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1 Introduction

Graph partitioning involves dividing a graph into two or more disjoint sets of vertices such that
the total weight of the edges between these sets is minimized. When the weights of the edges are
fuzzy, the resulting structure is known as a fuzzy graph. The concept of fuzzy graphs was first
introduced by Kaufman et al. [24], building upon the fuzzy relations described by Zadeh [40].
Subsequently, Rosenfeld [36] formally defined fuzzy graphs as a generalization of classical,
crisp graphs, where both vertices and edges are associated with membership degrees. Rosenfeld
explored various properties of fuzzy graphs, including connectivity, paths, and cycles, based
on these membership degrees. Since then, numerous studies have examined fuzzy graphs and
applied them to various optimization problems [10, 26, 34].

In the context of graph partitioning, the classical problem of graph coloring is considered
a subproblem, historically studied by Pieter and Mouton [32]. Since the early 1970s, graph
partitioning has attracted extensive research interest. An innovative approach was introduced
by Kernighan and Lin [25], who proposed a heuristic method to partition graph nodes optimally,
minimizing the sum of the edge costs between partitions. Their method is computationally
efficient and scalable, making it suitable for large-scale applications such as electronic circuit
design. Given that graph partitioning problem (GPP) is an NP-hard problem, solutions are
typically categorized into exact and heuristic methods. Exact methods, like branch-and-cut
algorithms [7], column generation [22], and exact algorithms for weighted edges [20], aim to
find optimal solutions but are computationally intensive. In contrast, heuristic approaches offer
approximate solutions within reasonable timeframes, which are often more practical for real-
world problems. Recent methods have included multi-level parallel algorithms [1] and hybrid
approaches [37] incorporating fuzzy logic to predict points of sewer networks.

Heuristic algorithms such as Genetic Algorithms (GAs) have been widely employed for
the GPP. Bui and Moon [8] introduced a hybrid GA for GPP, while Shazely et al. [38] de-
veloped GA-based techniques to generate multiple high-quality solutions, comparing different
strategies like fitness sharing and deterministic crowding. Other studies have applied GAs to
multi-objective partitioning problems [13] and integrated encoding schemes tailored for the
GPP [5], with applications extending to clustering and machine learning [9, 29].

The Tabu Search (TS) algorithm is also a prominent method for the GPP. Kadluczka and
Wala [23] utilized TS, along with GA, to solve a generalized version of GPP involving weighted
graphs. Similarly, Lim and Chee [30] applied TS for balanced minimum cut problems, whereas
Benlic and Hao [4] proposed a multilevel TS-based algorithm for balanced graph partitioning.
Bruglieri and Cordone [6] introduced the minimum gap GPP (MGGPP), which aims to partition
into connected subgraphs with equal or nearly equal weights, using a two-level TS and large
neighborhood search for large-scale instances (up to 23,000 vertices).
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In this paper, we extend the classical GPP to incorporate fuzzy edge weights represented
by trapezoidal fuzzy numbers. To handle the fuzzy data, we employ a linear ranking func-
tion for ordering fuzzy numbers. We apply three optimization algorithms, the GA, the TS and
Sequential Least Squares Programming (SLSQP), to solve this fuzzy GPP.

The remainder of this paper is organized as follows: Section 2 details the standard GPPwith
weighted edges, its formulation, and conditions for optimal solutions. Section 3 introduces the
fuzzy GPP, the ranking function and the conditions for optimality. Section 4 describes the
GA, including population initialization, crossover, and stopping criteria. Section 5 presents the
TS algorithm is presented, focusing on local search procedures to improve solutions. Section 6
discusses the SLSQP algorithm and the rationale for its inclusion. Section 7 provides numerical
results demonstrating the effectiveness of our proposed methods. Finally, Section 8 concludes
the paper

2 Graph Partitioning

Consider a weighted graph, wherein edges are assigned weights. The objective of graph par-
titioning is to divide the vertex set into two or more disjoint subsets, subject to specific con-
straints, such that the total weight of edges crossing between different subsets is minimized.
The problem is commonly referred to as the minimum cut problem. Let G = (V,E) be a
graph with vertex set V and edge set E, where V is partitioned into two disjoint subsets V1

and V2, satisfying V = V1 ∪ V2 and V1 ∩ V2 = ∅. To solve the GPP, we introduce a vector
x = (x1, x2, . . . , xn)

