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Abstract.

involving multiple criteria and expert perspectives, often requires robust frameworks

Addressing complex decision-making scenarios, particularly those

capable of managing uncertainty and qualitative assessments. The Qualitative Absolute
Order-of-Magnitude (QAOM) model offers a flexible approach for expressing subjective
evaluations through linguistic terms with adjustable levels of detail. However, practical
challenges remain in applying QAOM, including the absence of an inherent system
for deriving attribute weights, limitations in coherently synthesizing the judgments
from multiple experts, and the lack of systematic normalization procedures for neg-
atively oriented attributes. To address these issues, this paper proposes an advanced
multi-attribute group decision-making (MAGDM) framework fully embedded within
the QAOM paradigm. The proposed solution introduces a mathematically consistent
metric for comparing linguistic assessments, an entropy-based attribute weighting
approach rooted in qualitative information, and an aggregation process that reflects
expert diversity. Furthermore, a specialized normalization protocol is developed to
handle negative attributes across heterogeneous scales. The feasibility and advantages
of the method are validated through comprehensive examples and comparative analyses,
highlighting improvements over traditional techniques in terms of objectivity, flexibility,
and analytical depth. Overall, these developments markedly enhance the capabilities of
QAOM-based MAGDM, equipping decision-makers with more nuanced and reliable
tools for tackling complex problems characterized by imprecision and divergent expert

opinions.
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1 Introduction

Complex decision-making, characterized by multiple conflicting criteria, is pervasive in science and
industry. Addressing this complexity requires structured approaches, leading to the development and
adoption of diverse decision-support methodologies across many fields [8, 22, 30, 44, 38]. Structured
methodologies like multi-attribute decision-making (MADM) and its extension, multi-attribute group
decision-making (MAGDM), are indispensable for addressing complex problems characterized by mul-
tiple, often conflicting, performance attributes [1, 17, 26, 34, 45]. However, a significant and recurrent
challenge emerges when decision criteria are expressed qualitatively rather than quantitatively. In these
contexts, expert assessments are often inherently subjective, relying on interpretive linguistic descriptors
rather than strict numerical values [3, 4, 6, 22, 28, 40, 41]. Decision-makers commonly employ verbal
appraisals, such as “satisfactory,” “inadequate,” or “high risk”, with the degree of specificity shaped
by the complexity of the attribute or the inherent ambiguity involved. While intuitively appealing, the
adoption of linguistic variables introduces its own set of complexities, notably vagueness and informa-
tion gaps that arise from imprecise categories and incomplete knowledge [6]. To mitigate these uncer-
tainties, a variety of advanced techniques have been developed in recent years, including but not limited
to: models leveraging linguistic fuzzy sets [25, 33, 36], Neutrosophic set theory [8, 10, 11, 32, 45],
Dempster-Shafer evidence frameworks [31, 41], prospect theory [16], and advanced fuzzy models such

as complex Fermatean fuzzy approaches [7, 9, 35].

Within Artificial Intelligence (Al), the paradigm of Qualitative Reasoning (QR) offers significant
tools for the representation and inference of information that is inherently qualitative, incomplete, or
expressed in non-numerical terms [14, 23, 29]. QR techniques are particularly adept at handling linguis-
tic variables, adapting to scenarios where assessments are not strictly quantitative. Among these, the
Qualitative Absolute Order-of-Magnitude (QAOM) model, originally conceptualized by Dubois [21], is
especially suitable for decision-making applications.

A distinguishing feature of the QAOM framework is its ability to systematically encode subjective
evaluations through a hierarchical scheme of linguistic descriptors. This flexibility allows QAOM to
accurately capture nuanced expert opinions, utilizing interval-based linguistic expressions (for example,
“very bad to medium”) and thereby accommodating diverse levels of detail and certainty [4, 18, 26, 42].
The model’s suitability for situations with varying expert confidence across decision criteria is further
supported by its capacity for multi-resolution linguistic representation. Building on its foundational
strengths, several studies have explored the integration of QAOM with established MADM techniques
such as Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) [2, 3, 4, 5, 19, 20].
For instance, Agell et al. [5] introduced the use of location-functions to express linguistic variables and
relied on Euclidean distance metrics for the comparison of alternatives. Similarly, adaptations of the
TOPSIS method within the QAOM setting have been proposed for applications such as site selection
and the appraisal of energy alternatives [2, 4].

Despite these notable developments and demonstrated practical utility, the broader advancement
of QAOM, particularly in the context of multi-attribute group decision-making, remains constrained
by several unresolved challenges. Addressing these limitations constitutes the main motivation for the

present study.
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Firstly, current QAOM-based approaches do not provide an objective, internally consistent strategy
for determining the importance (weights) of attributes within the QAOM environment itself. Conven-
tional methods have either utilized subjective weights assigned by human experts or depended on objec-
tive weighting schemes such as entropy measures, which are computed externally based on numerical
approximations of qualitative inputs [4]. This disconnect introduces potential bias and methodological
inconsistency, as the computation of attribute importance may not fully reflect the qualitative essence
of the original data. The absence of an integrated, objective approach for weight determination is thus a
significant limitation, undermining the reliability and credibility of resulting recommendations.

Secondly, conventional QAOM methods exhibit notable weaknesses in the realm of true multi-
attribute group decision-making . While the technique of applying Euclidean distances to sets of con-
catenated location-function vectors provides a solution in scenarios restricted to single attributes or cases
with only one expert [2, 5], it fails to address the challenge of synthesizing multiple, potentially con-
flicting evaluative judgments provided by several experts for each attribute. Achieving an effective
and systematic consensus, especially when accounting for the differing credibility or influence of each
expert, is essential for robust MAGDM, yet remains unaddressed in prevailing QAOM methodologies.

Thirdly, practical decision-making frequently involves attributes with a negative orientation, com-
monly referred to as cost-type attributes, where lower attribute values are favored (such as expendi-
ture, risk, or environmental impact). Present QAOM frameworks do not incorporate a comprehensive,
built-in normalization process that permits the consistent treatment of such cost-type attributes along-
side benefit-type attributes, particularly in situations where the descriptions of attributes are expressed
using multi-level or interval-based linguistic terms. The absence of a dedicated normalization approach
imposes a significant limitation on the practical deployment of QAOM, especially in decision scenarios
characterized by the need to balance beneficial and adverse criteria.

