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Abstract. Addressing complex decision-making scenarios, particularly those

involving multiple criteria and expert perspectives, often requires robust frameworks

capable of managing uncertainty and qualitative assessments. The Qualitative Absolute

Order-of-Magnitude (QAOM) model offers a flexible approach for expressing subjective

evaluations through linguistic terms with adjustable levels of detail. However, practical

challenges remain in applying QAOM, including the absence of an inherent system

for deriving attribute weights, limitations in coherently synthesizing the judgments

from multiple experts, and the lack of systematic normalization procedures for neg-

atively oriented attributes. To address these issues, this paper proposes an advanced

multi-attribute group decision-making (MAGDM) framework fully embedded within

the QAOM paradigm. The proposed solution introduces a mathematically consistent

metric for comparing linguistic assessments, an entropy-based attribute weighting

approach rooted in qualitative information, and an aggregation process that reflects

expert diversity. Furthermore, a specialized normalization protocol is developed to

handle negative attributes across heterogeneous scales. The feasibility and advantages of

the method are validated through comprehensive examples and comparative analyses,

highlighting improvements over traditional techniques in terms of objectivity, flexibility,

and analytical depth. Overall, these developments markedly enhance the capabilities of

QAOM based MAGDM, equipping decision-makers with more nuanced and reliable

tools for tackling complex problems characterized by imprecision and divergent expert

opinions.
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1 Introduction

Complex decision-making, characterized by multiple conflicting criteria, is pervasive in sci-
ence and industry. Addressing this complexity requires structured approaches, leading to the
development and adoption of diverse decision-support methodologies across many fields [8, 22,
30, 44, 38]. Structured methodologies like multi-attribute decision-making (MADM) and its
extension, multi-attribute group decision-making (MAGDM), are indispensable for address-
ing complex problems characterized by multiple, often conflicting, performance attributes
[1, 17, 26, 34, 45]. However, a significant and recurrent challenge emerges when decision crite-
ria are expressed qualitatively rather than quantitatively. In these contexts, expert assessments
are often inherently subjective, relying on interpretive linguistic descriptors rather than strict
numerical values [3, 4, 6, 22, 28, 40, 41]. Decision-makers commonly employ verbal appraisals,
such as “satisfactory,” “inadequate,” or “high risk”, with the degree of specificity shaped by the
complexity of the attribute or the inherent ambiguity involved. While intuitively appealing, the
adoption of linguistic variables introduces its own set of complexities, notably vagueness and
information gaps that arise from imprecise categories and incomplete knowledge [6]. To miti-
gate these uncertainties, a variety of advanced techniques have been developed in recent years,
including but not limited to: models leveraging linguistic fuzzy sets [25, 33, 36], Neutrosophic
set theory [8, 10, 11, 32, 45], Dempster-Shafer evidence frameworks [31, 41], prospect the-
ory [16], and advanced fuzzy models such as complex Fermatean fuzzy approaches [7, 9, 35].

Within Artificial Intelligence (AI), the paradigm of Qualitative Reasoning (QR) offers sig-
nificant tools for the representation and inference of information that is inherently qualitative,
incomplete, or expressed in non-numerical terms [14, 23, 29]. QR techniques are particularly
adept at handling linguistic variables, adapting to scenarios where assessments are not strictly
quantitative. Among these, the Qualitative Absolute Order-of-Magnitude (QAOM) model,
originally conceptualized by Dubois [21], is especially suitable for decision-making applica-
tions.

A distinguishing feature of the QAOM framework is its ability to systematically encode
subjective evaluations through a hierarchical scheme of linguistic descriptors. This flexibility
allows QAOM to accurately capture nuanced expert opinions, utilizing interval-based linguistic
expressions (for example, “very bad to medium”) and thereby accommodating diverse levels
of detail and certainty [4, 18, 26, 42]. The model’s suitability for situations with varying ex-
pert confidence across decision criteria is further supported by its capacity for multi-resolution
linguistic representation. Building on its foundational strengths, several studies have explored
the integration of QAOM with established MADM techniques such as Technique for Order
Preference by Similarity to the Ideal Solution (TOPSIS) [2, 3, 4, 5, 19, 20]. For instance, Ag-
ell et al. [5] introduced the use of location-functions to express linguistic variables and relied
on Euclidean distance metrics for the comparison of alternatives. Similarly, adaptations of the
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TOPSIS method within the QAOM setting have been proposed for applications such as site
selection and the appraisal of energy alternatives [2, 4].

Despite these notable developments and demonstrated practical utility, the broader advance-
ment of QAOM, particularly in the context of multi-attribute group decision-making, remains
constrained by several unresolved challenges. Addressing these limitations constitutes the main
motivation for the present study.

Firstly, current QAOM-based approaches do not provide an objective, internally consistent
strategy for determining the importance (weights) of attributes within the QAOM environment
itself. Conventional methods have either utilized subjective weights assigned by human ex-
perts or depended on objective weighting schemes such as entropy measures, which are com-
puted externally based on numerical approximations of qualitative inputs [4]. This disconnect
introduces potential bias and methodological inconsistency, as the computation of attribute im-
portance may not fully reflect the qualitative essence of the original data. The absence of an
integrated, objective approach for weight determination is thus a significant limitation, under-
mining the reliability and credibility of resulting recommendations.

Secondly, conventional QAOM methods exhibit notable weaknesses in the realm of true
multi-attribute group decision-making . While the technique of applying Euclidean distances
to sets of concatenated location-function vectors provides a solution in scenarios restricted to
single attributes or cases with only one expert [2, 5], it fails to address the challenge of syn-
thesizing multiple, potentially conflicting evaluative judgments provided by several experts for
each attribute. Achieving an effective and systematic consensus, especially when accounting
for the differing credibility or influence of each expert, is essential for robust MAGDM, yet
remains unaddressed in prevailing QAOM methodologies.

Thirdly, practical decision-making frequently involves attributes with a negative orienta-
tion, commonly referred to as cost-type attributes, where lower attribute values are favored
(such as expenditure, risk, or environmental impact). Present QAOM frameworks do not in-
corporate a comprehensive, built-in normalization process that permits the consistent treatment
of such cost-type attributes alongside benefit-type attributes, particularly in situations where the
descriptions of attributes are expressed using multi-level or interval-based linguistic terms. The
absence of a dedicated normalization approach imposes a significant limitation on the practical
deployment of QAOM, especially in decision scenarios characterized by the need to balance
beneficial and adverse criteria.