T be a whose elements are binary variables, taking values in 0, 1. Each
component xi corresponds to vertex vi, such that:

V1 = {i : xi = 1}, V2 = {i : xi = 0}. (1)

Define the vector e = (1, 1, . . . , 1)T of length n. Then, the scalar product eTx = m

indicates that exactly m vertices belong to V1, with the remaining n − m vertices in V2. Let
A = (aij) be the adjacency matrix, where aij denotes the weight of the edge between vertices
vi and vj . The GPP can then be expressed as a continuous optimization:

min (e− x)T (A+D)x

s.t.
eTx = m,

0 ≤ x ≤ e,

(2)

where D is a diagonal matrix with entries determined based on A. The objective function
(e − x)TAx quantifies the total weight of edges between the two partitions, for any feasible
solution of (2). An extension of the formulation of (2) incorporates bounds [l, u] on the size of
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V1, i.e., l ≤ eTx ≤ u, to constrain the cardinality of the subset V1. The generalized continuous
problem becomes:

min (e− x)T (A+D)x

s.t.
l ≤ eTx ≤ u,

0 ≤ x ≤ e.

(3)

The subsequent theorem provides conditions under which the solution to this problem (3)
is binary.

Theorem 1. [19]: If the diagonal matrixD = diag(d11, d22, . . . , dnn) satisfies the inequalities

dii + djj ≥ 2aij , dii ≥ 0, i, j = 1, 2, . . . , n, (4)

then, the problem (3) admits a binary solution. Furthermore, if the inequalities in (4) hold
strictly, i.e.,

dii + djj > 2aij , dii > 0, i, j = 1, 2, . . . , n, (5)

then, every local optimal solution of the problem (3) is binary.

3 Fuzzy Graph Partitioning

In this section, we examine the GPP in the fuzzy context (Fuzzy GPP). Specifically, we consider
the scenario where the edges of the graph are weighted with trapezoidal fuzzy numbers. To
compare these fuzzy weights, we utilize a linear ranking function. Therefore, we begin by
reviewing some fundamental concepts related to trapezoidal fuzzy numbers and their ranking
methods, referencing [14, 15, 31]).

Definition 1. (Trapezoidal fuzzy numbers and ranking functions)
A fuzzy set Ã on R is called a fuzzy number if it satisfies the following conditions:

1. Ã is convex,

2. Its membership function µÃ is piecewise continuous,

3. There exist real numbers a < b < c < d such that µÃ is increasing on [a, b], equals to 1 on
[b, c], decreasing on [c, d], and is zero elsewhere.

Notice 1. A trapezoidal fuzzy number Ã is denoted by (aL, aU , α, β), where [aL, aU ] corre-
sponds to its core, and (aL − α, aU + β) represents its support (see Figure 1).

Notice 2. We denote F(R) as the set of all fuzzy numbers.
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Figure 1: Trapezoidal fuzzy number Ã = (aL, aU , α, β).

Definition 2. (Operations on trapezoidal fuzzy numbers)
Let ã = (aL, aU , α1, α2) and b̃ = (bL, bU , β1, β2) be two trapezoidal fuzzy numbers. For a real
number r, the scalar multiplication is defined as:

• If r > 0, then rã = (raL, raU , rα1, rα2).

• if r < 0, then rã = (raU , raL,−rα2,−rα1).

The addition of two fuzzy numbers is given by:

ã+ b̃ = (aL + bL, aU + bU , α1 + β1, α2 + β2).

To facilitate comparison between fuzzy numbers, a crucial step in fuzzy partitioning, we
employ ranking functions.

Definition 3. A ranking function R : F (R) → R assigns a real value to each fuzzy number
for comparison purposes. For any two fuzzy numbers ã, b̃ in F (R), the ordering relations are
defined as:

ã ≥R b̃ ⇐⇒ R(ã) ≥ R(b̃),

ã >R b̃ ⇐⇒ R(ã) > R(b̃),

ã =R b̃ ⇐⇒ R(ã) = R(b̃).

Similarly, the relations ã <R b̃ and ã ≤R b̃ are defined accordingly.

Remark 1. The zero trapezoidal fuzzy number 0̃ is represented by (0, 0, 0, 0).