In response to the aforementioned methodological gaps, this study endeavors to substantially refine
the QAOM approach for use in advanced group decision-making contexts. First, a principled ranking
mechanism for qualitative linguistic labels is introduced, relying on a newly developed distance metric
to enable comparative analysis across varying degrees of linguistic granularity. At the same time, an
entropy-inspired weighting methodology is proposed that draws directly from the qualitative structure
of the input data and is seamlessly integrated within the QAOM framework. The method further inno-
vates by implementing a systematic procedure for synthesizing expert evaluations, allowing for graded
influence reflecting the expertise and credibility of individual contributors. Finally, a unified normaliza-
tion protocol is articulated, ensuring the consistent and simultaneous treatment of both benefit-based and
cost-based criteria, even in scenarios that involve interval-valued or multi-resolution QAOM descriptors.
Through these advances, the proposed framework offers a cohesive and flexible solution to previously
unresolved challenges in complex MAGDM problems, substantially broadening the practical relevance
and analytic rigor of QAOM-based decision support.

The remainder of this paper is organized as follows: Section 2 reviews the theoretical background.
Section 3 elaborates the proposed framework and its core modules. Section 4 offers illustrative applica-
tions and comparative analyses. Section 5 presents conclusions, and Section 6 discusses limitations and
potential directions for future research.
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2 Materials and Methods

2.1 Qualitative Absolute Order-of-Magnitude Framework

In this subsection, we present the essential principles underlying the QAOM approach, rearticulated for
clarity and independence from conventional text. The QAOM model builds upon a lexicon of n ordered
linguistic terms, each serving as a qualitative indicator for a specific variable. This set is formally defined
as [43]:

S»={By,B2,Bs,...,B,}, By <By<B3<---< By,

where the relation ‘<’ establishes an intrinsic ranking among the linguistic descriptors.

Each element B; in this set can be conceptually associated with a segment of an underlying contin-
uous scale, delineated by n + 1 real-valued thresholds {a1, az, as, ..., an11}, such that B; corresponds
to the interval [a;, a;41] fori = 1,...,n. As a concrete illustration, when n = 5, one may define the
linguistic levels as follows: B; (strongly opposed), Bs (opposed), Bs (neutral), B, (in favor), and B
(strongly in favor).

To effectively capture varying degrees of subjectivity and ambiguity, the QAOM framework extends
the set of basic terms to include interval-valued labels, each comprising a contiguous group of basic
categories. Accordingly, the full set for qualitative assessment is described by [5, 18, 37]:

Sn:S;:U{[BZ,B]] ZBi,BjES;,i<j}, n=1,2,3,.... (1)

In this expression, each interval [B;, B;| (with ¢ < j) refers to the collection { B;, B;1,...,B;}. Any
singleton label Bj, may be rewritten as the degenerate interval [ By, By]. The widest expression of lin-
guistic uncertainty—meaning maximal ambiguity or lack of information—is assigned to the interval
[B1, B,,], which can also be indicated with a ‘?” symbol. Figure 1 offers a graphical depiction of this
label space. Notably, by defining .S, as above, the QAOM framework can accommodate multiple gran-
ularities, permitting flexible adjustment of linguistic resolution and accuracy in decision analysis [37].

"’ !

PRE

Figure 1: The space of S,, [37].

Definition 1. If [B;, B;] and [B,., B;] are two elements of set .S, then [B;, B;] is said to be superior to
[By, B;] ifand only if B; > B, and B; > B, [37].
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Definition 2. Normalizer: The normalizer of the set .S,, is defined as a mapping p:

Sy — [0,1]
such that ‘
J
1
p([Bi, Bj)) = u(Br),  u(Bi) = — > wBr) =1 ()
k=1 BkGS;
This mapping assumes that the linguistic labels By, Bs, . .., B, are uniformly and symmetrically dis-
tributed [5].

Definition 3. Union and Intersection: If [B; , B;,] and [B;,, B;,] are two elements of .S,,, their union
and intersection are defined as follows [37]:

[Bil’le] U [Biz’ sz} = [Bmin(il,i2)7 Bmax(jl,jz)]a 3)
[Bilale] N [Biza sz] = [Bmax(il,i2)7 Bmin(jl,jg)]' (4)

Definition 4. Location-function: For a linguistic label Q = [B;, B;] € S,,, the location-function is
defined as [2]:

1:S, = 7°
where ‘
W[Bi,Bj)) = | =Y _u(Bs), Y wBy) | =0(Q)=Q)) )
s=1 s=j+1

Example 1. In Definition 4, suppose n = 7. We can represent any [([B;, B;]) on a horizontal axis; for
example, the value of [([ By, Bg]) is shown in Figure 2.

-3 [B,, Bl +1

Figure 2: Location-function of linguistic labels.

Definition 5. Vector Location-function: If A = (Q1,Q2, @3, . .., Q,,) represents an m-dimensional
vector of linguistic labels in S,,, then its location-function is defined as a 2m-dimensional vector [5]:

L(A) = (11(Q1),12(Q1),11(Q2),12(Q2), . . ., 11(Qm), 12(Qm))- (6)

Remark 1. According to the above definition, the Euclidean distance between two m- dimensional
vectors A1 = (Q11,Q12, ..., Q1m) and As = (Q21,Qa2, . . ., @2y, ) of linguistic labels in S, can be
calculated as follows:
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(A1, Ag) = | [(1(Q1)) — 11(Q27))2 + (12(Q1)) — 12(Q27))?]. (7
j=1

Numerous adaptations of the qualitative TOPSIS (Q-TOPSIS) methodology have leveraged the con-
cept of Euclidean distance to discriminate among alternatives within a qualitative attribute space [2, 4].
Within this context, the relative proximity of each alternative to the positive ideal solution (dT(A;)),
as well as to the negative ideal solution (d~ (4;)), is systematically quantified by means of a weighted
Euclidean metric. This approach facilitates the ranking of alternatives by translating interval-based lin-

guistic evaluations into a normalized geometric framework, as expressed by the following equations:

dF(A;) = d(As, AY) = 1w [(11(Qiy) — i(Bn))? + (12(Qig) — 12(Bn))?), ®)
j=1
d™(A;) = d(A;, A7) = ij [(11(Qi5) = 11(B1))? + (12(Qij) — 2(B1))?], ©)

where w; is the weight of the j-th attribute, and vectors
A+ = (Bn,Bn, N ,Bn) and A~ = (Bl,Bl, e ,Bl),

are the m-dimensional positive ideal solution (PIS) and negative ideal solution (NIS) vectors, respec-

tively. The relative closeness coefficient is then calculated as:
d”(A;)

d+(A;) +d=(4;) .

QCC; = (10)

2.2 Extensions to the Basic Definitions of QAOM

To further enrich the QAOM framework, we introduce a set of supplementary definitions that build
upon the foundational principles detailed previously. These refinements, inspired by and expanding
upon the original work of Agell et al. [5], facilitate broader applications and greater analytical depth
within qualitative decision environments.

