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1 Introduction

Graph partitioning involves dividing a graph into two or more disjoint sets of vertices such that the
total weight of the edges between these sets is minimized. When the weights of the edges are fuzzy,
the resulting structure is known as a fuzzy graph. The concept of fuzzy graphs was first introduced by
Kaufman et al. [24], building upon the fuzzy relations described by Zadeh [40]. Subsequently, Rosenfeld
[36] formally defined fuzzy graphs as a generalization of classical, crisp graphs, where both vertices and
edges are associated with membership degrees. Rosenfeld explored various properties of fuzzy graphs,
including connectivity, paths, and cycles, based on these membership degrees. Since then, numerous
studies have examined fuzzy graphs and applied them to various optimization problems [10, 26, 34].

In the context of graph partitioning, the classical problem of graph coloring is considered a sub-
problem, historically studied by Pieter and Mouton [32]. Since the early 1970s, graph partitioning has
attracted extensive research interest. An innovative approach was introduced by Kernighan and Lin [25],
who proposed a heuristic method to partition graph nodes optimally, minimizing the sum of the edge
costs between partitions. Their method is computationally efficient and scalable, making it suitable for
large-scale applications such as electronic circuit design. Given that graph partitioning problem (GPP)
is an NP-hard problem, solutions are typically categorized into exact and heuristic methods. Exact meth-
ods, like branch-and-cut algorithms [ 7], column generation [22], and exact algorithms for weighted edges
[20], aim to find optimal solutions but are computationally intensive. In contrast, heuristic approaches
offer approximate solutions within reasonable timeframes, which are often more practical for real-world
problems. Recent methods have included multi-level parallel algorithms [1] and hybrid approaches [37]
incorporating fuzzy logic to predict points of sewer networks.

Heuristic algorithms such as Genetic Algorithms (GAs) have been widely employed for the GPP.
Bui and Moon [8] introduced a hybrid GA for GPP, while Shazely et al. [38] developed GA-based
techniques to generate multiple high-quality solutions, comparing different strategies like fitness sharing
and deterministic crowding. Other studies have applied GAs to multi-objective partitioning problems
[13] and integrated encoding schemes tailored for the GPP [5], with applications extending to clustering
and machine learning [9, 29].

The Tabu Search (TS) algorithm is also a prominent method for the GPP. Kadluczka and Wala [23]
utilized TS, along with GA, to solve a generalized version of GPP involving weighted graphs. Similarly,
Lim and Chee [30] applied TS for balanced minimum cut problems, whereas Benlic and Hao [4] proposed
a multilevel TS-based algorithm for balanced graph partitioning. Bruglieri and Cordone [6] introduced
the minimum gap GPP (MGGPP), which aims to partition into connected subgraphs with equal or nearly
equal weights, using a two-level TS and large neighborhood search for large-scale instances (up to 23,000
vertices).

In this paper, we extend the classical GPP to incorporate fuzzy edge weights represented by trape-
zoidal fuzzy numbers. To handle the fuzzy data, we employ a linear ranking function for ordering fuzzy
numbers. We apply three optimization algorithms, the GA, the TS and Sequential Least Squares Pro-
gramming (SLSQP), to solve this fuzzy GPP.

The remainder of this paper is organized as follows: Section 2 details the standard GPP with
weighted edges, its formulation, and conditions for optimal solutions. Section 3 introduces the fuzzy
GPP, the ranking function and the conditions for optimality. Section 4 describes the GA, including pop-
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ulation initialization, crossover, and stopping criteria. Section 5 presents the TS algorithm is presented,
focusing on local search procedures to improve solutions. Section 6 discusses the SLSQP algorithm and
the rationale for its inclusion. Section 7 provides numerical results demonstrating the effectiveness of
our proposed methods. Finally, Section 8 concludes the paper

2 Graph Partitioning

Consider a weighted graph, wherein edges are assigned weights. The objective of graph partitioning is to
divide the vertex set into two or more disjoint subsets, subject to specific constraints, such that the total
weight of edges crossing between different subsets is minimized. The problem is commonly referred to
as the minimum cut problem. Let G = (V| E) be a graph with vertex set V' and edge set E, where V
is partitioned into two disjoint subsets V; and V5, satisfying V = V; U V3 and V; N V5 = . To solve
the GPP, we introduce a vector x = (1, 22, ...,7,)’ be a whose elements are binary variables, taking

values in 0, 1. Each component x; corresponds to vertex v;, such that:
Vi={i:x; =1}, Vo={i:z; =0} (1)

