing for the
analysis of the system’s behavior under different perturbation scales and guiding the design of
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effective control strategies that balance the fast and slow dynamics.
The goal of this paper is to design an optimal controller for system prescribed in (1), (2). The
proposed controller can be considered as follows:

u(t) = −Kϵx(t). (4)

Assumption 1: Suppose the following conditions hold:

a. The pair (Aϵ, Bϵ) is controllable,

b. The pair (Aϵ,
√
Q) is observable.

The main challenge addressed in this study is the difficulty of achieving optimal control for
Singularly Perturbed Systems (SPS), which exhibit both fast and slow dynamics, making them
prone to numerical instability and high computational cost. In this paper, a robust eigenvalue
assignment-based inverse optimal control technique is proposed to overcome these challenges,
which reduces computational cost while maintaining system stability and optimality. This ap-
proach provides a robust and efficient alternative to conventional control methods.

3 Inverse Optimal Control of Linear Singularly Perturbed System

Consider a controllable time-invariant linear dynamical system as follows:

ẋ(t) = Aϵx(t) +Bϵu(t), (5)

where x(t) ∈ Rn and u(t) ∈ Rm, and the matrices Aϵ and Bϵ are real constant matrices of
dimensions n× n and n×m, respectively, with rank(Bϵ) = m, as defined in (3). The goal of
eigenvalue assignment is to design a state feedback controller

u(t) = Kϵx(t), (6)

such that the optimal control system prescribed in Equation (1) and (2) is controlled and stability
of the system be guaranteed. IfKϵ ∈ Rm×n is the state feedback matrix. According to (5) and
(6), the closed-loop dynamical system is obtained as follows:

ẋ(t) = (Aϵ +BϵKϵ)x(t). (7)

To design a stable inverse controller for (7), the companion vector form of Aϵ and Bϵ can
be computed using the following relations

Ãϵ = T−1
ϵ AϵTϵ =

[
G0,ϵ

In−m 0n−m,m

]
, (8)
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B̃ϵ = T−1
ϵ Bϵ =

[
B0,ϵ

0n−m,m

]
, (9)

where Tϵ is a similarity matrix [11]. Also,G0,ϵ is anm×nmatrix andB0,ϵ is an upper triangular
m×m matrix. It is worth noting that if the Kronecker variables [17] of the pair Aϵ and Bϵ are
regular, then Ãϵ and B̃ϵ always comply with this structure [10]. The state feedback controller,
which assigns zero to all eigenvalues for the transformed pair Aϵ and Bϵ, is defined as follows:

u = −B−1
0,ϵG0,ϵx = K̃ϵx. (10)

Also,Kϵ in (7) can be obtained using the following relation:

Kϵ = K̃ϵT
−1
ϵ .

Since in the presence of a singular disturbance parameter, eigenvalues located near the ori-
gin lead to high system sensitivity and reduced robustness, it is necessary to shift the eigenvalues
from the origin to a specified region on the left-hand side in the complex plane. To achieve this
objective, we employ the certainty matrix technique. The reader is referred to [19] for more
detailed explanations.

Assume that ÃΛ,ϵ is a matrix in the companion vector form with eigenvalue spectrum Λ =

{λ1, λ2, . . . , λn}, which is

ÃΛ,ϵ =

[
GΛ,ϵ

In−m On−m,m

]
, (11)

then
K̃ϵ = −B−1

0,ϵ (G0,ϵ −GΛ,ϵ), (12)

is the feedback matrix that assigns the spectrum of eigenvalues Λ to the closed-loop matrix
Γ̃ϵ = Ãϵ + B̃ϵK̃ϵ. Furthermore,

Kϵ = K̃ϵT
−1
ϵ = −B−1

0,ϵ (G0,ϵ −GΛ,ϵ)T
−1
ϵ , (13)

is a feedback matrix that assigns the set of eigenvalues to the pair (Bϵ, Aϵ).
In this paper, a matrix called the certainty matrix corresponding to system (1) is used to

assign eigenvalues   in a specific region of the complex plane based on an explicit parametric
control rule with nonlinear parameters.