In response to the aforementioned methodological gaps, this study endeavors to substan-
tially refine the QAOM approach for use in advanced group decision-making contexts. First, a
principled ranking mechanism for qualitative linguistic labels is introduced, relying on a newly
developed distance metric to enable comparative analysis across varying degrees of linguis-
tic granularity. At the same time, an entropy-inspired weighting methodology is proposed that
draws directly from the qualitative structure of the input data and is seamlessly integrated within
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the QAOM framework. The method further innovates by implementing a systematic procedure
for synthesizing expert evaluations, allowing for graded influence reflecting the expertise and
credibility of individual contributors. Finally, a unified normalization protocol is articulated,
ensuring the consistent and simultaneous treatment of both benefit-based and cost-based cri-
teria, even in scenarios that involve interval-valued or multi-resolution QAOM descriptors.
Through these advances, the proposed framework offers a cohesive and flexible solution to
previously unresolved challenges in complex MAGDM problems, substantially broadening the
practical relevance and analytic rigor of QAOM-based decision support.

The remainder of this paper is organized as follows: Section 2 reviews the theoretical back-
ground. Section 3 elaborates the proposed framework and its core modules. Section 4 offers
illustrative applications and comparative analyses. Section 5 presents conclusions, and Section
6 discusses limitations and potential directions for future research.

2 Materials and Methods

2.1 Qualitative Absolute Order-of-Magnitude Framework

In this subsection, we present the essential principles underlying the QAOM approach, reartic-
ulated for clarity and independence from conventional text. The QAOM model builds upon
a lexicon of n ordered linguistic terms, each serving as a qualitative indicator for a specific
variable. This set is formally defined as [43]:

S∗
n = {B1, B2, B3, . . . , Bn}, B1 < B2 < B3 < · · · < Bn,

where the relation ‘<’ establishes an intrinsic ranking among the linguistic descriptors.
Each elementBi in this set can be conceptually associated with a segment of an underlying

continuous scale, delineated by n+ 1 real-valued thresholds {a1, a2, a3, . . . , an+1}, such that
Bi corresponds to the interval [ai, ai+1] for i = 1, . . . , n. As a concrete illustration, when
n = 5, one may define the linguistic levels as follows: B1 (strongly opposed), B2 (opposed),
B3 (neutral), B4 (in favor), and B5 (strongly in favor).

To effectively capture varying degrees of subjectivity and ambiguity, the QAOM framework
extends the set of basic terms to include interval-valued labels, each comprising a contiguous
group of basic categories. Accordingly, the full set for qualitative assessment is described by [5,
18, 37]:

Sn = S∗
n ∪ {[Bi, Bj ] : Bi, Bj ∈ S∗

n, i < j} , n = 1, 2, 3, . . . . (1)

In this expression, each interval [Bi, Bj ] (with i < j) refers to the collection {Bi, Bi+1, . . . , Bj}.
Any singleton labelBk may be rewritten as the degenerate interval [Bk, Bk]. Thewidest expres-
sion of linguistic uncertainty—meaningmaximal ambiguity or lack of information—is assigned
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to the interval [B1, Bn], which can also be indicated with a ‘?’ symbol. Figure 1 offers a graph-
ical depiction of this label space. Notably, by defining Sn as above, the QAOM framework can
accommodate multiple granularities, permitting flexible adjustment of linguistic resolution and
accuracy in decision analysis [37].

Figure 1: The space of Sn [37].

Definition 1. If [Bi, Bj ] and [Br, Bs] are two elements of set Sn, then [Bi, Bj ] is said to be
superior to [Br, Bs] if and only if Bi ≥ Br and Bj ≥ Bs [37].

Definition 2. Normalizer: The normalizer of the set Sn is defined as a mapping µ:

µ : Sn → [0, 1]

such that

µ([Bi, Bj ]) =

j∑
k=i

µ(Bk), µ(Bk) =
1

n
,

∑
Bk∈S∗

n

µ(Bk) = 1. (2)

This mapping assumes that the linguistic labels B1, B2, . . . , Bn are uniformly and symmetri-
cally distributed [5].

Definition 3. Union and Intersection: If [Bi1 , Bj1 ] and [Bi2 , Bj2 ] are two elements of Sn,
their union and intersection are defined as follows [37]:

[Bi1 , Bj1 ] ∪ [Bi2 , Bj2 ] = [Bmin(i1,i2), Bmax(j1,j2)], (3)

[Bi1 , Bj1 ] ∩ [Bi2 , Bj2 ] = [Bmax(i1,i2), Bmin(j1,j2)]. (4)

Definition 4. Location-function: For a linguistic label Q = [Bi, Bj ] ∈ Sn, the location-
function is defined as [2]:
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l : Sn → Z2

where

l([Bi, Bj ]) =

−
i−1∑
s=1

µ(Bs),
n∑

s=j+1

µ(Bs)

 = (l1(Q), l2(Q)). (5)

Example 1. In Definition 4, suppose n = 7. We can represent any l([Bi, Bj ]) on a horizontal
axis; for example, the value of l([B4, B6]) is shown in Figure 2.

Figure 2: Location-function of linguistic labels.

Definition 5. Vector Location-function: If A = (Q1, Q2, Q3, . . . , Qm) represents an m-
dimensional vector of linguistic labels in Sn, then its location-function is defined as a 2m-
dimensional vector [5]:

L(A) = (l1(Q1), l2(Q1), l1(Q2), l2(Q2), . . . , l1(Qm), l2(Qm)). (6)

Remark 1. According to the above definition, the Euclidean distance between twom- dimen-
sional vectors A1 = (Q11, Q12, . . . , Q1m) and A2 = (Q21, Q22, . . . , Q2m) of linguistic labels
in Sn can be calculated as follows:

d(A1, A2) =

√√√√ m∑
j=1

[(l1(Q1j)− l1(Q2j))2 + (l2(Q1j)− l2(Q2j))2]. (7)

Numerous adaptations of the qualitative TOPSIS (Q-TOPSIS) methodology have lever-
aged the concept of Euclidean distance to discriminate among alternatives within a qualitative
attribute space [2, 4]. Within this context, the relative proximity of each alternative to the pos-
itive ideal solution (d+(Ai)), as well as to the negative ideal solution (d−(Ai)), is systemati-
cally quantified by means of a weighted Euclidean metric. This approach facilitates the ranking
of alternatives by translating interval-based linguistic evaluations into a normalized geometric
framework, as expressed by the following equations:
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d+(Ai) = d(Ai, A
+) =

√√√√ m∑
j=1

wj [(l1(Qij)− l1(Bn))2 + (l2(Qij)− l2(Bn))2], (8)

d−(Ai) = d(Ai, A
−) =

√√√√ m∑
j=1

wj [(l1(Qij)− l1(B1))2 + (l2(Qij)− l2(B1))2], (9)

where wj is the weight of the j-th attribute, and vectors

A+ = (Bn, Bn, . . . , Bn) and A− = (B1, B1, . . . , B1),

are the m-dimensional positive ideal solution (PIS) and negative ideal solution (NIS) vectors,
respectively. The relative closeness coefficient is then calculated as:

QCCi =
d−(Ai)

d+(Ai) + d−(Ai)
. (10)

2.2 Extensions to the Basic Definitions of QAOM

To further enrich the QAOM framework, we introduce a set of supplementary definitions that
build upon the foundational principles detailed previously. These refinements, inspired by and
expanding upon the original work of Agell et al. [5], facilitate broader applications and greater
analytical depth within qualitative decision environments.