Define the vector e = (1,1,...,1)7 of length n. Then, the scalar product e”z = m indicates
that exactly m vertices belong to V4, with the remaining n — m vertices in V5. Let A = (a;;) be the
adjacency matrix, where a;; denotes the weight of the edge between vertices v; and v;. The GPP can
then be expressed as a continuous optimization:

min (e —2)T(A+ D)z

s.t. . ?)

where D is a diagonal matrix with entries determined based on A. The objective function (e — z)T Ax
quantifies the total weight of edges between the two partitions, for any feasible solution of (2). An
extension of the formulation of (2) incorporates bounds [/, u] on the size of Vi, i.e., | < Tz < u, to

constrain the cardinality of the subset V;. The generalized continuous problem becomes:

min (e —z)T(A+ D)z
s.t.

3)

The subsequent theorem provides conditions under which the solution to this problem (3) is binary.
Theorem 1. [19]: If the diagonal matrix D = diag(di1, da2, - . ., dny ) satisfies the inequalities
diyi +dj; > 2045, di; >0, 1, =1,2,...,n, 4
then, the problem (3) admits a binary solution. Furthermore, if the inequalities in (4) hold strictly, i.e.,
dis +dj; > 2a;;5, di >0, ,j=1,2,...,n, (5)

then, every local optimal solution of the problem (3) is binary.
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3 Fuzzy Graph Partitioning

In this section, we examine the GPP in the fuzzy context (Fuzzy GPP). Specifically, we consider the
scenario where the edges of the graph are weighted with trapezoidal fuzzy numbers. To compare these
fuzzy weights, we utilize a linear ranking function. Therefore, we begin by reviewing some fundamental
concepts related to trapezoidal fuzzy numbers and their ranking methods, referencing [14, 15, 31]).

Definition 1. (Trapezoidal fuzzy numbers and ranking functions)
A fuzzy set A on R is called a fuzzy number if it satisfies the following conditions:

1. Ais convex,
2. Its membership function y ; is piecewise continuous,

3. There exist real numbers @ < b < ¢ < d such that 1 5 is increasing on [a, b], equals to 1 on [b, c],

decreasing on [c, d], and is zero elsewhere.

Notice 1. A trapezoidal fuzzy number A is denoted by (az,ay, a, 3), where [ar,, ay] corresponds to
its core, and (ar, — o, ay + [3) represents its support (see Figure 1).

Notice 2. We denote F(RR) as the set of all fuzzy numbers.

L

Figure 1: Trapezoidal fuzzy number A = (ar,av,a, B).

Definition 2. (Operations on trapezoidal fuzzy numbers)
Leta = (ar,ay, a1, @) and b= (br, by, B1, f2) be two trapezoidal fuzzy numbers. For a real number
r, the scalar multiplication is defined as:

e Ifr > 0, thenra = (ray, ray,rag, ras).

« ifr <0, then ra = (ray,rayp, —ras, —ray).
The addition of two fuzzy numbers is given by:
a+b=(aL+br,av +bu, o1 + B1, a2 + Ba).

To facilitate comparison between fuzzy numbers, a crucial step in fuzzy partitioning, we employ
ranking functions.
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Definition 3. A ranking function R : F(R) — R assigns a real value to each fuzzy number for com-
parison purposes. For any two fuzzy numbers a, bin F (R), the ordering relations are defined as:

i>rb <= R(@) >RO),
a>rb < R(a)>R(D),
a=rb < R(a) = R(i’)

Similarly, the relations a <g band @ <g b are defined accordingly.
Remark 1. The zero trapezoidal fuzzy number 0 is represented by (0,0, 0,0).