Definition 6. Let () be any linguistic label within the qualitative domain .S,,. We define the cumula-
tive normalizer W(()) as a measure that aggregates the membership assignments (@) across relevant
linguistic terms. Specifically, if (@) denotes the membership function associated with (), then the
cumulative normalizer ¥((Q) is formulated as:

U (Q) = Cumulative u(Q), % <Y(Q) <1, (11)
For a basic label, U(B;) is given by:
W(B.) = p(B) + u(Bo) + -+ u(B) =~ (12
For a non-basic label, ¥([B;, B;]) is given by:
(B, Byl) = w(By) + 2B L J it (13)

2 n 2n 2n
It is also evident that ¥(B;) = £ and ¥(B,,) = 1.
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Example 2. Let @y = [Bs] and Q2 = [B2, Bs] be two linguistic labels in S;. We have:

3

V(@) = ¥([Bs]) = =,
and therefore, o
U(Q2) = U([By, Bs)) = % =

Definition 7. Let ) = [B;, B;] be a non-basic linguistic label in S,,. The distance of @) from B,, (the
ideal linguistic label) is defined as:

S(Q? Bn) = S([B“ Bj]v [Bn])

1
=1-Y([B]) + 7 [([By]) — ¥([Bi)]
G oj—i An-3i—i
—1—5-&- p n , 1,7=1,2,...,n. (14)

In addition, if Q = [B;] is a basic linguistic label:

S(Q.B.) =SB [B.) = S(B;, B, By = 2=t = (s)

fori =1,2,...,n.
It should be noted that S(Q, B,,) represents the distance of the linguistic label @ from the ideal
linguistic label B,,.

Example 3. Forn = 7:

S(1B1. B, [Bil) = 1~ W(Bs]) + | (W(Bs]) ~ W(BL]) = 1

The results of this distance measurement is illustrated in Figure 3.

1
Z@sn 1 ¥E)

=g

By B, Bj B, Bs Bs By

Figure 3: Distance of a linguistic label [ B, B3| from the ideal linguistic label.

Example 4. If Q; = [Bz, By] and Q2 = [B;] are two linguistic labels in S, then:

§(@u,Br)) = S(By, Bl [Bi]) = ot =2 =

and -1 &
S(Qa, [Br)) = o= = -



192 An Enhanced QAOM-Based MAGDM Framework .../ COAM, 10 (2), Summer-Autumn (2025)

Definition 8. Let ) = [B;, B, be a linguistic label in S,,. The rank of Q) is defined as:

dn—3j—i

, ,7=1,2,...,n. (16)
4n

Rank(Q) =1-5(Q,B,) =1—
This definition provides a consistent way to order QAOM labels.
Example 5. Assume n = 7. Therefore:

4 x7— -1 1
Rank([B1, Bs]) =1 — 2X7=3x3=1 10

4x7 28’
Rank([B7]):1—4X7;i>7<7—7217
Rank([Bl]):1_4X7;i>7<1_l :%’

Rank([Bl,Bﬂ):l*“?;i;?_l :%'

Definition 9. Let (Q; and Q)2 be two linguistic labels in .S,,. We define:
1. @1 > Q2 if Rank(Q1) > Rank(Q2),
2. Q1 =~ Q9 if Rank(Q1) = Rank(Q-),
3. Q1 = Qaif Q1 = Q2 or Q1 &~ @2, i.e., Rank((Q)1) > Rank(Q2).

It can be readily seen that the proposed ranking possesses the following properties.

Theorem 1. Let @1, @2, and ()3 be arbitrary linguistic labels in .S,,. Then, the following properties
hold:

Pl. @1 > @1 (Reflexivity),
P2. If Q1 > Q2 and Q2 = @1, then 1 ~ Q2 (Antisymmetry),
P3. If Q1 > Q2 and Q2 > Qs, then Q1 = Q3 (Transitivity).

Proof.  Pl. By Definition 9, for any @; € S,,, we have Rank(Q1) > Rank(Q1), hence Q1 = Q1.

P2. If Q1 = Q2 and Q2 > @1, it means Rank(Q);) > Rank(Q5) and Rank(Q2) > Rank(Q1). Thus,
Rank(Q;) = Rank(Q2), i.e., Q1 =~ Qs.

P3. Since Q1 = @2 and Q2 > (3 implies Rank(Q;) > Rank(Q2) > Rank(Qs), therefore
Rank(Ql) Z Rank(Qg), i.e., Ql t Qg.

O

Remark 2. In practical multi-attribute decision-making (MADM) contexts, it is common to encounter
attributes where lower (i.e., smaller) values correspond to preferable outcomes, typified by cost-like
criteria such as fuel consumption in vehicle evaluation. To enable a coherent and equitable evaluation
framework, these negatively oriented attributes must be appropriately normalized to allow direct com-
parison with benefit-type (positively-oriented) criteria. Nevertheless, the literature on QAOM-based
MADM approaches has frequently underscored the lack of a unified normalization strategy for such
cost-type attributes [2, 4]. Addressing this methodological gap, we introduce a systematic procedure
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that transforms all negatively oriented attributes into their positive counterparts. This transformation
is intended to ensure analytic consistency and interpretative clarity within the QAOM-based MADM
paradigm, thereby facilitating robust aggregation and ranking of alternatives irrespective of attribute
orientation.

Definition 10. Let () be a linguistic label in S,,. The inverse of () is defined as follows:

« If Q@ = B, is a basic linguistic label:
Q' =[B]" = [Bni1)-il: i=1,2,...,n. (17)
« If Q = [B;, B, is a non-basic linguistic label:
Q '=[B.Bj| ' = [Bnt1)—j»> Bn+1)—il, i,j=1,2,...,n. (18)
where Q! denotes the inverse of Q.

Example 6. For n = 7, we have:

[B;] ™" = [Bs_1] = [B7],

[Bs] ™" = [Bs_s] = [Bas],

[Ba] ™ = [Bs—4] = [Bd],
[Bs, B7] ™" = [Bs_7, Bs_s] = [B1, Bs],
[B1, B7] ™" = [Bs_7, Bs_1] = [B1, Br]

2.3 Determining Weights of Attributes Based on the Entropy Concept

Assigning appropriate weights to attributes constitutes a pivotal step in MADM, as it inherently shapes
the relative significance assigned to each alternative. In practice, decision-makers may occasionally lack
definitive information or consensus regarding the underlying importance of individual attributes. In such
circumstances, a robust weighting mechanism must either be inferred from available objective data or
supplemented with expert-driven, subjective assessments. Even when direct expert estimations are ac-
cessible, it is prudent to corroborate or refine these subjective judgments using objective methodologies,
in order to strengthen the reliability and internal coherence of the resulting weight structure.