Remark 2. For constants cL, cU , cα, cβ , at least one non-zero. For ã = (aL, aU , α, β), the
linear ranking function on F(R) is often defined as:

R(ã) = cLaL + cUaU + cαα+ cββ.
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A special case of the preceding linear ranking function has been proposed by Yager ([39])
as follows:

R(ã) = 1

2

∫ 1

0
(inf ãµ + sup ãµ)dµ,

which simplifies to (see [10, 1]):

R(ã) = aL + aU
2

+
β − α

4
. (6)

For two trapezoidal fuzzy numbers ã = (aL, aU , α1, α2) and b̃ = (bL, bU , β1, β2), the
relation ã >R b̃ holds if and only if :

2(aL + aU ) + α2 − α1 > 2(bL + bU ) + β2 − β1.

The GPP with Trapezoidal Fuzzy Numbers

When the edges of the graphG = (V,E) are represented with fuzzy weighted, the partitioning
problem can be formulated as follows:

min f̃(x) =R (e− x)T (Ã+D̃)x

s.t.
l ≤ eTx ≤ u,

0 ≤ x ≤ e,

(7)

where Ã = (ãij) is the fuzzy adjacency matrix with trapezoidal fuzzy numbers ãij for i, j =

1, 2, . . . , n. Additionally, D̃ = diag(d̃11, d̃22, . . . , d̃nn) is a diagonal fuzzy matrix, with entries
defined as trapezoidal fuzzy numbers depending on Ã.

Next, we present a theorem that converts the FPP described in (7) into an equivalent crisp
formulation, utilizing the ranking function introduced in Equation (6).

Theorem 2. The fuzzy problem (7) is equivalent to the following crisp optimization problem:

min f(x) = (e− x)T (R(Ã) +R(D̃))x

s.t.
l ≤ eTx ≤ u,

0 ≤ x ≤ e,

(8)

whereR is a linear ranking function as defined in (6), and

R(Ã) = (R(ãij))(i,j), i, j = 1, 2, . . . , n.

Proof. By the definition of the ranking operation, f̃(x) =R (e − x)T (Ã + D̃)x is equivalent
to
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f(x) := R(f̃(x)) = R((e− x)T (Ã+ D̃)x).

SinceR is a linear operator, f simplifies as:

f(x) = (e− x)TR(Ã+ D̃)x = (e− x)T (R(Ã) +R(D̃))x,

which completes the proof.

Building on this, Theorem 1 can be extended for the FPP as follows:

Theorem 3. Suppose the diagonal matrix D̃ = diag(d̃11, d̃22, . . . , d̃nn) is chosen such that the
following inequalities hold:

d̃ii + d̃jj ≥R 2ãij , d̃ii ≥R 0̃, i, j = 1, 2, . . . , n, (9)

then, the problem described in (7) admits a binary solution. Furthermore, if these inequalities
in (9) are strict, i.e.,

d̃ii + d̃jj >R 2ãij , d̃ii >R 0̃, i, j = 1, 2, . . . , n, (10)

then each local optimal solution of (7) will be a binary.

Proof. By Theorem 2, the problem (8)(its crisp equivalent) is equivalent to the fuzzy problem
(7). Consequently, we can replace the original matrices A and D in the problem (3) with their
ranked counterpartsR(Ã) andR(D̃), respectively. This results in the conditions (3):

R(d̃ii) +R(d̃jj) ≥ 2R(ãij), R(d̃ii) ≥ 0, i, j = 1, 2, . . . , n. (11)

which, due to the linearity ofR, the conditions in (11) can be translate into

R(d̃ii + d̃jj) ≥ R(2ãij), R(d̃ii) ≥ 0, i, j = 1, 2, . . . , n,

inducing conditions (9). Similarly, conditions (9) are proved.

4 Genetic Algorithm (GA) Overview

The Genetic Algorithm (GA) is an optimization technique inspired by the principles of natural
selection and evolution. It effectively addresses complex optimization problems by iteratively
generating and assessing candidate solutions, mimicking the evolutionary process observed in
nature. In a GA, a population of candidate solutions, referred to as individuals, is initialized
randomly. Each individual is evaluated using a fitness function, which quantifies its quality.
The most fit individuals are then selected to produce new offspring through genetic operations
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such as crossover and mutation. These offspring inherit traits from their parents, and the pro-
cess repeats over multiple generations, allowing the population to progressively improve and
converge toward an optimal solution [18, 33].