Remark 2. For constants ¢y, ¢y, ¢q, ¢, at least one non-zero. Fora = (ar,, au, o, ), the linear ranking
function on F(R) is often defined as:

R(a) = crar + cvay + cqo + cpf.
A special case of the preceding linear ranking function has been proposed by Yager ([39]) as follows:
1 /1
R(a) = 5/0 (infa,, + sup a,)du,

which simplifies to (see [10, 1]):

(6)

For two trapezoidal fuzzy numbers @ = (ar,ay, a1, as) and b = (b, bu, 81, B2), the relation
@ >z bholds if and only if :

2(CLL + aU) +as —a; > Q(bL + bU) + B2 — By.

The GPP with Trapezoidal Fuzzy Numbers

When the edges of the graph G = (V, E) are represented with fuzzy weighted, the partitioning problem
can be formulated as follows:

min  f(z) = (e — )T (A+D)x

S.t.

7
1<eTz <u, @
0<z<e,

where A = (@) is the fuzzy adjacency matrix with trapezoidal fuzzy numbers a;; fori,j = 1,2,...,n.

Additionally, D= diag(ciu , J227 ..., dny) is a diagonal fuzzy matrix, with entries defined as trapezoidal
fuzzy numbers depending on A.
Next, we present a theorem that converts the FPP described in (7) into an equivalent crisp formula-

tion, utilizing the ranking function introduced in Equation (6).
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Theorem 2. The fuzzy problem (7) is equivalent to the following crisp optimization problem:

min  f(z) = (e — 2)T(R(A) + R(D))x

s.t. i ®
0<z<e,

where R is a linear ranking function as defined in (6), and

R(A) = (R(ai;)) (i), 44 =1,2,....n.
Proof. By the definition of the ranking operation, f(z) =g (e — )T (A + D)z is equivalent to

f(z) = R(f(2)) = R((e = )" (A + D)x).
Since R is a linear operator, f simplifies as:

f(z) = (e — ) "R(A+ D)z = (e — 2) (R(A) + R(D))z,

which completes the proof. O

Building on this, Theorem 1 can be extended for the FPP as follows:
Theorem 3. Suppose the diagonal matrix D= diag(dll, c222, ceey czm) is chosen such that the following
inequalities hold:

diy +dj; >R 2855, diy >0, 4,5=12,...,n, ©)
then, the problem described in (7) admits a binary solution. Furthermore, if these inequalities in (9) are

strict, 1.e.,

dii + dj; > 2ai;, diy>r 0, i,7=12,...,n, (10)

then each local optimal solution of (7) will be a binary.

Proof. By Theorem 2, the problem (8)(its crisp equivalent) is equivalent to the fuzzy problem (7). Con-
y p P eq q yp

sequently, we can replace the original matrices A and D in the problem (3) with their ranked counterparts

R(A) and R(D), respectively. This results in the conditions (3):
which, due to the linearity of R, the conditions in (11) can be translate into

R(dii-f—djj) ZR(Q&Z‘J‘), R(CZ“) Z 07 i,j = 1,2,...,7),,

inducing conditions (9). Similarly, conditions (9) are proved. O
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4 Genetic Algorithm (GA) Overview

The Genetic Algorithm (GA) is an optimization technique inspired by the principles of natural selec-
tion and evolution. It effectively addresses complex optimization problems by iteratively generating
and assessing candidate solutions, mimicking the evolutionary process observed in nature. In a GA, a
population of candidate solutions, referred to as individuals, is initialized randomly. Each individual is
evaluated using a fitness function, which quantifies its quality. The most fit individuals are then selected
to produce new offspring through genetic operations such as crossover and mutation. These offspring in-
herit traits from their parents, and the process repeats over multiple generations, allowing the population
to progressively improve and converge toward an optimal solution [18, 33].

This approach is particularly well-suited for our problem, as it excels in optimizing combinatorial
problems with constraints such as e’z = m, which are central to our formulation. The search space, of
size (:1) , 1 vast, making deterministic or gradient-based methods less effective due to the discrete binary
nature of variables and the constraints involved. GA naturally respects these constraints through careful
initialization and crossover operations that maintain feasibility. Moreover, the quadratic nature of the
objective function, (e — z)T Az, can exhibit multiple local minima. The stochastic nature of GA allows
it to explore diverse solutions in parallel, helping to avoid entrapment in local minima. A customized
crossover mechanism ensures that offspring remain valid solutions, while the population-based search
systematically explores the solution space for improvements. Overall, GA’s ability to handle problem
complexity, discrete variables, and constraints makes it a robust and efficient optimization choice. A
flowchart illustrating the GA process is shown in Flowchart 2.