To address the potential limitations associated with subjective weighting and to promote trans-
parency and reproducibility in the analysis, the present study incorporates an entropy-based objective
weighting procedure. Rooted in the foundational work of Shannon [39], the entropy method quantita-
tively evaluates the informational value and discriminative capacity of each attribute. Within the context
of the proposed QAOM framework, this technique exploits the inherent ranking patterns revealed by the
linguistic evaluations, providing an impartial estimate of attribute relevance. Consequently, the entropy-
based scheme enhances the methodological rigor and robustness of the decision process, establishing a
defensible weighting paradigm that complements subjective expert reasoning.
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Definition 11. Let D = [Q;;]mxn be a decision matrix, where );; is the linguistic label assigned to the
Jjth attribute of the ¢th alternative. The entropy of the jth attribute, C, is defined as:

H(C)) = _mlmi[p” Inpi;], (19)
where Rank(Qs,)
Pij = m (20)
In addition, unreliability (deviation) is defined as:

d(C;) =1-H(Cj). 21)

Accordingly, the weight of the jth attribute, w;, is computed as:

d.

Kl > e

3 Proposed Q-TOPSIS Method

As discussed in the Introduction, this research aims to overcome persistent limitations in prior qualitative
MAGDM methodologies, particularly those based on the QAOM framework. We introduce a unified,
robust, and extensible MAGDM approach within the QAOM paradigm that systematically addresses
these unresolved issues.

Among alternatives in multi-attribute analysis, the TOPSIS, originally developed by Hwang and
Yoon [27], has emerged as an influential method for the ranking of alternatives according to their geo-
metric proximity to both ideal and anti-ideal solutions. The conceptual clarity and demonstrated success
of TOPSIS across various domains have contributed to its adoption as a reference standard in decision-
analysis literature [11, 13, 15, 17, 24]. Building on this foundation, our study synthesizes the formal
strengths of TOPSIS with the flexibility of QAOM reasoning in a novel MAGDM framework. Dis-
tinctively, the proposed methodology advances the state of the art by (i) introducing a consistent rank-
ing procedure for interval-based qualitative assessments; (ii) natively incorporating an entropy-based,
objective approach to attribute weighting that moves beyond ad hoc or externally determined weight
assignments; (iii) establishing a systematic method for aggregating linguistic judgments from multiple
experts, including provisions for divergent influence or expertise; and (iv) implementing an integrated
normalization protocol for both positive (benefit-type) and negative (cost-type) attributes expressed in
QAOM labels. Collectively, these innovations overcome the methodological barriers associated with
prior QAOM-based MAGDM methods—most notably, the lack of natively integrated objective weight-
ing, the absence of a unified aggregation technique for group judgments, and difficulties in managing
negatively oriented criteria.

In summary, the enhanced QAOM-TOPSIS framework presented herein not only strengthens the
analytical processing of qualitative and group information, but also extends the practical reach and reli-
ability of qualitative decision-making models in complex environments.

Consider a MAGDM problem with m alternatives
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A17A27 R A’rn7
and n attributes
017027' . 'aCna
where the value of each attribute is determined by & decision makers D1, Ds, . .., Dy, with corresponding

weights @ = (m,m2,...,7k) in a QAOM environment. The following steps detail the Q-TOPSIS
method:

Step 1: Construction of the Decision Matrix. Each decision-maker provides an evaluation for
every attribute using an appropriate linguistic label from .S,,. For cost-type (negative) attributes, the
transformation described in Definition 10 is applied to obtain their suitable representation. Consequently,
the decision matrices are assembled as D¥ = [Qijk]mxn, Where Qi € S, denotes the linguistic
assessment assigned by the kth expert to the jth criterion of the ¢th alternative.

Step 2: Evaluating the Integrated Decision Matrix. After forming the matrices D* = [Q;jx]m xn>
the rank of each linguistic label is computed using Definition 8, yielding matrices AD* = [R(Q; k)| mxn»
where R(Q;jx) = Rank(Q;;x). By integrating the evaluations of all decision makers, the aggregated
decision matrix is calculated as follows:

K
R(Qij):Zﬂ-kR(Qijk)v i:1727"'7m7 j:172v"'anv (23)
k=1

where,
K
E e = 1.
k=1

The integrated decision matrix is then AD = [R(Qi;)]mxn-

Step 3: Constructing the Weighted Decision Matrix. Using the method described in Defi-
nition 11, the weight vector can be determined. Let W = (wq, wa, ..., w,) denote the vector of at-
tribute weights, where w; is the weight of the jth attribute. The weighted decision matrix, denoted by

ADvy = [0;;]mxn, is calculated as follows:
vij:wj'R(Q,;j), i:1,2,...,m,j:1,2,...,n. (24)
Step 4: Determining PIS and NIS. Letvt = (v],v],...,v;}) be the Positive Ideal Solution
(PIS) and v~ = (vy ,v5 ,...,v, ) the Negative Ideal Solution (NIS), defined as:
ol = m?x{vij}, j=1,2,...,n, (25)

Uj_ :rniin{vij}, j=12,....,n. (26)
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Step 5: Calculating the Distance of Alternatives from PIS and NIS. The distance of the ith
alternative from the PIS and NIS is calculated as:
(vij —v})?, i=1,2,...,m, 27)

<
—

3

di(AL) = (U’ij _vj_)27 i = 1727"'7m7 (28)

<.
—

where d*(A;) and d~(A;) are the distances of the ith alternative from the PIS and NIS, respectively.

Step 6: Calculating the Qualitative Closeness Coefficient of Alternatives. Finally, the qual-
itative closeness coefficient for each alternative is calculated as:
d=(A;)

CC(4;) = d=(A;) + d+(4;)

i=1,2,...,m. (29)

In this equation, C'C(A;) represents the qualitative closeness coefficient of the ith alternative. The
alternatives are ranked in descending order of CC(A;) for i = 1,2,...,m. Therefore, A* is the best
alternative if and only if CC(A*) = max,{CC(4;)}.

4 Numerical Examples and Validation

In this section, practical Examples 7 and 8 are used to investigate the potential and efficiency of the
proposed method in real-world decision-making problems. Then, in Example 9, we demonstrate the
advantages of the proposed method over previous approaches.

Example 7. In[2], a MADM scenario was analyzed to determine the most suitable wind farm location
in Catalonia, northeastern Spain. This problem involved a single decision-maker who assigned equal
weights to all attributes. The TOPSIS method was employed within the QAOM framework to evaluate
seven alternatives against nine attributes encompassing economic, social, environmental, and technical
factors. Only basic linguistic labels from class S; were utilized. In the following, we re-evaluate this
problem using the proposed method.

Step 1: Constructing the Decision Matrix. In this step, we constructed the decision matrix using
the alternatives and attributes defined in Table 1. The summarized decision matrix is presented in Ta-
ble 3. Definition 10 was used to convert the negative attributes C5, Cg, and Cg into positive ones. The
normalized decision matrix is shown in Table 4. For example, if we consider .S; as the reference scale,
in Table 3 we have C 5 = L = Bj, so based on Definition 10, [Cy 5] ™' = [Bo] ™! = [B(741)—2] = Bs
(see Table 4). Similarly, all elements in Cg and Cy are converted as seen in Table 4.