This approach is particularly well-suited for our problem, as it excels in optimizing combi-
natorial problems with constraints such as eTx = m, which are central to our formulation. The
search space, of size

(
n
m

)
, is vast, making deterministic or gradient-based methods less effec-

tive due to the discrete binary nature of variables and the constraints involved. GA naturally
respects these constraints through careful initialization and crossover operations that maintain
feasibility. Moreover, the quadratic nature of the objective function, (e − x)TAx, can exhibit
multiple local minima. The stochastic nature of GA allows it to explore diverse solutions in
parallel, helping to avoid entrapment in local minima. A customized crossover mechanism en-
sures that offspring remain valid solutions, while the population-based search systematically
explores the solution space for improvements. Overall, GA’s ability to handle problem com-
plexity, discrete variables, and constraints makes it a robust and efficient optimization choice.
A flowchart illustrating the GA process is shown in Flowchart 2.

Flowchart 2: A flowchart of the GA.

4.1 Problem Formulation

Now consider the following optimization problem:
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min f(x) = (e− x)T (R(Ã) +R(D̃))x

s.t.
eTx = m,

0 ≤ x ≤ e.

(12)

where Ā = R(Ã)+R(D̃). The fuzzy diagonal matrix D̃ can be designed so thatR(D̃) satisfies
the relevant conditions (10) and ensures Ā is diagonally dominant matrix. Recall that a square
matrix is diagonally dominant if the magnitude of each diagonal element is at least equal to the
sum of the magnitudes of the other (non-diagonal) elements in the same row.

4.2 GA Implementation for the Problem

To apply GA, we start by creating an initial population G = x0, x1, . . . , xN consisting of
potential solutions with binary elements, generated randomly. To satisfy the constraints

∑
xi =

m and 0 ≤ xi ≤ 1, we set exactly m elements to 1 and the remaining n–m to 0 in each
individual. The fitness of each candidate x is evaluated using the objective function:

f(x) = (e− x)T Āx.

Individuals with the lowest fitness values are selected for the next generation. Crossover
is performed by randomly choosing two parent solutions x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn). The sum z = x + y is computed, and offspring are generated by averaging
and applying random modifications:

i. Set w = ⌈z/2⌉,

ii. Randomly select s–m components of w where the value is 1 and set them to 0 in which
s = ∥w∥1,

iii. Repeat this process to generate multiple offspring until the offspring meet
⌈

s
s−m

⌉
.

Each offspring’s fitness is evaluated, and the best solutions are combined with selected individ-
uals from the previous population to form the new generation. The process continues until the
improvement falls below a threshold ϵ.

Algorithm 1 represents the GA structure for solving the problem (12).

4.3 Adaptation for Problem (8)

By modifying some steps slightly, this GA can also be used to solve the alternative formulation
(8). Algorithm 2 describes this adapted process.
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Algorithm 1 Solving the FPP (12) by Genetic Algorithm (GA)

Input: Matrix Ā = R(Ã) +R(D̃).

Parameters: • Population size: N ,

• Maximum generations: T ,

• Mutation probability: pm,

• Crossover probability: pc,

• Convergence threshold: ϵ.

Output: Near-optimal solution x = (x1, x2, . . . , xn) of (12) and objective value f(x) = (e− x)T Āx.

1. Initialization: Randomly Generate initial population G = {x0, x1, . . . , xN} with binary entries
with satisfying constraints in (12).

2. Fitness Evaluation and Selection:

2-1: For each x ∈ G, evaluate f(x) = (e− x)T Āx.

2-2: Select ⌊pc · N⌋ chromosomes for crossover based on their fitness using tournament or
roulette wheel selection.

3. Crossover: For each pair of selected parents x, y ∈ G:

3-1: Compute z = x+ y. Set ti = ⌈zi/2⌉ for i = 1, . . . , n.

3-2: Calculate s =
∑n

i=1 ti.

3-3: Generate offspring zi by randomly turning (s−m) selected 1s into zeros.

3-4: Add feasible offspring zi to the new population G.

3-5: Repeat Steps 3 and 4 to generate at most
⌈

s
s−m

⌉
offspring.

4. Mutation:

4-1: For each chromosome in G, with probability pm:

4-1-1: Randomly select two indices i and j such that xi = 1, xj = 0

4-1-2: Swap a randomly chosen 1 with a 0.