Definition 6. Let Q be any linguistic label within the qualitative domain Sn. We define the
cumulative normalizer Ψ(Q) as a measure that aggregates the membership assignments µ(Q)

across relevant linguistic terms. Specifically, if µ(Q) denotes the membership function associ-
ated with Q, then the cumulative normalizer Ψ(Q) is formulated as:

Ψ(Q) = Cumulative µ(Q),
1

n
≤ Ψ(Q) ≤ 1, (11)

For a basic label, Ψ(Bi) is given by:

Ψ(Bi) = µ(B1) + µ(B2) + · · ·+ µ(Bi) =
i

n
. (12)

For a non-basic label, Ψ([Bi, Bj ]) is given by:

Ψ([Bi, Bj ]) = Ψ(Bi) +
Ψ(Bj−i)

2
=

i

n
+

j − i

2n
=

i+ j

2n
. (13)

It is also evident that Ψ(B1) =
1
n and Ψ(Bn) = 1.

Example 2. Let Q1 = [B3] and Q2 = [B2, B5] be two linguistic labels in S7. We have:

Ψ(Q1) = Ψ([B3]) =
3

7
,

and therefore,
Ψ(Q2) = Ψ([B2, B5]) =

5 + 2

14
=

1

2
.
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Definition 7. Let Q = [Bi, Bj ] be a non-basic linguistic label in Sn. The distance of Q from
Bn (the ideal linguistic label) is defined as:

S(Q,Bn) = S([Bi, Bj ], [Bn])

= 1−Ψ([Bj ]) +
1

4
[Ψ([Bj ])−Ψ([Bi])]

= 1− j

n
+

j − i

4n
=

4n− 3j − i

4n
, i, j = 1, 2, . . . , n. (14)

In addition, if Q = [Bi] is a basic linguistic label:

S(Q,Bn) = S([Bi], [Bn]) = S([Bi, Bi], Bn) =
4n− 3i− i

4n
=

n− i

n
, (15)

for i = 1, 2, . . . , n.
It should be noted that S(Q,Bn) represents the distance of the linguistic label Q from the

ideal linguistic label Bn.

Example 3. For n = 7:

S([B1, B3], [B7]) = 1−Ψ([B3]) +
1

4
(Ψ([B3])−Ψ([B1])) =

9

14
.

The results of this distance measurement is illustrated in Figure 3.

Figure 3: Distance of a linguistic label [B1, B3] from the ideal linguistic label.

Example 4. If Q1 = [B2, B4] and Q2 = [B1] are two linguistic labels in S7, then:

S(Q1, [B7]) = S([B2, B4], [B7]) =
4× 7− 3× 4− 2

4× 7
=

1

2
,

and
S(Q2, [B7]) =

7− 1

7
=

6

7
.
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Definition 8. Let Q = [Bi, Bj ] be a linguistic label in Sn. The rank of Q is defined as:

Rank(Q) = 1− S(Q,Bn) = 1− 4n− 3j − i

4n
, i, j = 1, 2, . . . , n. (16)

This definition provides a consistent way to order QAOM labels.

Example 5. Assume n = 7. Therefore:

Rank([B1, B3]) = 1− 4× 7− 3× 3− 1

4× 7
=

10

28
,

Rank([B7]) = 1− 4× 7− 3× 7− 7

4× 7
= 1,

Rank([B1]) = 1− 4× 7− 3× 1− 1

4× 7
=

4

28
,

Rank([B1, B7]) = 1− 4× 7− 3× 7− 1

4× 7
=

22

28
.

Definition 9. Let Q1 and Q2 be two linguistic labels in Sn. We define:

1. Q1 ≻ Q2 if Rank(Q1) > Rank(Q2),

2. Q1 ≈ Q2 if Rank(Q1) = Rank(Q2),

3. Q1 ⪰ Q2 if Q1 ≻ Q2 or Q1 ≈ Q2, i.e., Rank(Q1) ≥ Rank(Q2).

It can be readily seen that the proposed ranking possesses the following properties.

Theorem 1. Let Q1, Q2, and Q3 be arbitrary linguistic labels in Sn. Then, the following
properties hold:

P1. Q1 ⪰ Q1 (Reflexivity),

P2. If Q1 ⪰ Q2 and Q2 ⪰ Q1, then Q1 ≈ Q2 (Antisymmetry),

P3. If Q1 ⪰ Q2 and Q2 ⪰ Q3, then Q1 ⪰ Q3 (Transitivity).

Proof. P1. By Definition 9, for any Q1 ∈ Sn, we have Rank(Q1) ≥ Rank(Q1), hence
Q1 ⪰ Q1.

P2. If Q1 ⪰ Q2 and Q2 ⪰ Q1, it means Rank(Q1) ≥ Rank(Q2) and Rank(Q2) ≥
Rank(Q1). Thus, Rank(Q1) = Rank(Q2), i.e., Q1 ≈ Q2.

P3. Since Q1 ⪰ Q2 and Q2 ⪰ Q3 implies Rank(Q1) ≥ Rank(Q2) ≥ Rank(Q3), therefore
Rank(Q1) ≥ Rank(Q3), i.e., Q1 ⪰ Q3.
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Remark 2. In practical multi-attribute decision-making (MADM) contexts, it is common to
encounter attributes where lower (i.e., smaller) values correspond to preferable outcomes, typ-
ified by cost-like criteria such as fuel consumption in vehicle evaluation. To enable a coherent
and equitable evaluation framework, these negatively oriented attributes must be appropriately
normalized to allow direct comparison with benefit-type (positively-oriented) criteria. Nev-
ertheless, the literature on QAOM-based MADM approaches has frequently underscored the
lack of a unified normalization strategy for such cost-type attributes [2, 4]. Addressing this
methodological gap, we introduce a systematic procedure that transforms all negatively ori-
ented attributes into their positive counterparts. This transformation is intended to ensure ana-
lytic consistency and interpretative clarity within the QAOM-based MADM paradigm, thereby
facilitating robust aggregation and ranking of alternatives irrespective of attribute orientation.

Definition 10. Let Q be a linguistic label in Sn. The inverse of Q is defined as follows:

• If Q = Bi is a basic linguistic label:

Q−1 = [Bi]
−1 = [B(n+1)−i], i = 1, 2, . . . , n. (17)

• If Q = [Bi, Bj ] is a non-basic linguistic label:

Q−1 = [Bi, Bj ]
−1 = [B(n+1)−j , B(n+1)−i], i, j = 1, 2, . . . , n. (18)

where Q−1 denotes the inverse of Q.

Example 6. For n = 7, we have:

[B1]
−1 = [B8−1] = [B7],

[B5]
−1 = [B8−5] = [B3],

[B4]
−1 = [B8−4] = [B4],

[B5, B7]
−1 = [B8−7, B8−5] = [B1, B3],

[B1, B7]
−1 = [B8−7, B8−1] = [B1, B7].

