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1 Introduction

Breast cancer is the most common type of cancer and a leading cause of cancer-related deaths among
women. Despite significant medical advances, it remains a major challenge in healthcare and treat-
ment [38]. This underscores the need for more accurate methods to diagnose and classify breast cancer,
facilitating faster identification and treatment to improve patient outcomes. A key aspect of effective
follow-up and treatment is the standardization of medical reports, which aids in the timely diagnosis and
staging of the disease. To address this, the American College of Radiology (ACR) introduced BI-RADS,
a system for standardizing mammography reports [7, 37]. BI-RADS categorizes findings into seven lev-
els: 0 (incomplete), 1 (negative), 2 (benign findings), 3 (probably benign), 4 (suspicious abnormality),
5 (highly suggestive of malignancy), and 6 (biopsy-proven malignancy).

Deep learning and artificial intelligence are increasingly utilized to support physicians in evidence-
based decision-making by analyzing complex, multidimensional data. A key aspect of this process is
decision fusion, which combines information from multiple sources to address conflicting or uncertain
data, ultimately improving the accuracy and reliability of the decision-making process [12]. Among the
various decision fusion techniques, Yager’s method stands out due to its ability to effectively manage
such uncertainties and contradictions, providing a robust framework for enhancing the capabilities of
medical systems [42]. Furthermore, results from clinical trials demonstrate that integrating data and
decisions leads to more accurate diagnoses and improved treatment outcomes for breast cancer [32].

This article investigates a novel decision support system designed using Yager’s rule of combination
to achieve accurate and effective classification of breast cancer. The proposed system leverages clinical
data, medical reports, and imaging analysis through deep learning algorithms. Its innovative approach to
data combination enhances classification accuracy while improving performance in handling data vari-
ations and conflicting evidence. This is due to its flexibility in learning and decision-making processes.
The developed decision support system offers a powerful tool for medical professionals, enabling faster
and more effective treatment decisions, and contributing significantly to improved clinical outcomes for

patients.

2 Related Works

Breast cancer diagnosis has been widely studied, with significant research focused on the integration of
medical imaging, clinical reports, and patient history. Several studies have proposed various approaches
for improving breast cancer classification, often relying on either medical image analysis or text-based
clinical reports. However, these approaches tend to have notable limitations, which our proposed system
aims to address. In recent years, numerous studies have focused on improving breast cancer diagnosis
and treatment by utilizing advanced computational techniques. A significant portion of this research has
concentrated on medical image analysis and text mining from clinical reports. However, many of these
studies have limitations in terms of the data sources used, the integration of decision fusion techniques,
and the generalization of results across diverse patient populations.

Esmaeili et al. [18] developed a clinical decision support system (CDSS) using data mining tech-
niques to interpret mammography reports. This approach relied solely on the text data from the reports,
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which limited its ability to incorporate visual data from mammograms. Furthermore, the system did not
employ decision fusion, which could have improved the robustness and accuracy of the classification.
Boumaraf et al. [10] proposed a system that utilized a genetic algorithm (GA) for BI-RADS classifica-
tion based solely on mammography images. While their method achieved reasonable performance, it
overlooked the valuable contextual information provided by patient history and clinical reports. Addi-
tionally, the absence of decision fusion techniques in their model hindered its ability to handle conflicting
evidence from different data sources. Borkowski et al. [8] employed deep learning techniques for the
automatic classification of background parenchymal enhancement (BPE) in breast MRI images. Al-
though their method provided accurate results for image-based analysis, it ignored other critical sources
of information such as medical text and patient history, which could have enriched the decision-making
process. Zhang et al. [47] focused on analyzing clinical text data using various deep learning approaches.
While their method successfully extracted features from the reports, it did not incorporate imaging data,
and lacked decision fusion techniques to reconcile information from multiple sources. As a result, the
system may have been less robust in handling the complexity and variability of breast cancer data.

Jesneck et al. [26] evaluates various classification algorithms applied to two breast cancer datasets,
focusing on decision fusion methods that optimize clinically significant performance measures, such
as the area under the curve (AUC) and partial area under the curve (pAUC). The findings suggest that
decision fusion can outperform traditional machine learning techniques in certain scenarios. Manali et al.
[30] proposes a three-parallel-channel artificial intelligence-based system that combines support vector
machines (SVM) and convolutional neural networks (CNN) through decision fusion. The approach aims
to enhance system performance in classifying mammogram images. Yan et al. [43] proposed a fusion
network for classifying benign and malignant breast cancer cases by integrating multimodal data. This
approach leverages diverse data sources to improve diagnostic accuracy. Fogliatto et al. [19] proposes a
method for feature selection and classification of breast cancer cases into benign or malignant categories
by deriving a feature importance index, contributing to the development of decision support systems in
breast cancer detection.

Destrempes et al. [17] evaluated different combinations of 13 features derived from shear wave elas-
ticity (SWE), statistical metrics, and spectral tissue dispersion from ultrasound images, combined with
BI-RADS classifications, using the random forest algorithm. This approach did not consider the text of
medical reports. The most relevant studies [4, 5, 11, 13, 17,20, 22, 23, 34, 39] center on BI-RADS deter-
mination for breast cancer diagnosis, predominantly using either medical images or clinical text alone.
In contrast, this article proposes a novel decision support system that integrates hospital information
systems (HIS), medical text, and imaging data to train classifiers and determine BI-RADS categories.
By applying a new decision fusion method based on Yager’s rule of combination, this approach yields
superior results, promising significant improvements in the breast cancer treatment process.