£ nimal q V(0 seleat )
onulation of Evaluate the ;
brnap wolutions fitness value of po.pulatmn
ry sol each individual with best
satisfying \_ J | individuals |
]‘A\ lseTx<u J jﬁ \-—17-’
Stirt ] i Stop criterion
]’ Perform A met
With v Crossover ?
probability (Generate (Convergence
Pm choose offspring) or max
the offspring generation)

\_for mutation /

offspring
satisfy the
condition
l<eTx<u

3 ‘ Return best ‘

solution

Flowchart 2: A flowchart of the GA.
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4.1 Problem Formulation

Now consider the following optimization problem:

min  f(z) = (e — 2)T(R(A) + R(D))x

s.t. ; (12)

where A = R(A) + R(D). The fuzzy diagonal matrix D can be designed so that R(D) satisfies
the relevant conditions (10) and ensures A is diagonally dominant matrix. Recall that a square matrix
is diagonally dominant if the magnitude of each diagonal element is at least equal to the sum of the
magnitudes of the other (non-diagonal) elements in the same row.

4.2 GA Implementation for the Problem

To apply GA, we start by creating an initial population G = 20, z',... 2V

consisting of potential
solutions with binary elements, generated randomly. To satisfy the constraints Y x; = mand 0 < z; <
1, we set exactly m elements to 1 and the remaining n—m to 0 in each individual. The fitness of each

candidate x is evaluated using the objective function:

f(z) = (e — x)T Ax.

Individuals with the lowest fitness values are selected for the next generation. Crossover is performed
by randomly choosing two parent solutions © = (x1,x2,...,2,) and y = (y1,¥2,--.,Yn). The sum

z = x + y is computed, and offspring are generated by averaging and applying random modifications:
i. Setw = [z/2],

ii. Randomly select s—m components of w where the value is 1 and set them to 0 in which s = ||w||1,

iii. Repeat this process to generate multiple offspring until the offspring meet ij—‘ .

Each offspring’s fitness is evaluated, and the best solutions are combined with selected individuals from
the previous population to form the new generation. The process continues until the improvement falls
below a threshold e.

Algorithm 10 represents the GA structure for solving the problem (12).

4.3 Adaptation for Problem (8)

By modifying some steps slightly, this GA can also be used to solve the alternative formulation (8).
Algorithm 11 describes this adapted process.
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Algorithm 10 Solving the FPP (12) by Genetic Algorithm (GA)

Input:

Parameters:

Output:

Matrix A = R(A) + R(D).
* Population size: N,
* Maximum generations: 7T,
* Mutation probability: p.,,
+ Crossover probability: p,,

+ Convergence threshold: e.

Near-optimal solution x = (1, zo, ..., ,) of (12) and objective value f(z) = (e — )T Ax.

. Initialization: Randomly Generate initial population G = {z° 2, ..., 2V} with binary entries

with satisfying constraints in (12).
Fitness Evaluation and Selection:
2-1: Foreach z € G, evaluate f(7) = (e — )T Az.

2-2: Select |p. - N| chromosomes for crossover based on their fitness using tournament or
roulette wheel selection.

. Crossover: For each pair of selected parents z,y € G:

3-1: Compute z =z +y. Sett; = [2;/2] fori =1,...,n.
3-2: Calculate s = Y . | t;.
3-3: Generate offspring 2* by randomly turning (s — m) selected 1s into zeros.

3-4: Add feasible offspring z* to the new population G.

S
s—m

3-5: Repeat Steps 3 and 4 to generate at most [ —‘ offspring.

Mutation:

4-1: For each chromosome in G, with probability p,,:

4-1-1: Randomly select two indices 7 and j such that x; = 1, 2; =0

4-1-2: Swap a randomly chosen 1 with a 0.

4-2: Ensure constraint satisfaction (12) after mutation.

. Replacement: Form new population of size IV by combining top offspring and elite individuals.