2.3 Determining Weights of Attributes Based on the Entropy Concept

Assigning appropriate weights to attributes constitutes a pivotal step in MADM, as it inher-
ently shapes the relative significance assigned to each alternative. In practice, decision-makers
may occasionally lack definitive information or consensus regarding the underlying importance
of individual attributes. In such circumstances, a robust weighting mechanism must either be
inferred from available objective data or supplemented with expert-driven, subjective assess-
ments. Even when direct expert estimations are accessible, it is prudent to corroborate or refine
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these subjective judgments using objective methodologies, in order to strengthen the reliability
and internal coherence of the resulting weight structure.

To address the potential limitations associated with subjective weighting and to promote
transparency and reproducibility in the analysis, the present study incorporates an entropy-based
objective weighting procedure. Rooted in the foundational work of Shannon [39], the entropy
method quantitatively evaluates the informational value and discriminative capacity of each
attribute. Within the context of the proposed QAOM framework, this technique exploits the
inherent ranking patterns revealed by the linguistic evaluations, providing an impartial estimate
of attribute relevance. Consequently, the entropy-based scheme enhances the methodological
rigor and robustness of the decision process, establishing a defensible weighting paradigm that
complements subjective expert reasoning.

Definition 11. Let D = [Qij ]m×n be a decision matrix, where Qij is the linguistic label as-
signed to the jth attribute of the ith alternative. The entropy of the jth attribute, Cj , is defined
as:

H(Cj) = − 1

lnm

m∑
i=1

[pij ln pij ] , (19)

where
pij =

Rank(Qij)∑m
i=1 Rank(Qij)

. (20)

In addition, unreliability (deviation) is defined as:

d(Cj) = 1−H(Cj). (21)

Accordingly, the weight of the jth attribute, wj , is computed as:

wj =
dj∑n
j=1 dj

. (22)

3 Proposed Q-TOPSIS Method

As discussed in the Introduction, this research aims to overcome persistent limitations in prior
qualitative MAGDM methodologies, particularly those based on the QAOM framework. We
introduce a unified, robust, and extensible MAGDM approach within the QAOM paradigm that
systematically addresses these unresolved issues.

Among alternatives in multi-attribute analysis, the TOPSIS, originally developed byHwang
and Yoon [27], has emerged as an influential method for the ranking of alternatives according
to their geometric proximity to both ideal and anti-ideal solutions. The conceptual clarity and
demonstrated success of TOPSIS across various domains have contributed to its adoption as a
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reference standard in decision-analysis literature [11, 13, 15, 17, 24]. Building on this foun-
dation, our study synthesizes the formal strengths of TOPSIS with the flexibility of QAOM
reasoning in a novel MAGDM framework. Distinctively, the proposed methodology advances
the state of the art by (i) introducing a consistent ranking procedure for interval-based qualita-
tive assessments; (ii) natively incorporating an entropy-based, objective approach to attribute
weighting that moves beyond ad hoc or externally determined weight assignments; (iii) estab-
lishing a systematic method for aggregating linguistic judgments frommultiple experts, includ-
ing provisions for divergent influence or expertise; and (iv) implementing an integrated normal-
ization protocol for both positive (benefit-type) and negative (cost-type) attributes expressed in
QAOM labels. Collectively, these innovations overcome the methodological barriers associ-
ated with prior QAOM-basedMAGDMmethods—most notably, the lack of natively integrated
objective weighting, the absence of a unified aggregation technique for group judgments, and
difficulties in managing negatively oriented criteria.

In summary, the enhanced QAOM-TOPSIS framework presented herein not only strength-
ens the analytical processing of qualitative and group information, but also extends the practical
reach and reliability of qualitative decision-making models in complex environments.

Consider a MAGDM problem withm alternatives

A1, A2, . . . , Am,

and n attributes
C1, C2, . . . , Cn,

where the value of each attribute is determined by k decision makers D1, D2, . . . , Dk with
corresponding weights πππ = (π1, π2, . . . , πK) in a QAOM environment. The following steps
detail the Q-TOPSIS method:

Step 1: Construction of the Decision Matrix. Each decision-maker provides an evalua-
tion for every attribute using an appropriate linguistic label from Sn. For cost-type (negative)
attributes, the transformation described in Definition 10 is applied to obtain their suitable rep-
resentation. Consequently, the decision matrices are assembled as Dk = [Qijk]m×n, where
Qijk ∈ Sn denotes the linguistic assessment assigned by the kth expert to the jth criterion of
the ith alternative.

Step 2: Evaluating the Integrated Decision Matrix. After forming the matrices Dk =

[Qijk]m×n, the rank of each linguistic label is computed using Definition 8, yielding matri-
ces ADk = [R(Qijk)]m×n, where R(Qijk) = Rank(Qijk). By integrating the evaluations of
all decision makers, the aggregated decision matrix is calculated as follows:

R(Qij) =

K∑
k=1

πk R(Qijk), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (23)
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where,
K∑
k=1

πk = 1.

The integrated decision matrix is then AD = [R(Qij)]m×n.

Step 3: Constructing the Weighted Decision Matrix. Using the method described in Def-
inition 11, the weight vector can be determined. LetW = (w1, w2, . . . , wn) denote the vector
of attribute weights, where wj is the weight of the jth attribute. The weighted decision matrix,
denoted by ADV = [vij ]m×n, is calculated as follows:

vij = wj ·R(Qij), i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (24)

Step 4: Determining PIS and NIS. Let v+ = (v+1 , v
+
2 , . . . , v

+
n ) be the Positive Ideal Solu-

tion (PIS) and v− = (v−1 , v
−
2 , . . . , v

−
n ) the Negative Ideal Solution (NIS), defined as:

v+j = max
i
{vij}, j = 1, 2, . . . , n, (25)

v−j = min
i
{vij}, j = 1, 2, . . . , n. (26)

Step 5: Calculating the Distance of Alternatives from PIS and NIS. The distance of the
ith alternative from the PIS and NIS is calculated as:

d+(Ai) =

√√√√ n∑
j=1

(vij − v+j )
2, i = 1, 2, . . . ,m, (27)

d−(Ai) =

√√√√ n∑
j=1

(vij − v−j )
2, i = 1, 2, . . . ,m, (28)

where d+(Ai) and d−(Ai) are the distances of the ith alternative from the PIS and NIS, respec-
tively.

Step 6: Calculating the Qualitative Closeness Coefficient of Alternatives. Finally, the
qualitative closeness coefficient for each alternative is calculated as:

CC(Ai) =
d−(Ai)

d−(Ai) + d+(Ai)
, i = 1, 2, . . . ,m. (29)

In this equation, CC(Ai) represents the qualitative closeness coefficient of the ith alternative.
The alternatives are ranked in descending order of CC(Ai) for i = 1, 2, . . . ,m. Therefore, A∗

is the best alternative if and only if CC(A∗) = maxi{CC(Ai)}.
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4 Numerical Examples and Validation

In this section, practical Examples 7 and 8 are used to investigate the potential and efficiency
of the proposed method in real-world decision-making problems. Then, in Example 9, we
demonstrate the advantages of the proposed method over previous approaches.