The certainty matrix is considered as follows

Ãc,ϵ =

[
Gk

c,ϵ

In−m On−m,m

]
. (14)

It is obvious that for the Λ eigenvalue spectrum of the above parametric matrix and the corre-
sponding characteristic equation of the spectrum of Λ, the following relationship holds
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Pn(λ) = det(Ãc,ϵ − λI) = 0. (15)

Let fi(g11, g12, . . . , g1n, g21, . . . , gmn) be coefficients of λ(i) for i = 1, . . . , n in det(Ãc,ϵ−
λI) and ci be coefficient of λ(i) in characteristic polynomial Pn(λ) of the spectrum Λ. Now,
according to (15), it can be inferred

fi(g11, g12, . . . , g1n, g21, . . . , gmn) = Ci, i = 1, 2, . . . , n (16)

where the elements gij of the matrix G̃c,ϵ are defined as follows:

[G̃k
c,ϵ]ij =

gkj , i = k,

1, i ̸= k.

Also, k represents an arbitrary row and the k-th row of G̃k
c,ϵ can be determined by solving the

linear system (16) . The objective is to find the ci values by solving the system, such that all
eigenvalues of the closed-loop matrix corresponding to (5) satisfy the following conditions:

β ≤ Re(λi) ≤ α, i = 1, 2, . . . , n. (17)

Now, based on the definition of the characteristic equation, we have

ti1 < ci < ti2,

such that 
ti1 = min

{
(−1)i

(
n

i

)
αi, (−1)i

(
n

i

)
βi
}
,

ti2 = max
{
(−1)i

(
n

i

)
αi, (−1)i

(
n

i

)
βi
}
,

(18)

where ti1 and ti2 represent the lower and upper bounds of the coefficient for the i-th term,
respectively. Now, assume that ℓ ∈ (0, 1), then

C ′
i = ℓti1 + (1− ℓ)ti2, (19)

the variable ℓ is considered for constructing the convex combination of the upper and lower
bounds of each inequality. Therefore, the system of (16) will be solved using the new coeffi-
cients obtained from (19) as follows:

fi(g11, g12, . . . , g1n, g21, . . . , gmn) = C ′
i i = 1, 2, . . . , n (20)

This is a linear system with n equations and n unknown parameters gkj , which after solving,
by choosing ℓ in the interval (0, 1) and calculating the certainty matrix Ac,ϵ, the state feedback
matrix Kϵ is obtained in such a way that the eigenvalues of the closed-loop matrix are located
in the desired enclosed region. Finally, for the feedback matrixKϵ, we have
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Kϵ = K̃ϵT
−1
ϵ = −B−1

0,ϵ (G0,ϵ −Gλ,ϵ −Gc,ϵ)T
−1
ϵ . (21)

Suppose we aim to place the eigenvalues of the closed-loopmatrix on the left side of the line
x = α. The weighted matrix Q̂ is designed to achieve this placement while ensuring system
stability and optimizing the performance function (2) [18].

For this purpose, let

Mc,ϵ =
[
Bϵ AϵBϵ · · · An−1

ϵ Bϵ

]
, (22)

and, construct the gain controllability matrix Vϵ as follows:

Vϵ = Km×n,ϵ ×Mcn,mn,ϵ, (23)

whereKm×n,ϵ represents the control gain matrix (21).
Additionally, compute the weighted matrix Q̂ using the following relations

Q̂ =
(
Vm×mnM

+
cmn×n

)T (
Vm×mnM

+
cmn×n

)
, (24)

where
M+

cmn×n
=
(
MT

c )nm×n(Mcn×mnM
T
c

)−1

n×n
. (25)

Now, for designing the optimal controller, the following Algebraic Riccati Equation (ARE)
can be solved:

AT
ϵ P + PAϵ −KT

ϵ RKϵ + Q̂ = 0, (26)

where P is a positive definite matrix. After solving this equation, the optimal control gain Kϵ

is as follows:
Kϵ = R−1BT

ϵ P. (27)

By solving this optimal control problem, the stability of the system is systematically guaranteed
by assigning eigenvalues   in a specific region of the complex Z- plane while minimizing the cost
function and avoiding the undesirable effects of a singular disturbance, which appears in direct
control in solving the Riccati equation.