Termination: Stop if the difference between consecutive best fitness values is less than € or if T’
maximum generations are reached.
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Algorithm 11 Solving the FPP (8) via the GA

Input: Matrix A = R(A) + R(D).
Output: Optimal solution x = (1, 22, . . ., z,,) with objective f(x) = (e — )T Ax.

1. Inmitial Population G:

1-1: Find the u — | + 1 feasible binary solutions GO = {z(1) ... 2+

1-2: Generate additional solutions by swapping components of solutions in G°, ensuring
feasibility.

1-3: Combine to form G = G° U G1.

2. Apply selection, crossover, mutation, replacement, and termination procedures similar to

Algorithm 10 with necessary adjustments as per problem specifics.

5 Tabu Search (TS)

Tabu Search (TS) is a metaheuristic optimization algorithm tailored for solving complex combinatorial
problems. It iteratively explores the solution space by moving to the best neighboring solutions, even if
such moves temporarily worsen the current solution. This strategic acceptance helps avoid entrapment
in local minima. A key feature of the TS is its memory-based tabu list, which records recently visited
solutions or moves to prevent revisiting them, thereby promoting diversification of the search. The TS
is renowned for its high flexibility, effective constraint handling, and strong performance on large-scale
and intricate problems.

The TS is particularly appropriate for our minimization problem because it efficiently navigates the
vast solution space of the graph, actively avoiding cycles through its tabu list. It manages the combinato-
rial constraints I < > x; < w effectively by concentrating the search on feasible neighboring solutions.
Its capability to optimize nonlinear objective functions, specifically, (e — z)7 Az, while escaping local
optima makes it highly suitable. Additionally, its scalability and customizable stopping criteria make
it an excellent choice for large, graph-based optimization challenges. A flowchart illustrating the TS
process is provided in Flowchart 3.

Over time, the TS has been extensively adapted, and numerous variants and improvements have
been developed. The following Algorithm 12 outlines the core steps of the classical TS approach.

A visual representation of the TS process is shown in Flowchart 3.
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Algorithm 12 Tabu Search Algorithm for solving the FPP (8)

Input:

Output:

4.

Matrix A € R™ ™ (symmetric), lower bound [, upper bound v, maximum iterations

max_iter, tabu list size tabu_size.

A near-optimal solution x%¢s* and its objective function value f(z%***) = (e —

wbest)TAl.best .
Initialization:

1-1: Sete < 1, (vector of ones with length n).

1-2:  Generate an initial feasible solution 25t = (28¢5t xbest .. xbest) € {0, 1} sat-
isfying [ < > abest <.

1-3:  Compute initial cost Bestcos « f(x2¢%).

1-4: Initialize an empty tabu list.
Main Loop: (repeat for max_iter iterations):

2-1: Foreachindex i = 1,...,n, create a neighbor 2" = (7%, 25", ... ") by
flipping the component %%, i.e., set 2% < 1 — x%¢s keeping other components

unchanged.

2-2: Check if ™" respects the constraints [ < P < .

2-3: Evaluate the objective function f(x"").

2-4: Among all valid neighbors, select the one with the lowest f(x"¢"), denoted as
Tpest_neighbor-

Update:

3-1: If Tpest neighbor 18 ot in the tabu list or has a better cost than xbest

Update zhest Thest_neighbor -
Update Best ps; + f(20).

3-2:  Add zb¢%t to the tabu list.

3-3: Iftabu list exceeds size tabu_size, remove the oldest entry.

Termination: Return 2%¢* and Best os;.
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Flowchart 3: Flowchart of the TS procedure.

6 Sequential Least Squares Programming (SLSQP) Algorithm

Sequential Least Squares Programming (SLSQP) is a gradient-based optimization method tailored for
solving constrained nonlinear optimization problems. It approaches the original problem by iteratively
solving a sequence of quadratic programming (QP) subproblems that approximate the nonlinear problem
at each step. The key steps are as follows:

+ The objective function and constraints are locally approximated using a quadratic models.
+ At each iteration, a quadratic subproblem is solved to determine a search direction.

* The solution is updated using a line search method, and the process repeats until convergence

criteria, such as gradient norm or constraint satisfaction, are met.