Step 2: Evaluating the integrated decision matrix. Using Definition 8, we calculated the rank
of each element in the decision matrix. Since only a single expert is involved in this example, integration
of multiple expert opinions was not required.
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Table 1: Attributes and alternatives in Example 7.

Attribute Code | Alternative description Code
Land owner’s income (+) | C7 | CB-Pre: Coma Bertran preliminary project. A
Economic activity tax (+) | C2 | CB: Coma Bertran project. As
Construction tax (+) Cs | ST: Serra del Tallat project. As
Number of jobs (+) Cy | CBST: Combination of CB and ST projects. Ay
Visual impact (—) Cs | L: Based on CB and ST projects, considers | As
windmills located at least 1.5 km from popu-
lation centres and tourist attractions (Santuari
del Tallat).
Deforestation (—) Cs | R: Attempts to move windmills away from | Ag
population centres presenting higher resis-
tance (Senan and Montblanc).
Avoided COg emissions | C% | NP: Possibility of constructing no project at | Az
(+) all.
Noise (—) Cs | — —
Installed capacity (+) Cy | - —

Table 2: Linguistic terms and corresponding linguistic labels in Example 7.

Linguistic label

Linguistic term

By
By
Bs
By
Bs
Bg
By

Very Low (VL)
Low (L)

Medium Low (ML)
Medium (M)
Medium High (MH)
High (H)

Very High (VH)

Step 3: Constructing the weighted decision matrix.

Following Afsordegan et al. [2], we as-

signed equal weights to all attributes. The normalized weighted decision matrix, constructed using Equa-

tion (24), is presented in Table 5.

Step 4: Determining PIS and NIS.

case:

In this step, the Positive Ideal Solution (PIS, v*) and the
Negative Ideal Solution (NIS, v™) are determined using Equations (25)— (26). Specifically, for this

vt = (maX{ULJ}) = (L 17 1, la 1a 17 17 13 1)a

v = (min{vi,j}) = (0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143).
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Table 3: Decision matrix based on linguistic terms in Example 7.

Cir | Cy | C3 | Cy | C5 | Cs | Cr | Cg | Cy
Al ML | L ML ML| L [ MH| L |[MH| L
A2 | L L ML | L L MH| L |VH| L
A3 MH|MH MH| H MH | M H H | MH
A4 | VH | VH | VH | VH | VH | VH | VH | VH | VH
A5 | M M H MH| M L | MH|VH | M
A6 | M M |ML MH|ML | L M |MH | M
A7 | VL | VL | VL | VL | VL | VL | VL | VL | VL

Table 4: Normalized decision matrix based on linguistic labels in Example 7.

Ci|Cy | Cs | Cu| Cs | Cs| Cr|Cs | Cy
Al | By | By | By | B3 | Bg | Bs | By | By | Bs
A2 | By | By | By | By | Bg | Bs | Ba | Bi | Bs
A3 | B 5 B 5 B 5 B 6 B 3 By | B 6 By | B 5
A4 | B; | B; | B, | B, | By | B1| B: | B, | B
A5 | By | By | Bs | Bs | Bi| Bs | Bs | By | By
A6 | By | By | By | Bs | Bs | Bg | Ba | By | By
A7 | B 1 B 1 B 1 B 1 B 7 B 7 B 1 B 7 B 1

These reference values are also given in Table 5.

Table 5: Normalized weighted decision matrix in Example 7.

Ch Co Cs Cy Cs Cs Cr Cs Cy

A; | 0429 0.2806 0.429 0.429 0.857 0.429 0.286 0.429 0.286
Az | 0286 0.286 0.429 0.286 0.857 0.429 0.286 0.143 0.286
As | 0.714 0.714 0.714 0.857 0.429 0.571 0.857 0.286 0.714
Ay | 1.000 1.000 1.000 1.000 0.143 0.143 1.000 0.143 1.000
As | 0.571 0.571 0.857 0.714 0571 0.857 0.714 0.143 0.571
Ag | 0571 0.571 0.429 0.714 0.714 0.857 0.571 0.429 0.571
A7 | 0.143 0.143 0.143 0.143 1.000 1.000 0.143 1.000 0.143
AT | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A~ [ 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143
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Step 5: Calculating the distance of each alternative from PIS and NIS. The distances of each
alternative from the PIS and NIS are calculated using Equations (27)—(28). The results are summarized
in Table 6.

Table 6: Distance of each alternative from PIS (d™) and NIS (d ™) in Example 7.

Alternative | d(A4;) d(A;)
Aq 1.784 0.990
As 1.990 0.881
As 1.178 1.616
Ay 1.485 2.100
As 1.450 1.552
Ag 1.784 1.436
Az 1.990 1.485

Step 6: Calculating the qualitative closeness coefficient of alternatives. The relative quali-
tative closeness coefficient for each alternative is calculated using Equation (29), as shown in Table 7.

To further assess the effectiveness of the proposed approach, the resulting rankings were compared
with those obtained using the method by Afsordegan et al. [2]. As shown in Table 8, the proposed
method produced a different ranking sequence, most notably in the positions of A5 and Ag, thereby
demonstrating the added value and differentiating mechanism of the new approach.

Table 7: Relative closeness coefficient and ranking of alternatives in Example 7.

Alternative | Closeness Coefficient CC'(4;) Rank
Ay 0.357 6
Ay 0.307 7
As 0.578 2
Ay 0.586 1
As 0.517 4
Ag 0.534 3
Ar 0.414 5

Table 8: Comparison of ranking results in Example 7.

Method Ranking
Afsordegan et al. (2015) | Ay = A3z = As = Ag = A7 = A1 > Ao
Proposed method Ay = Ag = Ag = A5 = A7 = A1 = Ay
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Example 8. In this practical example, we apply the proposed method to the green energy selection
problem introduced by Afsordegan et al. [4]. This Multiple Attribute Group Decision-Making case
involves nine attributes and seven alternatives, as detailed in Table 9. Attribute values were elicited
from a panel of three experts. Attribute weights (determined via AHP by Afsordegan et al. [4]) are also
shown in Table 9. In this application, all attributes are considered benefit-type.

Table 9: Attributes, weights, and alternatives in Example 8.