4-2: Ensure constraint satisfaction (12) after mutation.

5. Replacement: Form new population of sizeN by combining top offspring and elite individuals.

6. Termination: Stop if the difference between consecutive best fitness values is less than ϵ or if T
maximum generations are reached.
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Algorithm 2 Solving the FPP (8) via the GA

Input: Matrix Ā = R(Ã) +R(D̃).

Output: Optimal solution x = (x1, x2, . . . , xn) with objective f(x) = (e− x)T Āx.

1. Initial Population G:

1-1: Find the u− l + 1 feasible binary solutions G0 = {x(1), . . . , x(u−l+1)}.

1-2: Generate additional solutions by swapping components of solutions inG0, ensuring
feasibility.

1-3: Combine to form G = G0 ∪G1.

2. Apply selection, crossover, mutation, replacement, and termination procedures similar to
Algorithm 1 with necessary adjustments as per problem specifics.

5 Tabu Search (TS)

Tabu Search (TS) is a metaheuristic optimization algorithm tailored for solving complex combi-
natorial problems. It iteratively explores the solution space by moving to the best neighboring
solutions, even if such moves temporarily worsen the current solution. This strategic accep-
tance helps avoid entrapment in local minima. A key feature of the TS is its memory-based
tabu list, which records recently visited solutions or moves to prevent revisiting them, thereby
promoting diversification of the search. The TS is renowned for its high flexibility, effective
constraint handling, and strong performance on large-scale and intricate problems.

The TS is particularly appropriate for our minimization problem because it efficiently navi-
gates the vast solution space of the graph, actively avoiding cycles through its tabu list. It man-
ages the combinatorial constraints l ≤

∑
xi ≤ u effectively by concentrating the search on

feasible neighboring solutions. Its capability to optimize nonlinear objective functions, specif-
ically, (e − x)TAx, while escaping local optima makes it highly suitable. Additionally, its
scalability and customizable stopping criteria make it an excellent choice for large, graph-based
optimization challenges. A flowchart illustrating the TS process is provided in Flowchart 3.

Over time, the TS has been extensively adapted, and numerous variants and improvements
have been developed. The following Algorithm 3 outlines the core steps of the classical TS
approach.

A visual representation of the TS process is shown in Flowchart 3.
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Algorithm 3 Tabu Search Algorithm for solving the FPP (8)

Input: Matrix Ā ∈ Rn×n (symmetric), lower bound l, upper bound u, maximum iterations
max_iter, tabu list size tabu_size.

Output: A near-optimal solution xbest and its objective function value f(xbest) = (e −
xbest)T Āxbest.

1. Initialization:

1-1: Set e← 1n (vector of ones with length n).

1-2: Generate an initial feasible solution xbest = (xbest1 , xbest2 , . . . , xbestn ) ∈ {0, 1}n sat-
isfying l ≤

∑
xbesti ≤ u.

1-3: Compute initial cost Bestcost ← f(xbest).

1-4: Initialize an empty tabu list.

2. Main Loop: (repeat formax_iter iterations):

2-1: For each index i = 1, . . . , n, create a neighbor xnew = (xnew1 , xnew2 , . . . , xnewn ) by
flipping the component xbest, i.e., set xnewi ← 1−xbesti , keeping other components
unchanged.

2-2: Check if xnew respects the constraints l ≤
∑

xnewi ≤ u.

2-3: Evaluate the objective function f(xnew).

2-4: Among all valid neighbors, select the one with the lowest f(xnew), denoted as
xbest_neighbor.

3. Update:

3-1: If xbest_neighbor is not in the tabu list or has a better cost than xbest:

Update xbest ← xbest_neighbor.

Update Bestcost ← f(xbest).

3-2: Add xbest to the tabu list.

3-3: If tabu list exceeds size tabu_size, remove the oldest entry.

4. Termination: Return xbest and Bestcost.
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Flowchart 3: Flowchart of the TS procedure.

6 Sequential Least Squares Programming (SLSQP) Algorithm

Sequential Least Squares Programming (SLSQP) is a gradient-based optimization method tai-
lored for solving constrained nonlinear optimization problems. It approaches the original prob-
lem by iteratively solving a sequence of quadratic programming (QP) subproblems that approx-
imate the nonlinear problem at each step. The key steps are as follows:

• The objective function and constraints are locally approximated using a quadratic models.