Zahaby and Makhdoom [44] proposed a decision support system that combines various classifiers,
such as CNN, Decision Tree, multi-class SVM, and XGBoost, using weighted ensemble learning with
majority voting to determine BIRADS values. This approach aims to improve diagnostic accuracy by
integrating multiple models, although it may struggle with imbalances in classifier performance. The
weighted ensemble learning method aggregates classifier outputs based on predefined weights, which
can sometimes lead to suboptimal decision fusion when individual classifier strengths vary significantly.
In contrast, our method, based on Weighted Yager, achieves superior performance by more effectively
handling the imbalance in classifier results and offering enhanced robustness in breast cancer diagnosis.
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Sharifonnasabi and Makhdoom [21] compared various deep learning and machine learning algo-
rithms for breast cancer diagnosis and found that CNN achieved the highest accuracy. This study ex-
plored the effectiveness of several machine learning algorithms, including deep learning approaches such
as multilayer perceptron (MLP) and convolutional neural networks (CNN), as well as traditional classi-
fiers like decision tree (DT), Naive Bayesian (NB), support vector machine (SVM), K-nearest neighbors
(KNN), and eXtreme Gradient Boosting (XGBoost). Their research, conducted using the Breast Can-
cer Wisconsin Diagnostic dataset, evaluated classifier performance based on metrics such as confusion
matrix, accuracy, and precision. The results of their study revealed that CNN outperformed all other
models.

Zahaby et al. [46] investigates the impact of multimodal data integration in medical decision sup-
port systems. Their work highlights the importance of combining data from multiple sources, such as
imaging and patient history, to improve diagnostic accuracy. However, the study emphasizes that while
multimodal data integration is promising, there are challenges related to data standardization and the
handling of conflicting evidence from diverse data sources.

Boroumandzadeh et al. [9] explores the use of machine learning algorithms for breast cancer diag-
nosis, focusing on feature selection and classification accuracy. The authors use clinical and text data
but limit their focus to a single data source at a time, with employing decision fusion for two methods.
While the study achieves promising results, the lack of decision fusion prevents it from leveraging the
full potential of multimodal data, particularly in cases where data from different sources may conflict or
provide incomplete information.

Furthermore, while many studies have attempted to apply deep learning techniques, such as CNNs
for image analysis, they often overlook the importance of integrating textual information from medical
reports. This is a critical gap, as clinical reports provide essential context that can significantly enhance
diagnostic decisions.

Our proposed system builds upon these previous efforts by integrating textual data, imaging data,
and patient history using an innovative decision fusion method based on Yager’s rule of combination.
This approach addresses the limitations observed in previous studies by allowing for more robust and

accurate classifications, even in the presence of contradictory or incomplete information.

Table 1 summarizes the key characteristics and limitations of the most relevant studies in breast
cancer diagnosis. As shown, while prior studies predominantly rely on single data sources (text or
images), our proposed system benefits from multi-modal integration and decision fusion, which enhances
its diagnostic performance.

Table 1: Comparison of related studies in breast cancer diagnosis.

Study Data Sources Methodology Decision Fusion | Limitations

Esmaeili et al. [18] | Text Data (Mammography Reports) | Data Mining No Only text-based analysis, no image data

Boumarafet al. [10] | Image Data (Mammography Images) | Genetic Algorithm (GA) No No integration of patient history or clinical text
Borkowski et al. [8] | Image Data (MRI) Deep Convolutional Neural Network (CNN) No No use of clinical text or patient history

Zhang et al. [47] Text Data (Clinical Reports) Deep Learning No Excludes imaging data, lacks decision fusion

Proposed System Text, Image Data, HIS Deep Learning, Weighted Yager’s Decision Fusion | Yes Multi-source integration, improved diagnostic accuracy
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3 Material and Methods

This paper presents a novel framework for a decision support system for breast cancer diagnosis, en-
compassing dataset preparation, preprocessing, classification, decision fusion, and result evaluation to
optimize BI-RADS classification using an improved Yager method. The segmentation process of the
proposed decision support system is illustrated in Figure 1. Initially, the medical report text for each
individual in the dataset is processed and transformed into a vector representation using the Word2Vec
algorithm [45]. Alongside features extracted from mammography reports, additional features derived
from patients’ electronic health records (EHR) are incorporated. These features are combined at the data
level and, following preprocessing in the second stage, are used to train the CNN, SVM, and MLP clas-
sifiers in the subsequent stage. Additionally, mammography images undergo normalization and noise
removal before being used to train the U-Net classifier. In the classification stage, these models are
employed to predict BI-RADS values. The predictions are then aggregated in the decision fusion stage
using the proposed improved Yager method. Finally, in the evaluation stage, the system’s results and
overall performance are reviewed and assessed.

Preprocessing block Processing block

-Data cleaning
-Using tokenization
-Remove Stop-words

-Full form of abbreviations

"Remove miss data

| Feature extraction

~— . _ DataFusion
‘ Feature selection ‘/7

/

Dataset

PCA «— Normalization

Classification block

-Image normalization Classifiers

-Remove noise
-Perform geometric corrections
-Removing unnecessary data

Evaluation block Decision block

Figure 1: Segmentation of the proposed DSS.