Example 7. In [2], a MADM scenario was analyzed to determine the most suitable wind farm
location in Catalonia, northeastern Spain. This problem involved a single decision-maker who
assigned equal weights to all attributes. The TOPSIS method was employed within the QAOM
framework to evaluate seven alternatives against nine attributes encompassing economic, so-
cial, environmental, and technical factors. Only basic linguistic labels from class S7 were uti-
lized. In the following, we re-evaluate this problem using the proposed method.

Step 1: Constructing the Decision Matrix. In this step, we constructed the decision matrix
using the alternatives and attributes defined in Table 1. The summarized decision matrix is
presented in Table 3. Definition 10 was used to convert the negative attributes C5, C6, and
C8 into positive ones. The normalized decision matrix is shown in Table 4. For example,
if we consider S7 as the reference scale, in Table 3 we have C1,5 = L = B2, so based on
Definition 10, [C1,5]

−1 = [B2]
−1 = [B(7+1)−2] = B6 (see Table 4). Similarly, all elements in

C6 and C8 are converted as seen in Table 4.

Table 1: Attributes and alternatives in Example 7.

Attribute Code Alternative description Code
Land owner’s income (+) C1 CB-Pre: Coma Bertran preliminary project. A1

Economic activity tax (+) C2 CB: Coma Bertran project. A2

Construction tax (+) C3 ST: Serra del Tallat project. A3

Number of jobs (+) C4 CBST: Combination of CB and ST projects. A4

Visual impact (−) C5 L: Based on CB and ST projects, considers
windmills located at least 1.5 km from popu-
lation centres and tourist attractions (Santuari
del Tallat).

A5

Deforestation (−) C6 R: Attempts to move windmills away from
population centres presenting higher resis-
tance (Senan and Montblanc).

A6

Avoided CO2 emissions
(+)

C7 NP: Possibility of constructing no project at
all.

A7

Noise (−) C8 – –
Installed capacity (+) C9 – –
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Table 2: Linguistic terms and corresponding linguistic labels in Example 7.

Linguistic label Linguistic term
B1 Very Low (VL)
B2 Low (L)
B3 Medium Low (ML)
B4 Medium (M)
B5 Medium High (MH)
B6 High (H)
B7 Very High (VH)

Table 3: Decision matrix based on linguistic terms in Example 7.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 ML L ML ML L MH L MH L
A2 L L ML L L MH L VH L
A3 MH MH MH H MH M H H MH
A4 VH VH VH VH VH VH VH VH VH
A5 M M H MH M L MH VH M
A6 M M ML MH ML L M MH M
A7 VL VL VL VL VL VL VL VL VL

Table 4: Normalized decision matrix based on linguistic labels in Example 7.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 B3 B2 B3 B3 B6 B3 B2 B3 B2

A2 B2 B2 B3 B2 B6 B3 B2 B1 B2

A3 B5 B5 B5 B6 B3 B4 B6 B2 B5

A4 B7 B7 B7 B7 B1 B1 B7 B1 B7

A5 B4 B4 B6 B5 B4 B6 B5 B1 B4

A6 B4 B4 B3 B5 B5 B6 B4 B3 B4

A7 B1 B1 B1 B1 B7 B7 B1 B7 B1

Step 2: Evaluating the integrated decision matrix. Using Definition 8, we calculated the
rank of each element in the decision matrix. Since only a single expert is involved in this
example, integration of multiple expert opinions was not required.
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Step 3: Constructing the weighted decision matrix. Following Afsordegan et al. [2], we
assigned equal weights to all attributes. The normalized weighted decision matrix, constructed
using Equation (24), is presented in Table 5.

Step 4: Determining PIS and NIS. In this step, the Positive Ideal Solution (PIS, v+) and the
Negative Ideal Solution (NIS, v−) are determined using Equations (25)– (26). Specifically, for
this case:

v+ =

(
max
i
{vij}

)
= (1, 1, 1, 1, 1, 1, 1, 1, 1),

v− =

(
min
i
{vij}

)
= (0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143).

These reference values are also given in Table 5.

Table 5: Normalized weighted decision matrix in Example 7.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.429 0.286 0.429 0.429 0.857 0.429 0.286 0.429 0.286
A2 0.286 0.286 0.429 0.286 0.857 0.429 0.286 0.143 0.286
A3 0.714 0.714 0.714 0.857 0.429 0.571 0.857 0.286 0.714
A4 1.000 1.000 1.000 1.000 0.143 0.143 1.000 0.143 1.000
A5 0.571 0.571 0.857 0.714 0.571 0.857 0.714 0.143 0.571
A6 0.571 0.571 0.429 0.714 0.714 0.857 0.571 0.429 0.571
A7 0.143 0.143 0.143 0.143 1.000 1.000 0.143 1.000 0.143
A+ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
A− 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.143

Step 5: Calculating the distance of each alternative from PIS and NIS. The distances of
each alternative from the PIS and NIS are calculated using Equations (27)–(28). The results are
summarized in Table 6.

Step 6: Calculating the qualitative closeness coefficient of alternatives. The relative qual-
itative closeness coefficient for each alternative is calculated using Equation (29), as shown in
Table 7.

To further assess the effectiveness of the proposed approach, the resulting rankings were
compared with those obtained using the method by Afsordegan et al. [2]. As shown in Table 8,
the proposed method produced a different ranking sequence, most notably in the positions of
A5 and A6, thereby demonstrating the added value and differentiating mechanism of the new
approach.



In
Pr
es
s

Dehghani Filabadi, A., Nahid Titkanlue, H. 17

Table 6: Distance of each alternative from PIS (d+) and NIS (d−) in Example 7.

Alternative d+(Ai) d−(Ai)

A1 1.784 0.990
A2 1.990 0.881
A3 1.178 1.616
A4 1.485 2.100
A5 1.450 1.552
A6 1.784 1.436
A7 1.990 1.485

Table 7: Relative closeness coefficient and ranking of alternatives in Example 7.

Alternative Closeness Coefficient CC(Ai) Rank
A1 0.357 6
A2 0.307 7
A3 0.578 2
A4 0.586 1
A5 0.517 4
A6 0.534 3
A7 0.414 5

Table 8: Comparison of ranking results in Example 7.

Method Ranking
Afsordegan et al. (2015) A4 ≻ A3 ≻ A5 ≻ A6 ≻ A7 ≻ A1 ≻ A2

Proposed method A4 ≻ A3 ≻ A6 ≻ A5 ≻ A7 ≻ A1 ≻ A2

Example 8. In this practical example, we apply the proposed method to the green energy se-
lection problem introduced by Afsordegan et al. [4]. This Multiple Attribute Group Decision-
Making case involves nine attributes and seven alternatives, as detailed in Table 9. Attribute
values were elicited from a panel of three experts. Attribute weights (determined via AHP by
Afsordegan et al. [4]) are also shown in Table 9. In this application, all attributes are considered
benefit-type.