The proposed method enhances the quality of eigenvalue assignment by enabling direct and
precise placement of eigenvalues within a desired region of the complex plane, without relying
on iterative tuning or solving Riccati equations. Unlike traditional methods, it allows explicit
enforcement of spectral constraints, leading to improved robustness, better damping charac-
teristics, and superior control over the closed-loop dynamics. This results in a more reliable
and performance-oriented system design, especially in cases where sensitivity and numerical
conditioning are critical.

Now, consider the following theorem to facilitate the analytical investigation of the stability
property of the proposed method.
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Theorem 1. Consider the singularly perturbed closed-loop system (1). If Q̂ andKε are deter-
mined by equations (24) and (27), respectively, and if R is a positive definite matrix, then the
optimal control system with u = −Kεx is asymptotically stable.

Proof. Suppose that P is the solution to the following Riccati equation

AT
ϵ P + PAϵ −KT

ε RKε + Q̂ = 0. (28)

Also, consider V (x) = xTPx as a Lyapunov function. Therefore,

V̇ (x) = xT
[
(Aε −BεKε)

TP + P (Aε −BεKε)
]
x. (29)

By some simple computations, we have

V̇ (x) = −xT
(
Q̂+KT

ε RKε

)
x. (30)

If Q̂ andKT
ε RKε are positive definite, then for any x ̸= 0, we have V̇ (x) < 0.

Now, we show that, based on the designed controller, Q̂ andKT
ε RKε are positive definite.

First, we prove that Q̂ is positive definite.
Based on equations (22) - (25), the following relation can be established:

VM+
c = (KεMc)(M

T
c )(McM

T
c )

−1 (31)

= (KεMc)(M
T
c )(M

T
c )

−1(M−1
c ) = Kε (32)

thus:
Q̂ = (VM+

c )T (VM+
c ) = KT

ε Kε > 0. (33)

On the other hand, since R > 0, it is straightforward to verify that KT
ε RKε > 0. Therefore,

V̇ (x) < 0 always holds. Moreover, V̇ (x) = 0 holds only at the equilibrium point, which
completes the proof.

Note: Considering that the eigenvalues of the closed-loop matrix ẋ = (Aϵ − BϵKϵ)x are
calculated by solving a system of linear equations (21) based on the bounds from equation
(18) and their convex combination. The very small value of ϵ does not significantly affect on
solving this equation system. Moreover, since the eigenvalues are assigned within a specified
region on the left-hand side of the complex plane, by choosing an appropriate r and given that
β ≤ Re(λ) ≤ α, it follows that:

λmin ≥ β + reiθ, 0 ≤ θ ≤ 2π,

λmax ≤ α+ reiθ,
(34)

then the condition number of the closed-loop matrix Γϵ = Aϵ − BϵKϵ can be computed as
follows [20]:

κ(Γϵ) =
λmax
λmin

≤ α+ reiθ

β + reiθ
= O(1). (35)

Therefore, the proposed method is free of ill-conditioning.
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Algorithm 1 Inverse optimal control of linear singularly perturbed systems

Input: Aϵ, Bϵ, Q, R, ϵ and Λ.

Step 1. Set α = a and β = α− 1, where a is a non-positive integer.

Step 2. Using equation (8), compute the companion form of Aϵ and Bϵ using (9).

Step 3. For the given Λ compute the matrix ÃΛ,ε

ÃΛ,ε =

[
GΛ,ε

In−m On−m,m

]
.

Step 4. To assign eigenvalues in the region β ≤ Re(λi) ≤ α, compute the Ãc,ε matrix using
equation (21)

Ãc,ε =

[
Gc,ε

In−m On−m,m

]
.

Step 5. Calculate the state feedback matrixKε as

Kε = B−1
0,ε (G0,ε −GΛ,ε −Gc,ε)T

−1
ε .

Step 6. Compute the matrix Q̂ using the state feedback matrix from Step 5 as

Q̂ =
(
VϵM

+
c,ϵ

)T (
VϵM

+
c,ϵ

)
,

where
M+

c,ϵ =
(
MT

c,ϵ

) (
Mc,ϵM

T
c,ϵ

)−1
, Vϵ = Kε ×Mc,ϵ.

Step 7. Determine the matrix P such that

AT
ε P + PAε −KT

ε RKε + Q̂ = 0.

Step 8. Compute the final controller matrixKε using (27).