• At each iteration, a quadratic subproblem is solved to determine a search direction.

• The solution is updated using a line search method, and the process repeats until conver-
gence criteria, such as gradient norm or constraint satisfaction, are met.

In this study, we employed SLSQP as a benchmark technique for solving the partitioning
problem defined in equation (8). The algorithm was implemented using the “scipy.optimize.
minimize” function in Python. The initial solution x was randomly initialized within [0, 1],
and the problem constraints were directly supplied to the SLSQP solver. During optimization,
the objective function was minimized iteratively, with each iteration monitored via a callback
function to track progress.

Upon convergence, the continuous solution x∗ was thresholded such that any x∗i > 0.6 was
set to 1, while and the rest were set to 0, yielding a binary partitioning decision. The indices
where x∗i = 1 identified the selected subset of nodes. Given that the optimization problem (8)
is a quadratic programming problem with linear constraints, SLSQP is particularly suitable for
this context for several reasons:
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• The objective function in (8) is quadratic, a form efficiently handled by the SLSQP.

• The linear constraints l ≤ eTx ≤ u and x ≥ 0 can be directly incorporated without
complex transformations.

• The SLSQP is computationally effective for medium-scale constrained optimization
problems, making it a practical choice.

• The non-negativity constraint x ≥ 0 aligns naturally with SLSQP’s capacity to enforce
inequality constraints. The constraints l ≤ eTx ≤ u and x ≥ 0.

• The SLSQP maintains feasibility by solving quadratic subproblems that respect the con-
straints at each iteration, ensuring stable convergence.

However, it is important to note that the SLSQP may become trapped in a local optimum,
especially when the problem’s objective function (8) is non-convex. The convexity of the
quadratic objective depends on the properties of the matrix Ā. Specifically:

• If Ā is positive semidefinite (all eigenvalues are non-negative), the objective function is
convex, and the SLSQP is guaranteed to converge to the global optimum.

• Conversely, if Ā is indefinite (has both positive and negative eigenvalues), the function
is non-convex. In such cases, multiple local minima may exist, and the SLSQP might
converge to a local, rather than a global, minimum.

7 Numerical Experiments

In this section, we present numerical experiments to validate the theoretical results discussed
earlier. All computations were performed using R version 4.4.2 on a system equipped with
an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (up to 1.80GHz). The Irace package was
employed alongside R to optimize the algorithm parameters.

Example 1. We consider the graph with 20 nodes ([19]), illustrated in Figure 4 . Details of the
graph structure are provided in Table 1.

The fuzzy adjacency matrix Ã = (ãij) assigns a fuzzy number (2, 4, 1, 1) to all con-
nected edges, indicating the strength of the connection. For non-connected pairs, the entry
is (0, 0, 0, 0). The fuzzy diagonal entries are set as d̃ii = [2, 12, 1, 1] for each i = 1, 2, . . . , 20.
Using the ranking function defined in equation (6), the conditions in (10) are satisfied. We set
the lower and upper bounds as l = 3 and u = 5.
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Figure 4: Sample graph for Example 1 [19].

Table 1: Graph structure for Example 1.

Node Connects to Node Connects to
1 7, 12, 13, 14, 15, 16, 17 9 11, 15, 19
2 12, 17, 18, 20 11 14, 17, 18, 20
3 5, 11, 13, 14, 18, 19, 20 12 14
4 6,9 13 18,20
5 7, 9, 10, 12, 16, 19 14 16,18,20
6 16,18,20 16 18
7 8, 9, 11, 16 17 18
8 15, 18 18 20

Both the GA and TS produced the following partition:

x = [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0],

with an objective value of 15. Here, the subset V1 = [8, 10, 15], while V2 contains the remaining
nodes:

V2 = [1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20].

Results are summarized in Table 2. Using Irace for parameter tuning, the initial population
for the GA comprised 20 chromosomes over 5 generations. For the TS, the tabu list stored the
last 10 moves.

If we set the lower and upper bounds as l = u = 10, this means the condition l ≤ eTx ≤ u

reduces to eTx = 10. The results under this setting are presented in Table 3. Using the Irace
package for parameter tuning, the initial population for the GA consisted of 50 chromosomes
over 30 generations. For the TS, the tabu list stored the last 5 moves or solutions visited.