3.1 Dataset

The dataset used in this research includes two main sources; Mammography images and reports, as well
as the patient’s electronic file, which were extracted from PACS and patient records, respectively. These
datasets were obtained from the information available in Shahidzadeh Hospital Medical Training Center
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in Behbahan City in the period of 2020 to 2022, which includes mammography reports and electronic
files of 400 patients, and since the information of some patients was incomplete and had missing data,
finally, only the information of 250 patients who had complete information was used. According to
Equation (1), which is known as Cochran’s formula [16] and was presented by William Cochran, to
achieve an accuracy with an error of 5% in performing calculations, at least 138 samples will be needed,
and considering that in this research, the sample size is 250 cases, it indicates the appropriateness of the
sample size for conducting this research with an error accuracy of 5%.

*p(1—p)
Zlzn) )

n =

In Equation (1), p represents the estimated proportion of breast cancer in the population. The parameter z
is the Z — score corresponding to the desired confidence level, which is set to 1.96 for a 95% confidence
interval, thus 22 = 3.8416. The term d denotes the margin of error, chosen as 0.05 to reflect acceptable
precision in the estimation. Finally, n indicates the required minimum sample size, which was calculated
to be 138 using these parameter values.

Some of the key features and elements extracted from the medical text reports and keywords are:
density, asymmetry, distribution pattern, shape, size, and history of breast surgery. Also, some of the
characteristics checked by medical experts and patient records (related to HIS) were: menopause, breast-
feeding history, sports activities, pregnancy history, marital status, age, family history of cancer, etc.

3.2 Preprocessing and Processing

In this research, preprocessing was applied to the textual data from mammography reports. Key medical
descriptors were extracted from the mammography text reports, including breast density, asymmetry,
architectural distortion, distribution patterns, lesion size, prior breast surgeries, and lesion shape. These
elements were identified and standardized during preprocessing to ensure consistency and enhance the
quality of text-based feature extraction. This involved comprehensive cleaning steps, including remov-
ing impurities, standardizing characters, and correcting grammatical and spelling errors. Tokenization
was used to break the data into processable units. Stopwords were removed, and abbreviated phrases
were expanded to their full forms. The text was converted to lowercase, and words were stemmed or
lemmatized to reduce them to their root forms. These steps improved the effectiveness of subsequent
modeling. Feature extraction was performed using Word2Vec embeddings combined with min-max
normalization [33], transforming each report into a numerical vector.

Additionally, structured clinical data was extracted from the Hospital Information System (HIS) data
included 30 features related to patient history and clinical context. These features encompassed elements
such as breastfeeding history, physical activity levels, pregnancy history, marital status, patient age, and
family history of cancer. Each feature was rated by seven expert physicians on a scale from 1 to 10 based
on its perceived clinical relevance to breast cancer diagnosis. The average scores were used to select the
top 24 most relevant features for further analysis and classification.

To reduce dimensionality, Principal Component Analysis (PCA) was applied. PCA was chosen to
eliminate multicollinearity among features, reduce computational cost, and preserve the most informa-
tive variance in the data. This step enhanced model performance and helped prevent overfitting.
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To enhance the quality of diagnosis and classification, the vectors extracted from medical text reports
were combined with selected features from the Hospital Information System (HIS) at the data level and
processed using CNN, MLP, and SVM classification algorithms. Additionally, due to the challenges
posed by mammography images—such as noise, intensity variations, and non-uniform contrasts—
preprocessing was applied. The first step in image processing involved normalizing the images by ad-
justing their contrast and brightness, ensuring homogeneity across the dataset. To remove noise and
perform post-processing tasks, a Gaussian filter was applied, which preserves the most important edges
and details. Geometric corrections were made to the mammography images, followed by advanced
metadata segmentation algorithms that enhanced edge differentiation and eliminated unnecessary data.
This process strengthened feature extraction by providing a cleaner and more distinct surface for pat-
tern recognition. These preprocessing steps allow for more accurate analysis of mammography images,
leading to reliable results when using the U-Net deep learning technique.

3.3 Classification

In this section, the vectors generated in the previous step are passed to the CNN, MLP, and SVM classifi-
cation algorithms to predict the BI-RADS score in patient reports. Additionally, mammography images
are processed by the U-Net classification algorithm to determine the corresponding BI-RADS value.

Machine learning algorithms are essential for extracting knowledge from data and typically oper-
ate within reasonable computational times for specific problems [3]. Convolutional neural networks
(CNNs) [31] are a class of deep learning models commonly applied to image, speech, and text analysis
in machine learning. In this study, CNNs are used for BI-RADS classification, as they can capture com-
plex relationships between data variables and handle noisy data effectively. A convolution operation is
performed on the input, followed by pooling layers where sampling is applied to reduce dimensionality
and prevent overfitting [41].

During the backpropagation phase, the parameter 6 is updated by minimizing the error. The Re LU
activation function is used in both the first and second convolutional layers, while the output layer em-
ploys the softmax function, and the loss function used is the mean squared error. The Adam optimization
algorithm [24], an adaptive learning rate optimizer, is also utilized.

The U-Net architecture is a convolutional neural network originally designed for medical image seg-
mentation at the University of Freiburg’s Computer Science Department [36]. U-Net has been modified
and extended for tasks requiring fewer training images, achieving more accurate segmentation [29]. This
algorithm allows for high-speed processing and learning with reduced reliance on complex or expensive
hardware. It can operate efficiently with smaller datasets, improving accuracy by extracting complex
features [35]. In this study, the U-Net architecture is used for BI-RADS classification and detection.