4 Numerical Examples

Example 1. Consider the system described by (1) and the obtained results are applied to an RC
ladder circuit system, which is widely used for analog-to-digital conversion applications. The
system matrices for this circuit are provided in [20] as follows
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Aϵ =


− 3

2RC
1

RC 0 0
1

RC − 2
RC 0 0

0 0 − 2
ϵRC

1
ϵRC

0 0 1
ϵRC − 3

2ϵRC

 , Bϵ =


1

2RC 0

0 0

0 0

0 1
2ϵRC

 , (36)

where R = 5 × 103Ω, C = 100 × 10−6 F, and ϵ = 0.05. The weighting matrix of the cost
function defined in equation (2) is selected as R = I2, and the matrix Q is given by:

Q =


50 0 0.5 1

0 100 0.5 1.5

0.5 0.5 1 0

1 1.5 0 1

 . (37)

The objective is to determine the state feedback matrix Kϵ such that all eigenvalues of the
closed-loop matrix are placed in the left-hand side of the complex plane. The parameters are
set as a = 0, α = 0, β = −1 and l = 0.75. In this example, the results of the proposed method
are compared with [20]. To ensure a fair comparison, both the proposed method and the method
in [20] use the same initial condition: x0 = [1, 1,−1,−1]T . This comparison demonstrates the
effectiveness of the proposed method particularly with respect to state variables, control inputs,
cost function and cumulative i.e.,

∫ t
0

(
xTQx+ uTRu

)
dτ .
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Figure 1: The proposed state variables.
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Figure 2: The state variables in [20].

Figures 1 and 2 illustrate the behavior of state variables in the proposed method and the
method presented in [20], respectively. As observed, in both methods, the state variables grad-
ually converge to the equilibrium state.

Figures 3 and 4 describe the control signals generated by the two different methods. In the
proposed method (Figure 3), the amplitude of the control inputs is significantly reduced. The
reduction in control amplitude is a crucial feature, as it indicates lower energy consumption in
the system and improved efficiency of the controller.



12 Optimal Control of Linear Singularly Perturbed Systems.../ COAM, 10 (1), Winter-Spring (2025)

Figures 5 and 6 illustrate the cost function values for both methods. It can be observed that
the cost function of the proposed method is significantly very less than the cost function value
in [20]. This implies better system performance and lower control costs.

Additionally, Figures 7 and 8 represent cumulative cost function value in both methods.
This value in the proposed method is considerably lower than that of the method presented in
[20]. This suggests that in the proposed method, the system achieves stability and desirable
performance with minimal cost.

The comparisons between results of the proposed method and the method presented in [20]
are shown in Table 1. As one can see, cumulative cost, robustness indicators (∥Kϵ∥2, ∥c∥2 and
∥c∥∞) and number of iteration is significantly reduced. Where Kϵ is optimal feedback gain
matrix and vector c with elements cj is defined as follows:

cj =
∥qj∥∥pj∥
|qTj pj |

≥ 1. (38)

Additionally, the proposed method demonstrates a significant improvement in computational
efficiency. The reduced number of required iterations compared to the method in [20], indi-
cates lower computational complexity and enhanced algorithmic performance. Notably, while
preserving the stability and robustness of the control system, the proposed method minimizes
both computational and performance costs.
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Figure 3: The proposed control signal.

0 1 2 3 4 5 6 7 8 9 10

Time

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

C
on

tr
ol

 In
pu

ts

u
1

u
2

Figure 4: Control signal in [20]
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Figure 5: The proposed objective function.
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Figure 6: The objective function in [20].
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Figure 8: Value of
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dτ in [20]

Table 1: Comparison between the results of the proposed method and the proposed method in [20].

Methods
Indexes

∥c∥2 ∥c∥∞ ∥Kϵ∥2 Cumulative Cost Number of Iteration

The proposed method in [20] 2.4091 1.3666 6.1755 23.93 6
The proposed method 2.3781 1.3136 6.0046 0.5489 1

Example 2. Consider the system described by (1) and a standard SP system [3]. The model
matrices are considered as follows

Aϵ =


0 0.4 0 0

0 0 0.345 0

0 −0.524
ϵ −0.465

ϵ
0.262
ϵ

0 0 0 −1
ϵ

 , Bϵ =


1

1
1
ϵ
1
ϵ

 , (39)
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where ϵ = 0.05. The weighting matrices of the cost function defined in equation (2) are chosen
asQ = 10I andR = I2. The goal is to design an optimal control signal of a perturbed singular
system with given drift and diffusion Matrixes Aϵ and Bϵ in (39). The system parameters are
set as a = −2, α = −2, β = −3, and l = 0.75 with initial condition: x0 = [1, 2, 1, 0]T .
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Figure 9: The state variables.
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Figure 10: Control signal.
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Figure 11: The objective function.
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Figure 12: Cumulative cost.