Step 1: Constructing the decision matrix. The decision matrix is formed based on group
expert judgments, using linguistic terms (see Table 10).
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Table 9: Attributes, weights, and alternatives in Example 8.

Attribute Description Weight Alternative Code
C1 Efficiency 0.0900 Conventional A1
C2 Exergy (rational efficiency) 0.1000 Nuclear A2
C3 Investment cost 0.1000 Solar A3
C4 Operation and maintenance cost 0.1100 Wind A4
C5 NOX emission 0.1300 Hydraulic A5
C6 CO2 emission 0.1500 Biomass A6
C7 Land use 0.1100 Combined Heat & Power A7
C8 Social acceptability 0.0900 – –
C9 Job creation 0.1200 – –

Table 10: Decision matrix based on linguistic terms in Example 8.

C1 C2 C3 C4 C5 C6 C7 C8 C9

E1

A1 H H MH MH VL VL L ML MH
A2 VH M VL VH ML ML ML L H
A3 M M M M VH H VH H M
A4 ML MH H H H VH VH VH M
A5 MH H MH M ML L ML M H
A6 M MH M M H H MH H H
A7 M MH M ML M M MH H MH

E2

A1 VH MH H M VL ML VL L H
A2 H VH ML VH ML ML VL ML H
A3 ML M MH M VH H H H MH
A4 M MH H H H VH H VH M
A5 M H MH M ML L ML M MH
A6 M M MH M H H MH H H
A7 MH M M ML M M H MH MH

E3

A1 VH VH MH MH ML ML L ML MH
A2 VH VH VL VH L ML ML ML H
A3 M M M M H H H H M
A4 L MH H VH VH VH H VH M
A5 H H MH M ML L ML M H
A6 M MH M MH H H MH H MH
A7 MH M MH M M M MH H MH

Step 2: Evaluating the integrated decision matrix. The rank of each linguistic label is
determined using Definition 8 (see Table 11); the integrated decision matrix (per Equation (23))
is shown in Table 12.

Step 3: Constructing the integrated weighted decision matrix. Using the weights above,
the weighted matrix is computed as shown in Table 13.
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Table 11: Ranks of linguistic labels in Example 8 (excerpt).

C1 C2 C3 C4 C5 C6 C7 C8 C9

E1

A1 0.8571 0.8571 0.7143 0.7143 0.1429 0.1429 0.2857 0.4286 0.7143
A2 1.0000 0.5714 0.1429 1.0000 0.4286 0.4286 0.4286 0.2857 0.8571
A3 0.5714 0.5714 0.5714 0.5714 1.0000 0.8571 1.0000 0.8571 0.5714
A4 0.4286 0.7143 0.8571 0.8571 0.8571 1.0000 1.0000 1.0000 0.5714
A5 0.7143 0.8571 0.7143 0.5714 0.4286 0.2857 0.4286 0.5714 0.8571
A6 0.5714 0.7143 0.5714 0.5714 0.8571 0.8571 0.7143 0.8571 0.8571
A7 0.5714 0.7143 0.5714 0.4286 0.5714 0.5714 0.7143 0.8571 0.7143

Table 12: Integrated decision matrix in Example 8.

C1 C2 C3 C4 C5 C6 C7 C8 C9
A1 0.9524 0.8571 0.7619 0.6667 0.2381 0.3333 0.2381 0.3810 0.7619
A2 0.9524 0.8571 0.2381 1.0000 0.3810 0.4286 0.3333 0.3810 0.8571
A3 0.5238 0.5714 0.6190 0.5714 0.9524 0.8571 0.9048 0.8571 0.6190
A4 0.4286 0.7143 0.8571 0.9048 0.9048 1.0000 0.9048 1.0000 0.5714
A5 0.7143 0.8571 0.7143 0.5714 0.4286 0.2857 0.4286 0.5714 0.8095
A6 0.5714 0.6667 0.6190 0.6190 0.8571 0.8571 0.7143 0.8571 0.8095
A7 0.6667 0.6190 0.6190 0.4762 0.5714 0.5714 0.7619 0.8095 0.7143
wj 0.0900 0.1000 0.1000 0.1100 0.1300 0.1500 0.1100 0.0900 0.1200

Table 13: Integrated weighted decision matrix in Example 8.

C1 C2 C3 C4 C5 C6 C7 C8 C9
A1 0.0857 0.0857 0.0762 0.0733 0.0310 0.0500 0.0262 0.0343 0.0914
A2 0.0857 0.0857 0.0238 0.1100 0.0495 0.0643 0.0367 0.0343 0.1029
A3 0.0471 0.0571 0.0619 0.0629 0.1238 0.1286 0.0995 0.0771 0.0743
A4 0.0386 0.0714 0.0857 0.0995 0.1176 0.1500 0.0995 0.0900 0.0686
A5 0.0643 0.0857 0.0714 0.0629 0.0557 0.0429 0.0471 0.0514 0.0971
A6 0.0514 0.0667 0.0619 0.0681 0.1114 0.1286 0.0786 0.0771 0.0971
A7 0.0600 0.0619 0.0619 0.0524 0.0743 0.0857 0.0838 0.0729 0.0857

Step 4: Determining PIS and NIS. The Positive Ideal Solution (PIS, v+) and Negative Ideal
Solution (NIS, v−) are determined using Equations (25) and (26):

v+ = (0.0860, 0.0857, 0.0857, 0.1100, 0.1238, 0.1500, 0.0995, 0.0900, 0.1029),

v− = (0.0386, 0.0571, 0.0238, 0.0524, 0.0310, 0.0429, 0.0262, 0.0343, 0.0686).

Step 5: Calculating the distance of alternatives from PIS and NIS. Using Equations (27)
and (28), Table 14 presents the computed distances.

Step 6: Calculating the qualitative closeness coefficient of alternatives. The relative qual-
itative closeness coefficient is calculated (Equation (29)), producing the results in Table 15.
This yields the final ranking: A4 ≻ A6 ≻ A3 ≻ A7 ≻ A2 ≻ A5 ≻ A1.

This ranking exactly matches that obtained using the method by Afsordegan et al. [4], as
shown in Table 16.
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Table 14: Distances of alternatives from PIS and NIS in Example 8.

Alternative d+(Ai) d−(Ai)

A1 0.1690 0.0820
A2 0.1540 0.0920
A3 0.0810 0.1580
A4 0.0610 0.1840
A5 0.1510 0.0780
A6 0.0710 0.1450
A7 0.1120 0.1040

Table 15: Relative qualitative closeness coefficient and ranking of alternatives in Example 8.