Support Vector Machines (SVM) are used to find the optimal separating hyperplane that maximizes
the margin between two classes. In this paper, the Radial Basis Function (RBF’) kernel is employed
[14], and once the model is trained, the possible BI-RADS class values for each sample are determined.
A one-vs-all approach is utilized for BI-RADS classification, as there are seven possible classes. This
approach involves using seven distinct SVMs, with each SVM making a decision for each sample, and
the sample is assigned to the class corresponding to the highest probability [40].
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The multilayer perceptron (MLP) model consists of input, hidden, and output layers. The input
layer assigns a neuron to each input variable, while the hidden layer performs the main computational
tasks of the network. In this study, the output layer comprises seven neurons, which are used to detect
BI-RADS, along with the so ftmax activation function. In this research, seven neurons were used for
the output layer to detect BI-RADS along with the softmax activation function. The primary com-
putational power of the MLP comes from the hidden units between the input and output layers. Data
flows forward through the network, similar to a feed-forward structure. The neurons are trained using
a backpropagation algorithm. MLPs are composed of neurons, each referred to as a perceptron. A per-
ceptron takes n features as input ip = {ip;, ips, ..., ip, }, and each feature is assigned a weight, and
the weights assigned to the features must be a value be numerical [1]. In this article, the multilayer
perceptron model is used for BI-RADS classification and diagnosis.

3.4 Decision Fusion

In this paper, we propose a framework for predicting and determining BI-RADS by combining the deci-
sions of various classifier methods along with the assigned weight for each class, based on Yager’s rule
of combination. The models derived from CNN, MLP, SVM, and U-Net are integrated to aid decision-
making in determining BI-RADS. Yager introduced and formulated an efficient method that also ac-
counts for conflicts between evidences. To address this issue, Yager defined a new function, ¢, known
as the probability mass allocation function. According to Equation (2), the probability mass allocation
value can be greater than or equal to zero, indicating the possibility of conflict between the evidence [2].

q(¢) = 0. 2)

Yager considers only one weight for each evidence, which can reduce accuracy, especially in datasets
where the class distribution is not uniform or when evidence lacks sufficient accuracy to distinguish a
class. However, in the proposed method, a weight is assigned to each class within each piece of evidence.
Let 0;(J) represent the estimation of classifier i for class 7, and A;(J) denote the weight of classifier i
for class j. The mass values of the function m;(J) are then defined in Equation eq3. Additionally, the

value A;(J ), which represents the accuracy of evidence 4 for class j, is computed based on the trained

model and is given by (4).
mi(J) = Ai(J) o G;(J), 3)
- TP + TN/ 4
Ai(J) = L = Accuracy’ . 4)

TP!+ TN} + FP!+ FN!

According to Equation (5), the contradiction between evidences is classified in a set Q; (J) which is
equal to Qi(J ) = {w}, ceey wg } The combination of evidence decision in the proposed method is also

calculated by Equations (6)-(8).

—

Q;(J) =1— A,(J), 6))
@y = 3 {m{(Jf)xmé(Jg)x...xm{(Jf)+wfxmf], 6)

nNJj=Ji
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In the proposed method, a weight is assigned to each class within each evidence, giving more influ-
ence to evidence that has better accuracy in distinguishing a certain class. The weight assigned to each
class of evidence is based on the accuracy obtained from each classifier for that particular class during
the classification phase. Finally, based on (8), a weight is calculated for each class, and the class with
the highest value is selected as the decision integration output of the proposed system.

The procedural framework of the proposed method is presented in Algorithm 2, providing a system-
atic overview of its key algorithmic steps.

Algorithm 2 The algorithm of the proposed method.
Inputs: Models, O;(.J), 4;(J)

Output: Predicted m;(J7)
mi(J) = Ai(J) o Oi(J).
Gi(J) =1- A4i(J).
for j in O;(J) do
for i in Models do
a(0) = C iy mi.
Calculating ¢(J7) using (6)
mi(J) = {1
end for

end for

Return m;(J7).

4 Results

In this study, we encountered the inherent imbalance in breast cancer datasets, which poses challenges for
effective classification. To address this, we employed various data balancing techniques, including the
Synthetic Minority Over-sampling Technique (SMOTE) and under-sampling of the majority class. These
approaches are well-recognized in the literature for their effectiveness in dealing with class imbalance
[6, 15]. Using SMOTE, we synthetically generated new instances for the minority class by interpolating
between existing instances. This method enhances the representation of the minority class and aids in
mitigating imbalance. Additionally, we implemented under-sampling to reduce the size of the majority
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class, ensuring a more balanced distribution of instances across classes. Given the balanced dataset
achieved through these preprocessing methods, we deemed accuracy to be a suitable and fair metric
for determining classifier weights in Yager’s rule. Accuracy provides a comprehensive measure of the
overall performance of the classifier, especially in scenarios where the dataset has been balanced [25].
While we acknowledge that metrics such as recall, precision, or Fl-score are crucial for imbalanced
datasets, in our context, the preprocessing steps allowed us to use accuracy reliably.

Zahaby et al. [45], systematically analyzed the impact of multi-source data (EHR + text vs. text
alone). The findings confirmed that EHR data complements textual information and improved outcomes.
This aligns with the current study’s objective of leveraging multimodal data for improved performance.