Attribute | Description Weight | Alternative Code
Cl Efficiency 0.0900 | Conventional Al
C2 Exergy (rational efficiency) 0.1000 | Nuclear A2
C3 Investment cost 0.1000 | Solar A3
C4 Operation and maintenance cost | 0.1100 | Wind A4
C5 NOx emission 0.1300 | Hydraulic A5
Cé6 CO4 emission 0.1500 | Biomass A6
Cc7 Land use 0.1100 | Combined Heat & Power | A7
C8 Social acceptability 0.0900 | — -
Cc9 Job creation 0.1200 | — -

Step 1: Constructing the decision matrix. The decision matrix is formed based on group expert
judgments, using linguistic terms (see Table 10).

Table 10: Decision matrix based on linguistic terms in Example 8.

Cl C2 C3 Cc4 Cs C6 C7 C8

Al H H MH MH VL VL L ML
M

M

A2 | VH VL VH ML ML ML L
A3 M M
El | A4 | ML MH H H H VH VH VH
A5 | MH H MH M ML L ML M
A6 M MH M M H H MH H

A7 M MH M ML M M MH H MH
Al | VH MH H M VL ML VL L

A2 H VH ML VH ML ML VL ML

M VH H VH H

mzzz=EQ

T =

A3 | ML M MH M VH H H H MH
E2 | A4 M MH H H H VH H VH M
AS M H MH M ML ML M MH
A6 M M MH M H MH H H
A7 | MH M M ML M H MH MH

Al| VH VH MH MH ML
A2 | VH VH VL VH L
A3 M M M M H
E3 | A4 L MH H VH VH
AS H H MH M ML
A6 M MH M MH H
A7 | MH M MH M M

jas)
jas}
mEEm S

zzcszE8zzco
=
-
<
—

MH H MH
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Step 2: Evaluating the integrated decision matrix.

mined using Definition 8 (see Table 11); the integrated decision matrix (per Equation (23)) is shown in

The rank of each linguistic label is deter-

Table 12.
Table 11: Ranks of linguistic labels in Example 8 (excerpt).
Cl1 C2 C3 C4 C5 C6 C7 C8 C9

Al | 0.8571 0.8571 0.7143 0.7143  0.1429 0.1429 0.2857 0.4286 0.7143

A2 | 1.0000 0.5714 0.1429 1.0000 0.4286 0.4286 0.4286 0.2857 0.8571

A3 | 0.5714 0.5714 0.5714 0.5714 1.0000 0.8571 1.0000 0.8571 0.5714

El | A4 | 04286 0.7143 0.8571 0.8571 0.8571 1.0000 1.0000 1.0000 0.5714

AS | 0.7143  0.8571 0.7143 0.5714 0.4286 0.2857 0.4286 0.5714 0.8571

A6 | 0.5714 0.7143 05714 0.5714 0.8571 0.8571 0.7143  0.8571  0.8571

A7 | 05714 0.7143 05714 04286 0.5714 0.5714 0.7143  0.8571  0.7143

Table 12: Integrated decision matrix in Example 8.
C1 Cc2 C3 C4 C5 C6 C7 C8 Cc9

Al | 09524 0.8571 0.7619 0.6667 0.2381 0.3333  0.2381 0.3810 0.7619
A2 | 09524 0.8571 0.2381 1.0000 0.3810 0.4286 0.3333  0.3810 0.8571
A3 | 05238 0.5714 0.6190 0.5714 0.9524 0.8571 0.9048 0.8571 0.6190
A4 | 04286 0.7143 0.8571 0.9048 0.9048 1.0000 0.9048 1.0000 0.5714
AS | 0.7143  0.8571 0.7143 0.5714 0.4286 0.2857 0.4286 0.5714  0.8095
A6 | 05714 0.6667 0.6190 0.6190 0.8571 0.8571 0.7143 0.8571  0.8095
A7 | 0.6667 0.6190 0.6190 04762 0.5714 0.5714 0.7619 0.8095 0.7143
w; | 0.0900 0.1000 0.1000  0.1100  0.1300  0.1500  0.1100  0.0900  0.1200

Step 3: Constructing the integrated weighted decision matrix.

weighted matrix is computed as shown in Table 13.

Table 13: Integrated weighted decision matrix in Example 8.

Using the weights above, the

Cl C2 C3 C4 Cs Co C7 C8 C9
Al | 0.0857 0.0857 0.0762 0.0733 0.0310 0.0500 0.0262 0.0343  0.0914
A2 | 0.0857 0.0857 0.0238 0.1100 0.0495 0.0643 0.0367 0.0343  0.1029
A3 | 0.0471 0.0571 0.0619 0.0629 0.1238  0.1286  0.0995 0.0771  0.0743
A4 | 0.0386 0.0714 0.0857 0.0995 0.1176  0.1500 0.0995 0.0900 0.0686
A5 | 0.0643 0.0857 0.0714 0.0629 0.0557 0.0429 0.0471 0.0514  0.0971
A6 | 0.0514 0.0667 0.0619 0.0681 0.1114 0.1286  0.0786  0.0771  0.0971
A7 | 0.0600 0.0619 0.0619 0.0524 0.0743  0.0857 0.0838 0.0729  0.0857

Step 4: Determining PIS and NIS. The Positive Ideal Solution (PIS, v+) and Negative Ideal

Solution (NIS, v™) are determined using Equations (25) and (26):

vt = (0.0860,0.0857,0.0857,0.1100, 0.1238, 0.1500, 0.0995, 0.0900, 0.1029),
v~ = (0.0386,0.0571,0.0238, 0.0524, 0.0310, 0.0429, 0.0262, 0.0343, 0.0686).
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Step 5: Calculating the distance of alternatives from PIS and NIS. Using Equations (27)
and (28), Table 14 presents the computed distances.

Table 14: Distances of alternatives from PIS and NIS in Example 8.

Alternative | d*(A;) | d=(A;)
Al 0.1690 | 0.0820
A2 0.1540 | 0.0920
A3 0.0810 | 0.1580
A4 0.0610 | 0.1840
AS 0.1510 | 0.0780
A6 0.0710 | 0.1450
A7 0.1120 | 0.1040

Step 6: Calculating the qualitative closeness coefficient of alternatives. The relative quali-
tative closeness coefficient is calculated (Equation (29)), producing the results in Table 15. This yields
the final ranking: Ay = Ag = Az = A7 = Ay = A5 = Aj.

Table 15: Relative qualitative closeness coefficient and ranking of alternatives in Example 8.

Alternative | CC'(4;) | Rank
Al 0.3270 7
A2 0.3740 5
A3 0.6610 3
A4 0.7500 1
A5 0.3400 6
A6 0.6710 2
A7 0.4810 4

This ranking exactly matches that obtained using the method by Afsordegan et al. [4], as shown in
Table 16.

Table 16: Comparison of ranking results in Example 8.