In
Pr
es
s

16 Solution Techniques for Fuzzy Graph Partitioning ...

Table 2: Graph partitioning results achieved by the GA and the TS algorithms for Example 1.

Method Objective Value V1 CPU Time (s) Iterations Population
GA 15 [8,10,15] 0.0156 2 20
TS 15 [8,10,15] 0.014 11 ——

Table 3: Graph partitioning results for Example 1 with fixed bounds l = u = 10.

Method Objective V1 CPU Iterations Population
Value Time (s)

GA 39 [1, 2, 3, 5, 10, 12, 13, 16, 17, 19] 0.078 2 50
TS 39 [1,5,7,8,9,10,12,15,16,19] 0.008 6 —

Example 2. We consider a graph with 1,000 vertices, where 20% of the edges are randomly
assigned nonzero weights. In the fuzzy adjacency matrix Ã = (ãij), if there is a connection
between nodes i and j, the corresponding fuzzy number ãij = ((aL)ij, (aU )ij, αij , βij) is
randomly selected from a uniform distribution over (0, 1). If no connection exists, ãij is set
to the fuzzy number (0, 0, 0, 0). The fuzzy diagonal entries are set as d̃ii = [2, 4, 0.5, 0.5]

for i = 1, 2, . . . , 1000. Using the ranking function defined in (6), the conditions in (10) are
satisfied. The lower and upper bounds are set to l = 3 and u = 5.

The results obtained using the GA, the TS, and the SLSQP [28] are summarized in Table 4.
For the GA, the initial population consists of 800 individuals, and the top 600 are selected for
the next generation. The SLSQP method starts from a randomly generated vector uniformly
distributed in (0, 1). The TS algorithm uses a tabu list size of 50. All three methods achieve
nearly the same objective function value, approximately 226. Notably, the execution time of TS
is significantly lower than that of the SLSQP and the GA. The final results of GA with different
population sizes are also presented, with the third column indicating the set V1 as defined in
(1).

Table 4: Graph partitioning results for Example 2 using GA, TS, and SLSQP.

Method Objective Value V1 CPU Time (s) Iterations Population
GA 226.12 [73, 231, 529] 40.73 4 800
TS 226.04 [231, 527, 529] 2.67 11 —

SLSQP 226.04 [231, 527, 529] 81.87 8 —

Example 3. We consider a graph with 1,500 vertices, where 30% of the edges are randomly
assigned nonzero weights. In the fuzzy adjacency matrix Ã = (ãij), if there is a connection
between nodes i and j, the fuzzy number ãij = ((aL)ij, (aU )ij, αij , βij) is randomly gener-
ated from a uniform distribution over (0, 1). For non-connected pairs, ãij is set to (0, 0, 0, 0).
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The fuzzy diagonal elements are set as in Example 2, and the bounds l and u are also taken
from that example.

The results of applying the GA, the TS, and the SLSQP are summarized in Table 5. For
the GA, the initial population is randomly selected from 1,000 individuals, with the top 700
advancing to the next generation. The initial guess for the SLSQP is a random vector uniformly
distributed in (0, 1). The TS algorithm uses a tabu list of size 50. The objective function values
obtained by all three algorithms are nearly identical. However, it is observed that the SLSQP
requires significantly more CPU time compared to the GA and the TS.

Table 5: Graph partitioning results for Example 3 using GA, TS, and SLSQP.

Method Objective Value V1 CPU Time (s) Iteration Population
GA 578.03 [113, 260, 665] 155.29 5 1000
TS 578.03 [113 260 665] 10.85 11 —-

SLSQP 578.03 [113 260 665] 689.05 15 —-

Example 4. To assess the effectiveness of the proposed fuzzy graph partitioning method, we
utilize a set of test problems sourced from the Matrix Market repository http://www.cise.
ufl.edu/research/sparse/matrices/. Each test case involves a symmetric, positive-
definite matrix, which can be interpreted as the adjacency matrix of a graph. Although the
original matrices are not fuzzy, we introduce trapezoidal fuzzy numbers to preserve the linear
ranking functions defined in Equation (6), ensuring the original crisp values are maintained.

Furthermore, to satisfy the conditions specified in Equation (10), we consider the diagonal
matrix R(D̃) with diagonal entries strictly greater than the maximum magnitude of the non-
diagonal entries in the adjacency matrixR(Ã).