Figure 2 illustrates the accuracies of the CNN, MLP, and SVM classifiers, which utilized text min-
ing and HIS to detect BI-RADS. Since a large number of features are obtained through text mining, and
some features extracted from HIS do not significantly contribute to the classification, PCA was applied
to identify the most suitable and relevant features [27]. Features with dimensions ranging from 110 to
200 were selected and classified using CNN, MLP, and SVM. It was observed that as the dimensionality
increased, the classification accuracy also increased, but the accuracy began to decrease at dimensions
greater than 160. Several studies, including [28], have shown that the quality of word2vec deteriorates
with increasing dimensionality, which leads to a reduction in accuracy. Ultimately, the maximum ac-
curacy for the CNN, MLP, and SVM classifiers at 160 dimensions was 86.37%, 92.11%, and 87.92%,
respectively. This value was chosen as the base dimension for subsequent calculations and processes.
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Figure 2: The variation of accuracy with the number of features.

Figures 3 and 4 present a comparison of the evaluation parameters of the proposed Decision Support
System (DSS) with other methods and classifiers. Figure 3 shows the evaluation parameters of accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-measure
for all classifiers used in this research, along with the Yager method and the proposed DSS.

The best accuracy for the proposed DSS was 96.23%, compared to 86.37%, 92.11%, 87.92%,
92.97%, and 93.49% for CNN, MLP, SVM, U-Net, and the Yager method, respectively.

The highest sensitivity for the proposed DSS was 85.90%, whereas CNN, MLP, SVM, U-Net, and
Yager achieved sensitivity values of 78.39%, 83.55%, 77.97%, 81.76%, and 84.89%, respectively. The
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best specificity for the proposed DSS was 97.80%, while CNN, MLP, SVM, U-Net, and Yager recorded
specificity values of 85.76%, 90.48%, 86.15%, 92.54%, and 92.91%, respectively.

The highest PPV for the proposed DSS was 86.21%, whereas the PPV values for CNN, MLP, SVM,
U-Net, and Yager were 79.71%, 83.49%, 76.46%, 83.87%, and 84.62%, respectively. The best NPV
value for the proposed DSS was 97.82%, compared to 85.33%, 91.02%, 85.27%, 91.35%, and 92.48%
for CNN, MLP, SVM, U-Net, and Yager, respectively. Finally, the highest F1-measure for the proposed
DSS was 85.87%, while CNN, MLP, SVM, U-Net, and Yager had F1-measure values of 77.28%, 78.93%,
75.21%, 81.17%, and 82.25%, respectively.

0.9 1
0.8 1
0.7 A
0.6
05 -

Accuracy Sensitivity Specificity PPV NPV F1-measure

I CNN [ SvM [ Yager
[N MLP [ U-Net [ Proposed DSS

Figure 3: Comparison of evaluation parameters of the proposed DSS with other classifiers.
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Figure 4: Comparison of evaluation parameters of the proposed DSS with other methods.
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Figure 4 presents the parameters of accuracy, specificity, sensitivity, PPV, NPV, and F1-measure
for different methods, all using the same dataset employed in this study. The results demonstrate that the
proposed Decision Support System (DSS) outperforms the other methods. By examining the evaluation
metrics, it is evident that the proposed method, which employs decision fusion to enhance accuracy,
performs better than similar methods used for identifying BI-RADS classes. This improvement in diag-
nostic performance ultimately contributes to more effective patient treatment and follow-up care.

To further validate the performance of our proposed method, we compared it with Yager’s original
decision fusion approach as well as other commonly used classifiers. As illustrated in Figure 3, our
method consistently achieved superior results across all evaluation metrics. This improvement is mainly
attributed to the introduction of a weighted fusion mechanism, where the contribution of each classifier
is adjusted based on its classification accuracy, unlike Yager’s original method which assumes equal
importance for all sources of evidence.

Table 2: Confusion matrix of proposed decision support system.

Confusion Matrix Class Sensitivity  Specificity PPV NPV F1-Measure Accuracy
320 2 1 0 1 0 BI-RADS 0  76.67% 97.73% 82.14% 96.85% 79.31% 95.20%
0 31 0 1 3 2 BI-RADS 1 95.65% 96.57% 86.27% 98.99% 90.72% 96.40%
1 1 25 2 0 0 1 BI-RADS 2 88.57% 97.21% 83.78% 98.12% 86.11% 96.00%
o o 1 32 1 1 2 BI-RADS 3  81.82% 97.81% 78.26% 98.24% 80.00% 96.40%
0o 1 2 0 26 1 1 BI-RADS 4 94.74% 97.64% 87.80% 99.04% 91.14% 97.20%
1 1 0 1 0 37 0 BI-RADS 5 86.05% 99.03% 94.87% 97.16% 90.24% 96.80%
1 1 0 1 3 1 29 BI-RADS 6 77.78% 98.60% 90.32% 96.35% 83.58% 95.60%

Table 2 displays the confusion matrix of the proposed system for BI-RADS classification, along
with the evaluation metrics of sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), F1-measure, and accuracy. Most disease classes were detected with an accuracy exceeding
95%. The average sensitivity value is 85.90%, with the lowest sensitivity for BI-RADS 0 and the highest
sensitivity for BILRADS 1 (95.65%).

The specificity value for healthy individuals is 96.57%, demonstrating the system’s high perfor-
mance in detecting healthy people. The average specificity value is 97.80%, with the minimum value
for BI-RADS 1 and the maximum value for BI-RADS 5, which reaches 99.03%. These values indicate
that the proposed method performs well in terms of specificity.