In this study, we employed SLSQP as a benchmark technique for solving the partitioning problem
defined in equation (8). The algorithm was implemented using the “scipy.optimize. minimize” function
in Python. The initial solution 2 was randomly initialized within [0, 1], and the problem constraints
were directly supplied to the SLSQP solver. During optimization, the objective function was minimized
iteratively, with each iteration monitored via a callback function to track progress.

Upon convergence, the continuous solution z* was thresholded such that any «; > 0.6 was set to 1,
while and the rest were set to 0, yielding a binary partitioning decision. The indices where 2} = 1 iden-
tified the selected subset of nodes. Given that the optimization problem (8) is a quadratic programming
problem with linear constraints, SLSQP is particularly suitable for this context for several reasons:

+ The objective function in (8) is quadratic, a form efficiently handled by the SLSQP.

« The linear constraints | < eTz < wand z > 0 can be directly incorporated without complex
transformations.
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» The SLSQP is computationally effective for medium-scale constrained optimization problems,
making it a practical choice.

» The non-negativity constraint x > 0 aligns naturally with SLSQP’s capacity to enforce inequality
constraints. The constraints [ < eTa < w and z > 0.

» The SLSQP maintains feasibility by solving quadratic subproblems that respect the constraints at
each iteration, ensuring stable convergence.

However, it is important to note that the SLSQP may become trapped in a local optimum, especially
when the problem’s objective function (8) is non-convex. The convexity of the quadratic objective
depends on the properties of the matrix A. Specifically:

« If A is positive semidefinite (all eigenvalues are non-negative), the objective function is convex,
and the SLSQP is guaranteed to converge to the global optimum.

+ Conversely, if A is indefinite (has both positive and negative eigenvalues), the function is non-
convex. In such cases, multiple local minima may exist, and the SLSQP might converge to a
local, rather than a global, minimum.

7 Numerical Experiments

In this section, we present numerical experiments to validate the theoretical results discussed earlier. All
computations were performed using R version 4.4.2 on a system equipped with an Intel(R) Core(TM)
15-8250U CPU @ 1.60GHz (up to 1.80GHz). The Irace package was employed alongside R to optimize
the algorithm parameters.

Example 1. We consider the graph with 20 nodes ([19]), illustrated in Figure 4 . Details of the graph
structure are provided in Table 1.

Figure 4: Sample graph for Example 1 [19].
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Table 1: Graph structure for Example 1.

Node Connects to Node | Connects to
1 7,12,13, 14,15, 16, 17 9 11,15, 19
2 12,17, 18,20 11 14,17, 18, 20
3 5,11, 13,14, 18, 19, 20 12 14
4 6,9 13 18,20
5 7,9,10,12, 16, 19 14 16,18,20
6 16,18,20 16 18
7 8,9,11,16 17 18
8 15,18 18 20

The fuzzy adjacency matrix A = (@ij) assigns a fuzzy number (2,4, 1, 1) to all connected edges,
indicating the strength of the connection. For non-connected pairs, the entry is (0, 0,0, 0). The fuzzy di-
agonal entries are set as dii = [2,12,1,1] foreachi = 1,2,...,20. Using the ranking function defined
in equation (6), the conditions in (10) are satisfied. We set the lower and upper bounds as! = 3and u = 5.

Both the GA and TS produced the following partition:
xz=[0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,1,0,0,0],
with an objective value of 15. Here, the subset V4 = [8, 10, 15], while V5, contains the remaining nodes:
Vo =1[1,2,3,4,5,6,7,9,11,12,13,14,16, 17, 18,19, 20].

Results are summarized in Table 2. Using Irace for parameter tuning, the initial population for the
GA comprised 20 chromosomes over 5 generations. For the TS, the tabu list stored the last 10 moves.

Table 2: Graph partitioning results achieved by the GA and the TS algorithms for Example 1.

Method | Objective Value %1 CPU Time (s) | Iterations | Population
GA 15 [8,10,15] 0.0156 2 20
TS 15 [8,10,15] 0.014 11 —

If we set the lower and upper bounds as [ = u = 10, this means the condition I < eTz < u
reduces to €7z = 10. The results under this setting are presented in Table 3. Using the Irace package for
parameter tuning, the initial population for the GA consisted of 50 chromosomes over 30 generations.
For the TS, the tabu list stored the last 5 moves or solutions visited.