Method Ranking
Afsordeganetal. [4] | Ay = Ag = A3z = A7 = Ay = A5 = A
Proposed method Ay = Ag = Ag = A7 = Ay = As = Ay

Example 9. Consider a Multi-Attribute Group Decision-Making problem for selecting the most suitable
supplier for a manufacturer. In this scenario, there are four suppliers (S7, S2, S3, and S4) and four
attributes: cost (C7), services (C5), quality (C3), and on-time delivery (Cy4), where cost is a negative
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attribute and the others are positive. The attribute weights are unknown and must be estimated. Attribute
values are assessed by three decision makers (D1, D2, and D3), with a weights vector m = (0.2,0.4,0.4).
The steps of the proposed method are as follows:

Step 1: Constructing the decision matrix. According to the proposed method, the decision ma-
trix is initially formed based on the decision makers’ judgments, as shown in Table 17. Note that C' is
a negative attribute. Therefore, using Definition 10, the values of the negative attribute are inverted, as
presented in Table 18.

Table 17: Decision matrix based on linguistic terms in Example 9.

DMs | Alternative | CI1 (-) C2 C3 C4
S1 [B1, B2] B5 [B6,B7] | [B6, B7]
D1 So B1 [B6, B7] B6 [B6, B7]
Ss [B1, B2] | [B6, B7] B7 B4
Sy [B2, B4] | [B6,B7] | [B6, B7] B5
S1 [B1, B2] | [B6, B7] B7 [B4, B6]
D2 So [B2, B4] B5 [B6, B7] | [B3, BS]
Ss [B1, B2] B7 [B4,B6] | [B3, B5]
Sy [B2,B4] | [B6, B7] B6 B7
S1 B2 [B4, B6] | [B4, B6] | [B6, B7]
D3 So [B2, B4] B6 [B6, B7] B7
Ss [B1, B2] | [B4,B6] | [B6, B7] | [B6, B7]
Sy [B1, B2] B7 [B4, B6] | [B4, B6]

Step 2: Evaluating the normalized decision matrix. In this step, the negative attribute is con-

verted to a positive one according to Definition 10. The resulting matrix is shown in Table 18.

Step 3: Evaluating the integrated decision matrix. The rank of each linguistic label is deter-
mined using Definition 8, as shown in Table 19. Then, the aggregated values for each attribute are
computed using Equation (24), and the integrated matrix is displayed in Table 20.

Step 4: Constructing the weighted decision matrix. Using Definition 11 and Equations (18)-
(20), the weights of the attributes are determined (see the last row of Table 20). The weighted decision
matrix is displayed in Table 21.

Step 5: Determining PIS and NIS. Based on Equations (22)—(23), the Positive Ideal Solution
(PIS) and Negative Ideal Solution (NIS) are as follows:
v = (max{v;;}) = (0.257,0.349,0.096, 0.244),

v~ = (min{v;;}) = (0.221,0.293,0.087,0.207).
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Table 18: Normalized attributes in Example 9.

DMs | Alternative Cl C2 C3 C4
S1 [B6, B7] B5 [B6,B7] | [B6, B7]
D1 So B7 [B6, B7] B6 [B6, B7]
S3 [B6,B7] | [B6, B7] B7 B4
Sy [B4,B6] | [B6, B7] | [B6, B7] B5
S1 [B6,B7] | [B6, B7] B7 [B4, B6]
D2 So [B4, B6] B5 [B6, B7] | [B3, B5]
S3 [B6, B7] B7 [B4, B6] | [B3, BS]
Sy [B4,B6] | [B6, B7] B6 B7
S1 B6 [B4, B6] | [B4, B6] | [B6, B7]
D3 So [B4, B6] B6 [B6, B7] B7
S3 [B6,B7] | [B4, B6] | [B6,B7] | [B6, B7]
Sy [B6, B7] B7 [B4, B6] | [B4, B6]
Table 19: Rank of attributes in Example 9.
DMs | Alternative Cl C2 C3 C4
S1 0.9643 | 0.7143 | 0.9643 | 0.9643
D1 So 1 0.9643 | 0.8571 | 0.9643
S3 0.9643 | 0.9643 1 0.5714
Sy 0.7857 | 0.9643 | 0.9643 | 0.7143
S1 0.9643 | 0.9643 1 0.7857
D2 So 0.7857 | 0.7143 | 0.9643 | 0.6429
Ss 0.9643 1 0.7857 | 0.6429
Sy 0.7857 | 0.9643 | 0.8571 1
S1 0.8571 | 0.7857 | 0.7857 | 0.9643
D3 So 0.7857 | 0.8571 | 0.9643 1
Ss 0.9643 | 0.7857 | 0.9643 | 0.9643
Sy 0.9643 1 0.7857 | 0.7857

The corresponding distances to PIS and NIS are shown in Table 22.

Step 6: Calculating the qualitative closeness coefficient of alternatives. Finally, Equa-
tion (29) is used to compute the relative qualitative closeness coefficient for each alternative, as presented
in Table 23. The alternatives are thus ranked as Sy = S3 = S7 = Ss.
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Table 20: Integrated matrix in Example 9.

Alternative | Cl1 C2 C3 C4
S1 0.921 | 0.843 | 0.907 | 0.893
So 0.829 | 0.821 | 0.943 | 0.850
S3 0.964 | 0.907 | 0.900 | 0.757
Sy 0.857 | 0.979 | 0.850 | 0.857
wj 0.267 | 0.357 | 0.102 | 0.273

Table 21: Weighted decision matrix in Example 9.

Alternative | Cl1 C2 C3 C4
S1 0.246 | 0.301 | 0.093 | 0.244
So 0.221 | 0.293 | 0.096 | 0.232
Ss 0.257 | 0.324 | 0.092 | 0.207
Sy 0.229 | 0.349 | 0.087 | 0.234

Table 22: Distance of alternatives from PIS and NIS in Example 9.

Distance from PIS | Value | Distance from NIS | Value
d*(Sy) 0.0499 d=(51) 0.0456
d*(Ss) 0.0678 d=(52) 0.0271
d*(Ss) 0.0452 d—(Ss3) 0.0477
d*(Sy) 0.0317 d=(Sy) 0.0629

Table 23: Relative qualitative closeness coefficient of alternatives in Example 9.

Relative closeness coefficient | Value | Rank
cC(S) 0.477 3
CC(S2) 0.286 4
cC(Ss) 0.514 2
CC(Sy) 0.665 1

5 Discussion

In this study, we reassessed several Multi-Attribute Decision-Making scenarios, originally presented by
Afsordegan et al., by applying our proposed method to enhance decision quality across three concrete
examples.

The first example involved the selection of an optimal location for a wind farm in Catalonia, previ-
ously analyzed via the TOPSIS method integrated with QAOM [2]. Our re-evaluation yielded valuable
insights, particularly in the ranking of alternatives. The alternative A4, which combines aspects from
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projects CB and ST, consistently emerged as the most favorable option (see Table 8). This result is in
agreement with the original findings, underscoring the soundness and reliability of our method’s ranking
system when applied to established MADM problems within the QAOM context. The correspondence
with Afsordegan’s [2] results validates the foundational effectiveness of our approach and highlights its
applicability to both environmental and urban planning domains.