The average positive predictive value (PPV) is 86.21%, with the highest PPV value of 94.87% for
BI-RADS 5. The negative predictive value (NPV) for healthy individuals is 98.99%, showcasing the
proposed method’s strong performance. The maximum NPV value is 99.04% (BI-RADS 4), and the
minimum value is 96.35% (BI-RADS 6).

The average F1-measure value is 85.87%, with the maximum value of 91.14% for BI-RADS 4 and
the minimum value of 79.31% for BI-RADS 0. These results indicate that the proposed method provides
a good detection rate.

The overall accuracy, or the system’s ability to correctly diagnose both healthy and sick individuals,
is 96.23% on average, with minimum and maximum accuracy values of 95.20% and 97.20%, respec-
tively.

In conclusion, by analyzing these evaluation metrics, it is evident that the proposed Decision Sup-
port System (DSS) performs effectively in detecting BI-RADS classes, which aids in disease diagnosis
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and the determination of appropriate treatment methods. Since multi-evidence decision fusion was em-
ployed, the proposed method improved the detection performance of BI-RADS.

5 Discussion

The proposed method was examined and implemented on a desktop computer with the following speci-
fications: Intel® Core™ i7-4790 CPU @ 3.60 GHz, 16 GB DDR RAM (2x8 GB), 2 GB GT 730 graphics
card, and a 256 GB SSD hard drive with an additional 1 TB SATA hard drive. For implementation,
Python 3.8.7 was used within the Visual Studio Code environment.

5.1 Evaluation Parameters

K -fold cross-validation was employed to assess the quality and validity of the results. The data was first
divided into 10 subsets (K = 10), and for each subset, the system was trained based on the proposed
framework, with the average evaluation criteria being reported.

The confusion matrix is one of the evaluation criteria for classifiers [46]. It is an N x N matrix,
where N represents the number of classes; in this case, there are 7 BI-RADS classes. The diagonal of
the matrix contains the number of correct predictions (True Positives), while the off-diagonal elements
represent false detections. In binary classification models, which only detect the presence or absence of
a disease, the confusion matrix includes concepts such as True Positives (T'P), True Negatives (T'N),
False Positives (F'P), and False Negatives (F'N). This study aims to classify patients into the 7 BI-
RADS categories. Here, T'P; refers to the True Positive value for class ¢, which indicates cases where
both the true class and predicted class are ¢. The value for T'P; is calculated using Equation (9). False
Positives (F'P) are represented by F'P;, where the true class is 7, but the predicted class is different.
The value for F'P; is calculated using Equation (10). Additionally, F'NV;, representing False Negatives,
denotes cases where the predicted class is ¢, but the true class is different from ¢. F'N; is computed with
Equation (11). Finally, T'N; is the True Negative value, indicating cases where the true class is not ¢,
and the predicted class is also not <. The value for T'N; is calculated using (12).

TP; = Cy, i=0,1,...,6, )
6
FP;= Y Cy, i=0,1,...,6, (10)
i#j=0
6
FN;= Y Cj, i=0,1,...,6, (11)
i#j=0
6 6
TN;i= > Y Ci, i=0,1,...,6. (12)
i#£j=01i#k=0

Using these values, other important parameters such as accuracy, specificity, sensitivity, Positive Predic-
tive Value (PPV), Negative Predictive Value (NPV), and the F1-score can be calculated. These metrics
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are computed using Equations (13)-(18), where TP, TN, F P, and F'N represent the averages of T'P;,
TN,, FP;, and F N, respectively [28].

Accuracy = P+ TN ) (13)
TP+TN+FP+FN
Specificity = %, (14)
Sensitivity = TPT+7PFN7 (15)
TP
PPV = op5p (16)
TN
NPV = o pn 7
2 x PPV x Sensitivit
F1 = measure = = 5 Sensitivity - (18

5.2 Evaluation of Methodologies

In this segment, we analyze the methods employed in this study from the perspective of statistical hy-
pothesis testing. Initially, each method was executed 30 times under identical conditions, and the accu-
racy for each iteration was recorded. Table 3 presents the cumulative and mean execution times for all
methods, including their respective results.

The proposed model exhibits a longer runtime compared to some other classifiers, as shown in Table
3, this increase in execution time is justified by its superior diagnostic performance. In clinical practice,
particularly in the context of cancer diagnosis, the emphasis is primarily on accuracy and reliability
rather than speed. Since cancer detection does not usually require real-time processing, a slightly longer
processing time is acceptable if it results in a more accurate and trustworthy diagnosis. Therefore, the
runtime of the proposed method is not expected to hinder its practical applicability in clinical environ-
ments.

Subsequently, an ANOVA test, conducted using SPSS version 25, was performed to compare the
six methods. The results of the analysis are presented in Tables 3 and 4.

Table 3: Descriptives statistics.

Runtime (ms) L. 95% Confidence Interval for Mean . .
N Mean Std. Deviation Std. Error Minimum Maximum

Overall ~ Average Lower Bound ~ Upper Bound
CNN 30 | 325821 10861 757257142933 | .0192775351727 .0035195802891 | .750058792998 .764455492868 | .7314285710 .8171428570
MLP 30 | 16699 557 841980952333 | .0131712977633 .0024047389655 | .837062708919 .846899195747 | .8125714290 .8662857140
SVM 30 | 13909 464 826057142833 | .0154861905440 .0028273786303 | .820274504249 .831839781417 | .7954285710 .8514285710
U-Net 30 | 76281 2543 870857142833 | .0205341753768 .0037490103512 | .863189555734 .878524729932 | .8022857140 .8982857140
Yager 30 | 30664 1022 1902929482433 | .0073922379998 .0013496318343 | .900169175400 .905689789467 | .8891428570 .9154285710
Proposed DSS | 30 | 231870 7729 911042385433 | .0049901840045 .0009110787818 | .909179020102 .912905750764 | .8971428570 .9165714290
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Table 4: ANOVA.