Table 3: Graph partitioning results for Example 1 with fixed bounds | = u = 10.

Method | Objective 1 CPU Iterations | Population
Value Time (s)
GA 39 [1,2,3,5,10,12, 13, 16, 17, 19] 0.078 2 50
TS 39 [1,5,7,8,9,10,12,15,16,19] 0.008 6 —
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Example 2. We consider a graph with 1,000 vertices, where 20% of the edges are randomly assigned
nonzero weights. In the fuzzy adjacency matrix A = (aij), if there is a connection between nodes i
and j, the corresponding fuzzy number aij = ((ar)ij, (av)ij, a.j, Bij) is randomly selected from a
uniform distribution over (0, 1). If no connection exists, a:j is set to the fuzzy number (0, 0,0, 0). The
fuzzy diagonal entries are set as dii = [2,4,0.5,0.5] fori = 1,2, ..., 1000. Using the ranking function
defined in (6), the conditions in (10) are satisfied. The lower and upper bounds are set to [ = 3 and
u=5.

The results obtained using the GA, the TS, and the SLSQP [28] are summarized in Table 4. For the
GA, the initial population consists of 800 individuals, and the top 600 are selected for the next generation.
The SLSQP method starts from a randomly generated vector uniformly distributed in (0,1). The TS
algorithm uses a tabu list size of 50. All three methods achieve nearly the same objective function value,
approximately 226. Notably, the execution time of TS is significantly lower than that of the SLSQP and
the GA. The final results of GA with different population sizes are also presented, with the third column
indicating the set V7 as defined in (1).

Table 4: Graph partitioning results for Example 2 using GA, TS, and SLSQP.

Method | Objective Value 1% CPU Time (s) | Iterations | Population
GA 226.12 [73, 231, 529] 40.73 4 800
TS 226.04 [231, 527, 529] 2.67 11 —

SLSQP 226.04 [231, 527, 529] 81.87 8 —

Example 3. We consider a graph with 1,500 vertices, where 30% of the edges are randomly assigned
nonzero weights. In the fuzzy adjacency matrix A= (aij), if there is a connection between nodes ¢ and
J» the fuzzy number aij = ((ar)ij, (av)ij, cvij, Bi;) is randomly generated from a uniform distribution
over (0,1). For non-connected pairs, a;; is set to (0,0, 0, 0). The fuzzy diagonal elements are set as in
Example 2, and the bounds [/ and u are also taken from that example.

The results of applying the GA, the TS, and the SLSQP are summarized in Table 5. For the GA, the
initial population is randomly selected from 1,000 individuals, with the top 700 advancing to the next
generation. The initial guess for the SLSQP is a random vector uniformly distributed in (0, 1). The TS
algorithm uses a tabu list of size 50. The objective function values obtained by all three algorithms are
nearly identical. However, it is observed that the SLSQP requires significantly more CPU time compared
to the GA and the TS.

Table 5: Graph partitioning results for Example 3 using GA, TS, and SLSQP.

Method | Objective Value %1 CPU Time (s) | Iteration | Population
GA 578.03 [113, 260, 665] 155.29 5 1000
TS 578.03 [113 260 665] 10.85 11 —

SLSQP 578.03 [113 260 665] 689.05 15 —

Example 4. To assess the effectiveness of the proposed fuzzy graph partitioning method, we utilize a set
of test problems sourced from the Matrix Market repository (http://www.cise.ufl.edu/research/

sparse/matrices/).


http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
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Each test case involves a symmetric, positive-definite matrix, which can be interpreted as the adja-
cency matrix of a graph. Although the original matrices are not fuzzy, we introduce trapezoidal fuzzy
numbers to preserve the linear ranking functions defined in Equation (6), ensuring the original crisp

values are maintained.

Furthermore, to satisfy the conditions specified in Equation (10), we consider the diagonal matrix

R (D) with diagonal entries strictly greater than the maximum magnitude of the non-diagonal entries in
the adjacency matrix R(A).