The fuzzy graph partitioning problem outlined in Equation (8) is solved using three different
optimization approaches: the GA, the TS, and the SLSQP. Their performance is evaluated based
on the objective function values and computational efficiency, with the CPU time recorded for
each method to facilitate comparison.

Table 6 summarizes the objective function values obtained for each test problem, including
matrix identities, the number of nodes, edges, and connected components. The results show
that both the GA and the TS consistently attain lower objective values than the SLSQP across
all tested problems.

Table 7 reports the CPU times for each algorithm. The findings indicate that the TS gener-
ally outperforms both the GA and the SLSQP in terms of computational efficiency, achieving
substantially shorter execution times across all problem instances. While the GA produces ob-
jective values comparable to the TS, it involves higher computational costs, especially for large
matrices. The SLSQP exhibits the longest runtimes, particularly for high-dimensional cases,
which reduces its practicality for large-scale datasets.

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
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In summary, the experimental results demonstrate that the TS offers the best compromise
between solution quality and computational time. Although the GA yields similar objective
values, it demands significantly more computational resources. The SLSQP, despite being a
gradient-based method, struggles with efficiency as the problem size increases. These insights
suggest that the TS is a more suitable and scalable approach for addressing fuzzy graph parti-
tioning problems in large datasets.

Table 6: Comparison of objective function values across different test problems.

Name # Nodes # Edges # Connected GA TS SLSQP
Components

Trefethen-20b 19 83 1 12 13 23
ash85 85 304 1 6 6 9
Journals 124 6096 1 421 421 467
Trefethen-150 150 1095 1 21 21 57
Trefethen-200b 199 1536 1 21 21 70
Trefethen-200 200 1545 1 21 21 74
lshp-265 265 1009 1 7 14 14
mesh3e1 289 833 1 3 12 10
ash292 292 1250 1 6 10 9
Trefethen-300 300 2489 1 24 24 64
lshp-406 406 1561 1 7 13 16
Trefethen-500 500 4489 1 24 24 78
lshp-577 577 2233 1 7 7 16
Trefethen-700 700 6677 1 29 27 88
lshp-778 778 3025 1 8 8 12
G4 800 19976 1 92 92 92
G43 1000 10990 1 24 24 25
Trefethen-2000 2000 21953 1 38 30 67

Figure 5 illustrates the Dolan-Moré performance profile, which shows, for each τ ∈ R (as
defined in [11]), the proportion of test problems for which each algorithm’s execution time is
within a factor τ of the best. The profile indicates that the TS consistently outperforms the GA
in terms of computational efficiency, achieving significantly faster runtimes across all tested
instances.
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Table 7: Comparison of CPU times for some test problems.

Name GA TS SLSQP

Trefethen-20b 0.141 0.003 0.4
ash85 0.82 0.009 0.03
Journals 20 0.4 23
Trefethen-150 4.89 0.039 0.10
Trefethen-200b 2.14 0.07 0.38
Trefethen-200 5.32 0.04 0.38
lshp-265 8.10 0.036 0.54
mesh3e1 6.54 0.025 0.83
ash292 2.32 0.100 0.73
Trefethen-300 2.42 0.12 0.81
lshp-406 4.07 0.073 1.28
Trefethen-500 9.28 0.21 2.53
lshp-577 4.64 0.30 4.64
Trefethen-700 16.39 0.50 7.07
lshp-778 5.65 0.65 8.89
G4 22.62 0.86 31.37
G43 19.90 4.31 51.98
Trefethen-2000 248.73 27.59 2001.20

Figure 5: Dolan-Moré performance profile for comparing the CPU times.

8 Conclusion

This study presented a novel approach to addressing the graph partitioning problem with trape-
zoidal fuzzy edges utilizing a linear ranking function to facilitate the process. We applied three
optimization algorithms, Genetic Algorithm (GA), Tabu Search (TS), and Sequential Least
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Squares Programming (SLSQP), to conduct a thorough comparison based on objective values,
computational efficiency, and the number of iterations. The use of Dolan-Moré performance
profiles further highlighted the robustness and the effectiveness of the proposed approach. The
findings confirm that our approach offers a competitive and efficient solution for fuzzy graph
partitioning, contributing to advancement of fuzzy optimization techniques.
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