Sum of Squares | df | Mean Square | F Sig.
Between Groups | .484 5 .097 453.019 | .000
Within Groups .037 174 | .000
Total 523 179

To compare the accuracy of the mentioned methods, the ANOVA test using Flisher’s F' statistic
was employed, testing the hypothesis outlined in Equation (19) as follows:

Hy : HCNN = MDecisionTree — WMLF = HUSVM = HXGboost = HProposedDSS (19)

H 4 : Atleast one of the means is different from the others.

Based on the findings presented in Table 4, the p-value (Sig : 0.000) is clearly below the predeter-
mined significance level of & = 0.05. Therefore, the null hypothesis is rejected, indicating that at least
one of the means significantly deviates from the others. To further investigate this discrepancy, a post
hoc test was conducted. As shown by the p-values highlighted in yellow in Tables 5 and 6, all values
associated with the proposed DSS are less than 0.05, which results in the rejection of the null hypothe-
ses. This suggests a significant difference between the mean of the proposed DSS and the means of the
other classifiers. Consequently, post hoc tests (Tukey’s HSD and LSD) reveal a significant difference
between the mean of the proposed method and the means of the other classifiers, but no significant differ-
ence between the proposed DSS (weighted Yager) and Yager’s method. Furthermore, Figure 5 visually
demonstrates the superiority of the proposed DSS method over its counterparts.

1.00

HH

0.95

Accuracy
o o
[e2] ©
(4] o

=)
©
o

0.75 ~

0.70 - '
CNN MLP SVM U-Net Yager Proposed DSS
Methods

Figure 5: Comparison of accuracy of proposed DSS with other classifiers.
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Table 5: Multiple comparisons for tukey HSD.

. . Mean Difference . 95% Confidence Interval
(D) Classifier (J) Classifier Std. Error Sig.

1-J) Lower Bound | Upper Bound
-.0847238094000* | 0.003780253 0 -0.095617527 | -0.073830092
-.0687999999000* | 0.003780253 0 -0.079693718 | -0.057906282
-.1135999999000* | 0.003780253 0 -0.124493718 | -0.102706282
-.1456723395000* | 0.003780253 0 -0.156566057 | -0.134778622
-.1537852425000* | 0.003780253 0 -0.16467896 | -0.142891525
.0847238094000* | 0.003780253 0 0.073830092 | 0.095617527
.0159238095000* | 0.003780253 | 0.001 | 0.005030092 | 0.026817527
-.0288761905000* | 0.003780253 0 -0.039769908 | -0.017982473
-.0609485301000* | 0.003780253 0 -0.071842248 | -0.050054812
-.0690614331000* | 0.003780253 0 -0.079955151 | -0.058167715
.0687999999000* | 0.003780253 0 0.057906282 | 0.079693718
-.0159238095000* | 0.003780253 | 0.001 | -0.026817527 | -0.005030092
-.0448000000000* | 0.003780253 0 -0.055693718 | -0.033906282
-.0768723396000* | 0.003780253 0 -0.087766057 | -0.065978622
-.0849852426000* | 0.003780253 0 -0.09587896 | -0.074091525

.1135999999000* | 0.003780253 0 0.102706282 | 0.124493718
.0288761905000* | 0.003780253 0 0.017982473 | 0.039769908
.0448000000000* | 0.003780253 0 0.033906282 | 0.055693718
-.0320723396000* | 0.003780253 0 -0.042966057 | -0.021178622
-.0401852426000* | 0.003780253 0 -0.05107896 | -0.029291525
.1456723395000* | 0.003780253 0 0.134778622 | 0.156566057
.0609485301000* | 0.003780253 0 0.050054812 | 0.071842248
.0768723396000* | 0.003780253 0 0.065978622 | 0.087766057
.0320723396000* | 0.003780253 0 0.021178622 | 0.042966057
-0.008112903 0.003780253 | 0.002 | -0.019006621 | 0.002780815
.1537852425000* | 0.003780253 0 0.142891525 | 0.16467896
.0690614331000* | 0.003780253 0 0.058167715 | 0.079955151
.0849852426000* | 0.003780253 0 0.074091525 | 0.09587896
.0401852426000* | 0.003780253 0 0.029291525 | 0.05107896
0.008112903 0.003780253 | 0.002 | -0.002780815 | 0.019006621

*. The mean difference is significant at the 0.05 level.

5.3 Practical Challenges and Limitations

Although the proposed decision fusion method demonstrates significant improvements in diagnostic
accuracy, there are several practical challenges and limitations that need to be addressed for its successful
application in clinical practice:

+ Computational Cost: Deep learning models such as CNN and U-Net are computationally inten-
sive, which could limit their real-time use in clinical settings, especially when processing large
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Table 6: Multiple comparisons for tukey LSD.

. . Mean Difference . 95% Confidence Interval
(DClassifier (J) Classifier Std. Error Sig.