The fuzzy graph partitioning problem outlined in Equation (8) is solved using three different op-
timization approaches: the GA, the TS, and the SLSQP. Their performance is evaluated based on the
objective function values and computational efficiency, with the CPU time recorded for each method to
facilitate comparison.

Table 6 summarizes the objective function values obtained for each test problem, including matrix
identities, the number of nodes, edges, and connected components. The results show that both the GA
and the TS consistently attain lower objective values than the SLSQP across all tested problems.

Table 7 reports the CPU times for each algorithm. The findings indicate that the TS generally outper-
forms both the GA and the SLSQP in terms of computational efficiency, achieving substantially shorter
execution times across all problem instances. While the GA produces objective values comparable to
the TS, it involves higher computational costs, especially for large matrices. The SLSQP exhibits the
longest runtimes, particularly for high-dimensional cases, which reduces its practicality for large-scale
datasets.

In summary, the experimental results demonstrate that the TS offers the best compromise between
solution quality and computational time. Although the GA yields similar objective values, it demands
significantly more computational resources. The SLSQP, despite being a gradient-based method, strug-
gles with efficiency as the problem size increases. These insights suggest that the TS is a more suitable
and scalable approach for addressing fuzzy graph partitioning problems in large datasets.

Dolan-Moré Performance Profile
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Figure 5: Dolan-Mor¢ performance profile for comparing the CPU times.

Figure 5 illustrates the Dolan-Moré performance profile, which shows, for each 7 € R (as defined
in [11]), the proportion of test problems for which each algorithm’s execution time is within a factor 7
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Table 6: Comparison of objective function values across different test problems.

Name # Nodes #Edges # Connected GA TS SLSQP
Components

Trefethen-20b 19 83 1 12 13 23
ash85 85 304 1 6 6 9
Journals 124 6096 1 421 421 467
Trefethen-150 150 1095 1 21 21 57
Trefethen-200b 199 1536 1 21 21 70
Trefethen-200 200 1545 1 21 21 74
Ishp-265 265 1009 1 7 14 14
mesh3el 289 833 1 12 10
ash292 292 1250 1 6 10 9
Trefethen-300 300 2489 1 24 24 64
Ishp-406 406 1561 1 7 13 16
Trefethen-500 500 4489 1 24 24 78
Ishp-577 577 2233 1 7 7 16
Trefethen-700 700 6677 1 29 27 88
Ishp-778 778 3025 1 8 8 12
G4 800 19976 1 92 92 92
G43 1000 10990 1 24 24 25
Trefethen-2000 2000 21953 1 38 30 67

of the best. The profile indicates that the TS consistently outperforms the GA in terms of computational

efficiency, achieving significantly faster runtimes across all tested instances.

8 Conclusion

This study presented a novel approach to addressing the graph partitioning problem with trapezoidal
fuzzy edges utilizing a linear ranking function to facilitate the process. We applied three optimization
algorithms, Genetic Algorithm (GA), Tabu Search (TS), and Sequential Least Squares Programming
(SLSQP), to conduct a thorough comparison based on objective values, computational efficiency, and the
number of iterations. The use of Dolan-Moré performance profiles further highlighted the robustness and
the effectiveness of the proposed approach. The findings confirm that our approach offers a competitive
and efficient solution for fuzzy graph partitioning, contributing to advancement of fuzzy optimization

techniques.
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Table 7: Comparison of CPU times for some test problems.

Name GA TS  SLSQP
Trefethen-20b 0.141 0.003 0.4
ash85 0.82  0.009 0.03
Journals 20 0.4 23

Trefethen-150 4.89 0.039 0.10
Trefethen-200b  2.14 0.07 0.38
Trefethen-200 5.32 0.04 0.38

Ishp-265 8.10 0.036 0.54
mesh3el 6.54  0.025 0.83
ash292 232 0.100 0.73
Trefethen-300 2.42 0.12 0.81
Ishp-406 4.07  0.073 1.28
Trefethen-500 9.28 0.21 2.53
Ishp-577 4.64 0.30 4.64
Trefethen-700 16.39  0.50 7.07
Ishp-778 5.65 0.65 8.89
G4 22.62  0.86 31.37
G43 19.90 4.31 51.98

Trefethen-2000 248.73 27.59 2001.20
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