Alternative CC(Ai) Rank
A1 0.3270 7
A2 0.3740 5
A3 0.6610 3
A4 0.7500 1
A5 0.3400 6
A6 0.6710 2
A7 0.4810 4

Table 16: Comparison of ranking results in Example 8.

Method Ranking
Afsordegan et al. [4] A4 ≻ A6 ≻ A3 ≻ A7 ≻ A2 ≻ A5 ≻ A1

Proposed method A4 ≻ A6 ≻ A3 ≻ A7 ≻ A2 ≻ A5 ≻ A1

Example 9. Consider aMulti-Attribute GroupDecision-Making problem for selecting themost
suitable supplier for a manufacturer. In this scenario, there are four suppliers (S1, S2, S3, and
S4) and four attributes: cost (C1), services (C2), quality (C3), and on-time delivery (C4), where
cost is a negative attribute and the others are positive. The attribute weights are unknown and
must be estimated. Attribute values are assessed by three decision makers (D1, D2, and D3),
with a weights vector π = (0.2, 0.4, 0.4). The steps of the proposed method are as follows:

Step 1: Constructing the decision matrix. According to the proposed method, the decision
matrix is initially formed based on the decision makers’ judgments, as shown in Table 17.
Note that C1 is a negative attribute. Therefore, using Definition 10, the values of the negative
attribute are inverted, as presented in Table 18.
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Table 17: Decision matrix based on linguistic terms in Example 9.

DMs Alternative C1 (-) C2 C3 C4

D1

S1 [B1, B2] B5 [B6, B7] [B6, B7]
S2 B1 [B6, B7] B6 [B6, B7]
S3 [B1, B2] [B6, B7] B7 B4
S4 [B2, B4] [B6, B7] [B6, B7] B5

D2

S1 [B1, B2] [B6, B7] B7 [B4, B6]
S2 [B2, B4] B5 [B6, B7] [B3, B5]
S3 [B1, B2] B7 [B4, B6] [B3, B5]
S4 [B2, B4] [B6, B7] B6 B7

D3

S1 B2 [B4, B6] [B4, B6] [B6, B7]
S2 [B2, B4] B6 [B6, B7] B7
S3 [B1, B2] [B4, B6] [B6, B7] [B6, B7]
S4 [B1, B2] B7 [B4, B6] [B4, B6]

Step 2: Evaluating the normalized decision matrix. In this step, the negative attribute is
converted to a positive one according to Definition 10. The resulting matrix is shown in Ta-
ble 18.

Table 18: Normalized attributes in Example 9.

DMs Alternative C1 C2 C3 C4

D1

S1 [B6, B7] B5 [B6, B7] [B6, B7]
S2 B7 [B6, B7] B6 [B6, B7]
S3 [B6, B7] [B6, B7] B7 B4
S4 [B4, B6] [B6, B7] [B6, B7] B5

D2

S1 [B6, B7] [B6, B7] B7 [B4, B6]
S2 [B4, B6] B5 [B6, B7] [B3, B5]
S3 [B6, B7] B7 [B4, B6] [B3, B5]
S4 [B4, B6] [B6, B7] B6 B7

D3

S1 B6 [B4, B6] [B4, B6] [B6, B7]
S2 [B4, B6] B6 [B6, B7] B7
S3 [B6, B7] [B4, B6] [B6, B7] [B6, B7]
S4 [B6, B7] B7 [B4, B6] [B4, B6]
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Step 3: Evaluating the integrated decision matrix. The rank of each linguistic label is
determined using Definition 8, as shown in Table 19. Then, the aggregated values for each
attribute are computed using Equation (24), and the integrated matrix is displayed in Table 20.

Table 19: Rank of attributes in Example 9.

DMs Alternative C1 C2 C3 C4

D1

S1 0.9643 0.7143 0.9643 0.9643
S2 1 0.9643 0.8571 0.9643
S3 0.9643 0.9643 1 0.5714
S4 0.7857 0.9643 0.9643 0.7143

D2

S1 0.9643 0.9643 1 0.7857
S2 0.7857 0.7143 0.9643 0.6429
S3 0.9643 1 0.7857 0.6429
S4 0.7857 0.9643 0.8571 1

D3

S1 0.8571 0.7857 0.7857 0.9643
S2 0.7857 0.8571 0.9643 1
S3 0.9643 0.7857 0.9643 0.9643
S4 0.9643 1 0.7857 0.7857

Table 20: Integrated matrix in Example 9.

Alternative C1 C2 C3 C4
S1 0.921 0.843 0.907 0.893
S2 0.829 0.821 0.943 0.850
S3 0.964 0.907 0.900 0.757
S4 0.857 0.979 0.850 0.857
wj 0.267 0.357 0.102 0.273

Step 4: Constructing the weighted decision matrix. Using Definition 11 and Equations
(18)–(20), the weights of the attributes are determined (see the last row of Table 20). The
weighted decision matrix is displayed in Table 21.

Step 5: Determining PIS and NIS. Based on Equations (22)–(23), the Positive Ideal Solu-
tion (PIS) and Negative Ideal Solution (NIS) are as follows:

v+ =
(
max
i
{vij}

)
= (0.257, 0.349, 0.096, 0.244),

v− =
(
min
i
{vij}

)
= (0.221, 0.293, 0.087, 0.207).
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Table 21: Weighted decision matrix in Example 9.

Alternative C1 C2 C3 C4
S1 0.246 0.301 0.093 0.244
S2 0.221 0.293 0.096 0.232
S3 0.257 0.324 0.092 0.207
S4 0.229 0.349 0.087 0.234

The corresponding distances to PIS and NIS are shown in Table 22.

Table 22: Distance of alternatives from PIS and NIS in Example 9.

Distance from PIS Value Distance from NIS Value
d+(S1) 0.0499 d−(S1) 0.0456
d+(S2) 0.0678 d−(S2) 0.0271
d+(S3) 0.0452 d−(S3) 0.0477
d+(S4) 0.0317 d−(S4) 0.0629

Step 6: Calculating the qualitative closeness coefficient of alternatives. Finally, Equa-
tion (29) is used to compute the relative qualitative closeness coefficient for each alternative,
as presented in Table 23. The alternatives are thus ranked as S4 ≻ S3 ≻ S1 ≻ S2.

Table 23: Relative qualitative closeness coefficient of alternatives in Example 9.

Relative closeness coefficient Value Rank
CC(S1) 0.477 3
CC(S2) 0.286 4
CC(S3) 0.514 2
CC(S4) 0.665 1

5 Discussion

In this study, we reassessed several Multi-Attribute Decision-Making scenarios, originally pre-
sented by Afsordegan et al., by applying our proposed method to enhance decision quality
across three concrete examples.