Figures 9 and 10 demonstrate the evolution of the state variables and control under the pro-
posed control strategy. As illustrated in Figure 9, the state variables converge smoothly to the
equilibrium state, indicating the system’s asymptotic stability. Figure 10 shows the correspond-
ing control, which remain bounded with relatively low amplitudes throughout the simulation.
This behavior highlights the efficiency of the controller in achieving stability while minimizing
control effort. Figures 11 and 12 present the performance of the controller in terms of the cost
function. Figure 11 depicts the instantaneous value of the cost function

∫ t
0 (x

TQx+uTRu) dτ ,
while Figure 12 shows its cumulative value.In [3] the control gain matrixK = [3.16, 1.99] only
for two slow states. According to this control gain the cumulative cost is 7.29 that is bigger than
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cumulative value of the proposed method that is 4.7302. The results indicate that the proposed
method maintains a low cost throughout the system operation, which directly reflects reduced
energy consumption and improved control efficiency. The significantly lower cumulative cost
confirms the superiority of the proposed method in terms of overall performance and resource
utilization.

5 Conclusion

In this study, a novel inverse optimal control method based on eigenvalue assignment was
developed to address challenges such as ill-conditioning, high system dimensionality, and the
complexity of solving algebraic Riccati equations. The proposed approach exhibits strong resis-
tance to numerical instabilities, offers robustness against perturbations and numerical diffusion,
and ensures system stability through optimal eigenvalue placement in the singularly perturbed
closed-loop system. As demonstrated by simulation results, this method significantly enhances
controller robustness, while also achieving significant reductions in both the performance cost
function and control signal amplitude.

Declarations

Availability of Supporting Data
All data generated or analyzed during this study are included in this published paper.

Funding
The authors conducted this research without any funding, grants, or support.

Competing Interests
The authors declare that they have no competing interests relevant to the content of this paper.

Authors’ Contributions
The main text of manuscript is collectively written by the authors.



16 Optimal Control of Linear Singularly Perturbed Systems.../ COAM, 10 (1), Winter-Spring (2025)

References

[1] Baleanu, D., Hajipour, M., Jajarmi, A. (2024).“An accurate finite difference formula for the nu-
merical solution of delay-dependent fractional optimal control problems”, An International Jour-
nal of Optimization and Control: Theories & Applications (IJOCTA), 14(3), 183–192, doi:
10.11121/ijocta.1478.

[2] Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D. (2019). “A new fractional model and opti-
mal control of a tumor-immune surveillance with non-singular derivative operator”, Chaos: An
Interdisciplinary Journal of Nonlinear Science, 29(8):083127, doi:10.1063/1.5096159.

[3] Chow, J., Kokotovic, P. (1976). “A decomposition of near-optimum regulators for systems with
slow and fast modes”, IEEE Transactions on Automatic Control, 21(5), 701-705, doi:10.1109/
TAC.1976.1101342.

[4] Daraghmeh, A., Qatanani, N., Hartmann, C. (2018). “Optimal control of linear systems with bal-
anced reduced-order models: Perturbation approximations”, Applied Mathematics and Computa-
tion, 337, 119-136, doi:10.1016/j.amc.2018.04.065.

[5] Datta, K.B., RaiChaudhuri. A. (2002). “H2/H∞ control of singularly perturbed systems:
The state feedback case”, European Journal of Control, 38(10), 1791-1797, doi:10.1016/
S0005-1098(02)00090-0.

[6] Ebrahimipour, M., Mirhosseini-Alizamini, S.M. (2024). “Optimal adaptive sliding mode control
for a class of nonlinear affine systems”, Control and Optimization in Applied Mathematics, 9(2),
123-138, doi:10.30473/coam.2023.67868.1236.