In the second example, we applied the proposed method to select among sustainable energy alter-
natives, a case previously described by Afsordegan et al. [4]. By constructing a decision matrix based
on expert opinions and applying our evaluation framework, we identified the optimal energy alterna-
tive among seven options characterized by nine attributes. Both our method and that of Afsordegan et
al. selected alternative A4 as the superior choice (Table 16), further reinforcing the reliability of our
approach for MAGDM instances where attribute weights are predefined or subjectively assigned. The
integration of qualitative assessments in the decision matrix proved essential, accommodating the com-
plex, multifaceted nature of sustainability evaluation, and demonstrating the framework’s applicability
to real-world scenarios where expert judgment is indispensable.

The third example addressed a more complex MAGDM problem: supplier selection among four
candidates based on four attributes, including a negative attribute (cost), and requiring the objective
determination of attribute weights from qualitative data, with multiple decision-makers of varying in-
fluence. Our systematic approach included: (1) constructing decision matrices from expert assessments
(Table 17), (2) normalization of attributes, including cost (Table 18), (3) ranking of linguistic labels (Ta-
ble 19), (4) determining objective attribute weights with the integrated entropy method (Table 20), (5)
building the weighted decision matrix (Table 21), and (6) calculating distances to PIS and NIS (Table 22).
This comprehensive workflow enabled us to effectively address challenges that previous QAOM-based
methodologies could not resolve. The final ranking found S4 to be the most preferred supplier (Table 23),
showcasing the proposed method’s capacity to handle intricate, realistic decision situations.

The successful handling of Example 3—featuring objective weight calculation, variable decision-
maker influence, and negative attributes—highlights the significant methodological advances our ap-
proach delivers over prior QAOM-based methods. To explicitly delineate these improvements, Table 24
provides a detailed, feature-by-feature comparison.

Table 24: Feature Comparison of QAOM-based Decision-Making Methods.

Feature [2] | [4] | Proposed Method
Handles MADM Yes | Yes Yes
Handles MAGDM No | Yes Yes
Handles Positive & Negative Attributes in QAOM | No | No Yes
Incorporates Decision Maker Weights No | No Yes
Determines Objective Attribute Weights in QAOM | No | No Yes

As Table 24 illustrates, although the foundational work of [2] established QAOM for MADM and
[4] extended its application to basic MAGDM, these earlier solutions remain limited by their inability to:
(1) normalize and process negative (cost-type) attributes fully within the QAOM schema; (ii) incorporate
varying influence degrees among group members; and (iii) determine attribute weights objectively from
qualitative data using a criterion internal to QAOM.
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In contrast, our proposed method overcomes all these limitations. The comprehensive solution to Ex-
ample 9 explicitly demonstrates the practical value of these methodological enhancements. The objective
calculation of attribute weights through entropy directly from qualitative input (Table 20), normalization
of the negative cost attribute (C, Table 18), and the aggregation of weighted expert assessments, reveal a
robustness, flexibility, and generality in complex MAGDM contexts not previously available in QAOM-
based decision frameworks. This integrated approach enables a more robust, objective, and adaptable
analysis of MAGDM problems characterized by qualitative uncertainty, divergent expert opinion, and
mixed attribute types, effectively addressing the substantial limitations identified in the Introduction.

6 Conclusion

Qualitative Absolute Order-of-Magnitude (QAOM) is a widely used qualitative reasoning method in
artificial intelligence for analyzing multi-attribute decision-making problems characterized by varying
degrees of data precision. QAOM allows decision-makers to express subjective judgments through
linguistic labels across multiple scales. However, its practical application—particularly in complex,
real-world scenarios—has been hindered by several crucial limitations: The absence of an objective,
integrated procedure for attribute weighting, the lack of a robust mechanism for aggregating weighted
expert opinions in group decision contexts, and challenges in properly normalizing negative (cost-type)
attributes within the QAOM framework. This study addresses these limitations by introducing a novel,
integrated MAGDM framework fully embedded within the QAOM environment. The proposed ap-
proach incorporates several innovations: (i) a mathematically rigorous ranking system for linguistic
labels that supports consistent comparison and appropriately handles negative attributes; (ii) an entropy-
based method for objectively determining attribute weights directly from qualitative data; and (iii) a
structured procedure for aggregating expert judgment, incorporating recognition of differing expertise
through decision-maker weights. A systematic normalization procedure for negative attributes is also
developed to enhance the framework’s completeness. The effectiveness of the proposed framework was
validated through re-evaluating practical examples from the literature ([2] and [4]). Results on these
benchmark cases (see Tables 8 and 16) aligned with prior findings, confirming the method’s correctness
in standard scenarios. More importantly, in complex MAGDM settings, the proposed method revealed
distinct advantages: as discussed in Section 4 (Table 24), it offers intrinsic mechanisms for objective
attribute weighting, systematic treatment of negative attributes, and integration of heterogeneous expert
influence capabilities absent from prior QAOM-based methods. The third illustrative example further
highlighted how these innovations enable QAOM to resolve particularly challenging cases, significantly
improving its applicability and robustness. In summary, the proposed MAGDM framework consider-
ably enhances the flexibility and analytical capability of QAOM-based decision analysis. By offering
systematic solutions for objective attribute weighting, expert opinion aggregation, and normalization of
both positive and negative attributes within the QAOM environment, this research advances the method-
ological foundation for tackling complex group decision-making problems under linguistic uncertainty.
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7 Limitations and Future Research Directions

Despite the demonstrated merits and advances of the proposed QAOM-based MAGDM approach, sev-
eral aspects remain open for further exploration. First, the scope of quantitative comparison with other
methods is inherently restricted, as the literature on QAOM-based decision frameworks remains rela-
tively limited. Future studies can address this by establishing more comprehensive benchmarks or apply-
ing the method to a wider range of established decision problems. Second, while the present framework
has shown its feasibility for moderately sized group decision scenarios, additional work is needed to
ensure computational scalability and effectiveness in larger-scale or more intricate contexts. Integrating
the proposed approach with other established MCDM techniques could further test and possibly enhance
its adaptability and robustness. Third, a systematic evaluation of the method’s sensitivity to changes in
expert assessments and model parameters—such as through sensitivity analysis—was beyond the scope
of this article, but represents an important area for building confidence in its practical deployment. Fi-
nally, the versatility of the framework could be more convincingly demonstrated through application
to a broader variety of real-world case studies spanning diverse domains. Addressing these limitations
can help reinforce the method’s strengths and broaden its impact in supporting complex group decision-
making under uncertainty.
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