The first example involved the selection of an optimal location for a wind farm in Catalonia,
previously analyzed via the TOPSIS method integrated with QAOM [2]. Our re-evaluation
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yielded valuable insights, particularly in the ranking of alternatives. The alternative A4, which
combines aspects from projects CB and ST, consistently emerged as the most favorable option
(see Table 8). This result is in agreement with the original findings, underscoring the soundness
and reliability of our method’s ranking system when applied to established MADM problems
within the QAOM context. The correspondence with Afsordegan’s [2] results validates the
foundational effectiveness of our approach and highlights its applicability to both environmental
and urban planning domains.

In the second example, we applied the proposed method to select among sustainable energy
alternatives, a case previously described by Afsordegan et al. [4]. By constructing a decision
matrix based on expert opinions and applying our evaluation framework, we identified the opti-
mal energy alternative among seven options characterized by nine attributes. Both our method
and that of Afsordegan et al. selected alternative A4 as the superior choice (Table 16), fur-
ther reinforcing the reliability of our approach for MAGDM instances where attribute weights
are predefined or subjectively assigned. The integration of qualitative assessments in the deci-
sion matrix proved essential, accommodating the complex, multifaceted nature of sustainability
evaluation, and demonstrating the framework’s applicability to real-world scenarios where ex-
pert judgment is indispensable.

The third example addressed a more complex MAGDM problem: supplier selection among
four candidates based on four attributes, including a negative attribute (cost), and requiring
the objective determination of attribute weights from qualitative data, with multiple decision-
makers of varying influence. Our systematic approach included: (1) constructing decision ma-
trices from expert assessments (Table 17), (2) normalization of attributes, including cost (Ta-
ble 18), (3) ranking of linguistic labels (Table 19), (4) determining objective attribute weights
with the integrated entropy method (Table 20), (5) building the weighted decision matrix (Ta-
ble 21), and (6) calculating distances to PIS and NIS (Table 22). This comprehensive workflow
enabled us to effectively address challenges that previous QAOM-based methodologies could
not resolve. The final ranking found S4 to be themost preferred supplier (Table 23), showcasing
the proposed method’s capacity to handle intricate, realistic decision situations.

The successful handling of Example 3—featuring objective weight calculation, variable
decision-maker influence, and negative attributes—highlights the significant methodological
advances our approach delivers over prior QAOM-based methods. To explicitly delineate these
improvements, Table 24 provides a detailed, feature-by-feature comparison.

As Table 24 illustrates, although the foundational work of [2] established QAOM for
MADM and [4] extended its application to basic MAGDM, these earlier solutions remain lim-
ited by their inability to: (i) normalize and process negative (cost-type) attributes fully within
the QAOM schema; (ii) incorporate varying influence degrees among group members; and
(iii) determine attribute weights objectively from qualitative data using a criterion internal to
QAOM.
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Table 24: Feature Comparison of QAOM-based Decision-Making Methods.

Feature [2] [4] Proposed Method
Handles MADM Yes Yes Yes
Handles MAGDM No Yes Yes
Handles Positive & Negative Attributes in QAOM No No Yes
Incorporates Decision Maker Weights No No Yes
Determines Objective Attribute Weights in QAOM No No Yes

In contrast, our proposed method overcomes all these limitations. The comprehensive solu-
tion to Example 9 explicitly demonstrates the practical value of these methodological enhance-
ments. The objective calculation of attribute weights through entropy directly from qualitative
input (Table 20), normalization of the negative cost attribute (C1, Table 18), and the aggrega-
tion of weighted expert assessments, reveal a robustness, flexibility, and generality in complex
MAGDM contexts not previously available in QAOM-based decision frameworks. This inte-
grated approach enables a more robust, objective, and adaptable analysis of MAGDMproblems
characterized by qualitative uncertainty, divergent expert opinion, and mixed attribute types,
effectively addressing the substantial limitations identified in the Introduction.

6 Conclusion

Qualitative Absolute Order-of-Magnitude (QAOM) is a widely used qualitative reasoning
method in artificial intelligence for analyzing multi-attribute decision-making problems char-
acterized by varying degrees of data precision. QAOM allows decision-makers to express
subjective judgments through linguistic labels across multiple scales. However, its practical
application—particularly in complex, real-world scenarios—has been hindered by several cru-
cial limitations: The absence of an objective, integrated procedure for attribute weighting, the
lack of a robust mechanism for aggregating weighted expert opinions in group decision con-
texts, and challenges in properly normalizing negative (cost-type) attributes within the QAOM
framework. This study addresses these limitations by introducing a novel, integrated MAGDM
framework fully embedded within the QAOM environment. The proposed approach incorpo-
rates several innovations: (i) a mathematically rigorous ranking system for linguistic labels that
supports consistent comparison and appropriately handles negative attributes; (ii) an entropy-
based method for objectively determining attribute weights directly from qualitative data; and
(iii) a structured procedure for aggregating expert judgment, incorporating recognition of dif-
fering expertise through decision-maker weights. A systematic normalization procedure for
negative attributes is also developed to enhance the framework’s completeness. The effective-
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ness of the proposed framework was validated through re-evaluating practical examples from
the literature ([2] and [4]). Results on these benchmark cases (see Tables 8 and 16) aligned with
prior findings, confirming the method’s correctness in standard scenarios. More importantly, in
complex MAGDM settings, the proposed method revealed distinct advantages: as discussed in
Section 4 (Table 24), it offers intrinsic mechanisms for objective attribute weighting, systematic
treatment of negative attributes, and integration of heterogeneous expert influence capabilities
absent from prior QAOM-based methods. The third illustrative example further highlighted
how these innovations enable QAOM to resolve particularly challenging cases, significantly im-
proving its applicability and robustness. In summary, the proposed MAGDM framework con-
siderably enhances the flexibility and analytical capability of QAOM-based decision analysis.
By offering systematic solutions for objective attribute weighting, expert opinion aggregation,
and normalization of both positive and negative attributes within the QAOM environment, this
research advances the methodological foundation for tackling complex group decision-making
problems under linguistic uncertainty.

7 Limitations and Future Research Directions

Despite the demonstrated merits and advances of the proposed QAOM-based MAGDM ap-
proach, several aspects remain open for further exploration. First, the scope of quantitative
comparison with other methods is inherently restricted, as the literature on QAOM-based de-
cision frameworks remains relatively limited. Future studies can address this by establishing
more comprehensive benchmarks or applying the method to a wider range of established deci-
sion problems. Second, while the present framework has shown its feasibility for moderately
sized group decision scenarios, additional work is needed to ensure computational scalability
and effectiveness in larger-scale or more intricate contexts. Integrating the proposed approach
with other established MCDM techniques could further test and possibly enhance its adapt-
ability and robustness. Third, a systematic evaluation of the method’s sensitivity to changes in
expert assessments and model parameters—such as through sensitivity analysis—was beyond
the scope of this article, but represents an important area for building confidence in its practical
deployment. Finally, the versatility of the framework could be more convincingly demonstrated
through application to a broader variety of real-world case studies spanning diverse domains.
Addressing these limitations can help reinforce the method’s strengths and broaden its impact
in supporting complex group decision-making under uncertainty.
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