[7] Hashemi Borzabadi, A., Gholami Baladezaei, M., Ghachpazan, M. (2024). “A sub-ordinary ap-
proach to achieve near-exact solutions for a class of optimal control problems”, Control and Opti-
mization in Applied Mathematics, 9(2), 1-19, doi:10.30473/coam.2024.70834.1254.

[8] Jajarmi, A., Hajipour, M. (2017). “An efficient finite difference method for the time-delay optimal
control problems with time-varying delay”, Asian Journal of Control, 19(2), 554-563, doi:10.
1002/asjc.1371.

[9] Jajarmi, A., Pariz, N., Vahidian Kamyad, A., Effati, S. (2011). “A novel modal series represen-
tation approach to solve a class of nonlinear optimal control problems”, International Journal of
Innovative Computing, Information & Control: IJICIC, 7, 1413-1425.

[10] Karbassi, S.M., Bell, D.J. (1993). ”Parametric time-optimal control of linear discrete-time systems
by state feedback. Part 1. Regular Kronecker invariants”, International Journal of Control, 57(4),
817–830, doi:10.1080/00207179308934415.

[11] Karbassi, S.M., Bell, D.J. (1994). “Newmethod of parametric eigenvalue assignment in state feed-
back control”, IEE Proceedings - Control Theory and Applications, Institution of Electrical Engi-
neers, 141(4), 223–226, doi:10.1049/ip-cta:19941157.

[12] Kleinman, D. (1968). “On an iterative technique for Riccati equation computations”, IEEE Trans-
actions on Automatic Control, 13(1), 114-115, doi:10.1109/TAC.1968.1098829.

doi: 10.11121/ijocta.1478
doi: 10.11121/ijocta.1478
doi: 10.1063/1.5096159
doi: 10.1109/TAC.1976.1101342
doi: 10.1109/TAC.1976.1101342
doi: 10.1016/j.amc.2018.04.065
doi: 10.1016/S0005-1098(02)00090-0
doi: 10.1016/S0005-1098(02)00090-0
doi:10.30473/coam.2023.67868.1236
doi: 10.30473/coam.2024.70834.1254
doi: 10.1002/asjc.1371
doi: 10.1002/asjc.1371
doi: 10.1080/00207179308934415
doi: 10.1049/ip-cta:19941157
doi: 10.1109/TAC.1968.1098829


Salehi Chegeni & Yarahmadi/ COAM, 10 (1), Winter-Spring (2025) 17

[13] Kodra, K., Gajic, Z. (2017). “Optimal control for a new class of singularly perturbed linear sys-
tems”, Automatica, 81, 203-208, doi:10.1016/j.automatica.2017.03.017.

[14] Liu, X., Yang, C., Zhou, L., Fu, J., Dai, W. (2021). “Suboptimal reduced control of unknown non-
linear singularly perturbed systems via reinforcement learning”, International Journal of Robust
and Nonlinear Control, 31(14), 6626-6645, doi:10.1002/rnc.5624.

[15] Mukaidani, H., Xu, H., Mizukami, K. (2002). “A revised Kleinman algorithm to solve algebraic
Riccati equation of singularly perturbed systems”, Automatica, 38(3), 553-558, doi:10.1016/
S0005-1098(01)00230-8.

[16] Mukherjee, S., Bai, H., Chakrabortty, A. (2021). “Reduced-dimensional reinforcement learning
control using singular perturbation approximations”, Automatica, 126, 109451, doi:10.1016/j.
automatica.2020.109451.

[17] Nurges, Ü. (2006). “Robust pole assignment via reflection coefficients of polynomials”, Automat-
ica, 42(7), 1223-1230, doi:10.1016/j.automatica.2006.03.007.

[18] Shieh L. S., Dib H.M., Ganesan S. (1988). “Linear quadratic regulators with eigenvalue placement
in a specified region”, Automatica, 24(6), 819–823, doi:10.1016/0005-1098(88)90058-1.

[19] Yarahmadi, M., Karbasi, S.M. (2009). “Design of robust controller by neuro-fuzzy system in a
prescribed region via state feedback”, Iranian Journal of Mathematical Sciences and Informatics,
4, 1-16, doi:10.7508/ijmsi.2009.01.001.

[20] Zhao, J., Yang, C., Gao, W. (2022). “Reinforcement learning based optimal control of linear sin-
gularly perturbed systems”, IEEE Transactions on Circuits and Systems II: Express Briefs, 69(3),
1362-1366, doi:10.1109/TCSII.2021.3105652.