1-J) Lower Bound | Upper Bound
-.0847238094000* | 0.003780253 -0.092184862 | -0.077262757
-.0687999999000* | 0.003780253 -0.076261053 | -0.061338947
-.1135999999000* | 0.003780253 -0.121061053 | -0.106138947
-.1456723395000* | 0.003780253 -0.153133392 | -0.138211287
-.1537852425000% | 0.003780253 -0.161246295 | -0.14632419
.0847238094000* | 0.003780253 0.077262757 | 0.092184862
.0159238095000* | 0.003780253 0.008462757 | 0.023384862
-.0288761905000* | 0.003780253 -0.036337243 | -0.021415138
-.0609485301000* | 0.003780253 -0.068409583 | -0.053487477
-.0690614331000* | 0.003780253 -0.076522486 | -0.06160038
.0687999999000* | 0.003780253 0.061338947 | 0.076261053
-.0159238095000* | 0.003780253 -0.023384862 | -0.008462757
-.0448000000000* | 0.003780253 -0.052261053 | -0.037338947
-.0768723396000* | 0.003780253 -0.084333392 | -0.069411287
-.0849852426000* | 0.003780253 -0.092446295 | -0.07752419
.1135999999000* | 0.003780253 0.106138947 | 0.121061053
.0288761905000% | 0.003780253 0.021415138 | 0.036337243
.0448000000000* | 0.003780253 0.037338947 | 0.052261053
-.0320723396000* | 0.003780253 -0.039533392 | -0.024611287
-.0401852426000* | 0.003780253 -0.047646295 | -0.03272419
.1456723395000% | 0.003780253 0.138211287 | 0.153133392
.0609485301000* | 0.003780253 0.053487477 | 0.068409583
.0768723396000* | 0.003780253 0.069411287 | 0.084333392
.0320723396000* | 0.003780253 0.024611287 | 0.039533392
-.0081129030000* | 0.003780253 3 | -0.015573956 | -0.00065185
.1537852425000* | 0.003780253 0.14632419 | 0.161246295
.0690614331000* | 0.003780253 0.06160038 | 0.076522486
.0849852426000* | 0.003780253 0.07752419 | 0.092446295
.0401852426000* | 0.003780253 0.03272419 | 0.047646295
.0081129030000* | 0.003780253 3 | 0.00065185 | 0.015573956

*. The mean difference is significant at the 0.05 level.

S

S

datasets. To optimize runtime, techniques such as model pruning, parallel processing, or cloud-
based solutions are necessary to improve system performance in high-throughput environments.

+ Data Quality and Completeness: The system’s performance heavily depends on the quality and
completeness of input data, including mammography reports, clinical records, and medical im-
ages. Incomplete or erroneous data may lead to inaccurate predictions, posing a major challenge
for real-world applications.

+ Integration with Hospital Information Systems (HIS) and Electronic Health Records (EHR):
Our system’s integration with HIS and EHR presents practical challenges related to data privacy,
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security, and interoperability. Different healthcare institutions may use various HIS and EHR
platforms, which could make it difficult to develop a universal solution that works seamlessly

across all hospitals.

+ System Complexity: The fusion of multiple classifiers improves accuracy but also increases sys-
tem complexity. This added complexity could pose challenges for system maintenance, updates,
and ease of interpretability. For clinical adoption, ensuring the system’s outputs are understand-
able and actionable by healthcare professionals is essential.

6 Conclusions

The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System
(BI-RADS) to standardize mammogram reporting and improve patient care. This standard aims to help
patients prioritize treatment progress more accurately based on their condition. However, certain chal-
lenges remain, such as disagreements among clinicians regarding BI-RADS results, which may hinder
the determination of precise treatment strategies based on these values. To address these challenges, this
paper proposes a hybrid model that integrates unstructured data (medical reports) with structured data
from Hospital Information Systems (HIS) and medical images to create a biological model for medical
data analysis. Mammography reports were converted into vectors using Word2Vec, following text pro-
cessing. Essential features were selected using Principal Component Analysis (PCA). The classification
of BI-RADS features was performed using CNN, MLP, SVM, and U-Net classifiers. These classifica-
tion outputs were then combined using the proposed method to generate BI-RADS classification results.
To evaluate the system, K -fold cross-validation was employed with K = 10. Metrics such as speci-
ficity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and F1-measure
were calculated. The maximum values achieved for these metrics in the proposed method were 85.90%,
97.80%, 86.21%, 97.82%, and 85.87%, respectively, with an overall diagnostic accuracy of 96.23%.
The proposed decision support system (DSS) converts medical textual records into vectors, utilizes HIS
features derived from medical literature, and processes medical images for BI-RADS diagnosis. By syn-
thesizing these various evidences, the DSS aids physicians in making informed decisions. Consequently,
the system enhances the evaluation of patient treatment progress, potentially saving many lives by facil-
itating timely and accurate medical interventions. Although this study demonstrates promising results,
there are several potential areas for future research and development. First, further research could focus
on optimizing the system’s computational efficiency to enable real-time clinical applications. This may
include reducing model complexity and utilizing hardware accelerations like GPUs. Second, expanding
the dataset to include data from different healthcare institutions, as well as incorporating additional data
types such as genetic and demographic data, would help improve the generalizability and robustness of
the system. Third, enhancing the explainability and interpretability of the decision fusion process is es-
sential for ensuring the system’s adoption in clinical environments. Finally, investigating the real-time
integration of the system into clinical workflows would allow for continuous patient monitoring and
decision support, improving patient care in practice.
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