[21] Zhao, J., Yang, C., Gao, W., Park, J.H. (2023). “ADP-based optimal control of linear singularly
perturbed systems with uncertain dynamics: A two-stage value iteration method”, IEEE Transac-
tions on Circuits and Systems II: Express Briefs, 70(12), 4399-4403, doi:10.1109/TCSII.2023.
3277528.

[22] Zhao, J., Yang, C., Gao, W., Zhou, L., Liu, X. (2024). “Adaptive optimal output regulation of in-
terconnected singularly perturbed systems with application to power systems”, IEEE/CAA Journal
of Automatica Sinica, 11(3), 595-607, doi:10.1109/JAS.2023.123651.

[23] Zhou, L., Zhao, J., Ma, L., Yang, C. (2020). “Decentralized composite suboptimal control for a
class of two-time-scale interconnected networks with unknown slow dynamics”, Neurocomputing,
382(21), 71-79, doi:10.1016/j.neucom.2019.11.057.

doi:10.1016/j.automatica.2017.03.017
doi: 10.1002/rnc.5624
doi: 10.1016/S0005-1098(01)00230-8
doi: 10.1016/S0005-1098(01)00230-8
doi: 10.1016/j.automatica.2020.109451
doi: 10.1016/j.automatica.2020.109451
doi: 10.1016/j.automatica.2006.03.007
doi: 10.1016/0005-1098(88)90058-1
doi: 10.7508/ijmsi.2009.01.001
doi: 10.1109/TCSII.2021.3105652
doi: 10.1109/TCSII.2023.3277528
doi: 10.1109/TCSII.2023.3277528
doi: 10.1109/JAS.2023.123651
doi: 10.1016/j.neucom.2019.11.057

	Optimal Control of Linear Singularly Perturbed Systems via Eigenvalue Assignmentto.44em.
	Mehrnoosh Salehi Chegeni, Majid Yarahmadi 
	Analyzing Drug Therapy on the Interaction Between Tumor and Immune Cells Based on Optimal Fractional Control Theoryto.44em.
	Alireza Fakharzadeh Jahromi, Mahin Azizi Karachi, Hajar Alimorad 
	Mathematical Modelling of Malaria Spread in Response to Climate Variability in Sudanto.44em.
	Gassan A.M.O. Farah, Abdulaziz Mukhtar, Kailash C. Patidar 
	Resource Allocation Optimization for Multi-Target Detection and Tracking in Cognitive Radar Networksto.44em.
	Maryam Najimi, Akbar Hashemi Borzabadi 
	Hybrid of Convolutional Neural Network and Support Vector Machine for Cancer Type Predictionto.44em.
	Soghra Mikaeyl Nejad 
	Multi-Objective Optimization Problem Involving Max-Product Fuzzy Relation Inequalities with Application in Wireless Communicationto.44em.
	Narjes Amiri, Hadi Nasseri, Davood Darvishi Salokolaei 
	Bell's Degree Variance and Degree Deviation in Graphs: Analyzing Optimal Graphs Based on These Irregularity Measuresto.44em.
	Hasan Barzegar, Mohsen Sayadi, Saeid Alikhani, Nima Ghanbari 
	A Hybrid Numerical Approach for Solving Nonlinear Optimal  Control Problemsto.44em.
	Rasoul Hatamian, Seyed Amjad Samareh Hashemi 
	A Meshless Method for Optimal Control of Parabolic PDEs Using Rational Radial Basis Functionsto.44em.
	Afrah Kadhim Saud Al-tameemi, Mahmoud Mahmoudi, Majid Darehmiraki 
	Determining Control Points in the Project Life Cycle: A Heuristic Approach Utilizing Tabu Searchto.44em.
	Narjes Sabeghi 
	Pythagorean Fuzzy Sets for Credit Risk Assessment: A Novel Approach to Predicting Loan Defaultto.44em.
	Amal Kumar Adak, Nil Kamal 
	Mesh-Free RBF-FD Method with Polyharmonic Splines and Polynomials for High-Dimensional PDEs and Financial Option Pricingto.44em.
	Narges Hosseinzadeh, Elyas Shivanian, Saeid Abbasbandy 

