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Abstract. Breast cancer is one of the most prevalent cancers among women and
remains a leading cause of cancer-related mortality. Mammography is the primary
imaging modality for the early detection of breast tumors. Providing timely and highly
accurate diagnoses is a top priority for physicians and healthcare providers in the
management of critical illnesses. This paper presents a Medical Decision Support
System (MDSS) that utilizes Yager’s rule of combination to classify and diagnose breast
cancer patients by integrating information from multiple data sources. Medical text
reports (MTR) and key feature vectors extracted from electronic health records (EHR)
were reduced using Principal Component Analysis (PCA) and then classified using
Convolutional Neural Networks (CNN), Multi-Layer Perceptrons (MLP), and Support
Vector Machines (SVM). Medical images were preprocessed and classified using a U-Net
model. A novel decision fusion algorithm, called weighted Yager, was introduced to
determine the Breast Imaging-Reporting and Data System (BI-RADS) categories, taking
into account the accuracy of each class in each classifier as evidence. The performance
of the proposed system was evaluated based on standard metrics including accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and F1-score. The proposed system achieved the highest accuracy of 96.23%,
outperforming individual classifiers (CNN: 86.37%, MLP: 92.11%, SVM: 87.92%,
U-Net: 92.97%, and Yager: 93.49%). The weighted Yager fusion method yielded the best
performance with an accuracy of 96.23%, sensitivity of 98.80%, specificity of 85.90%,
PPV of 86.21%, NPV of 97.82%, and F1-score of 85.87%. These findings demonstrate
that integrating decisions from multiple classifiers significantly improves diagnostic
accuracy and robustness.
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1 Introduction

Breast cancer is the most common type of cancer and a leading cause of cancer-related deaths
amongwomen. Despite significantmedical advances, it remains amajor challenge in healthcare
and treatment [38]. This underscores the need for more accurate methods to diagnose and clas-
sify breast cancer, facilitating faster identification and treatment to improve patient outcomes.
A key aspect of effective follow-up and treatment is the standardization of medical reports,
which aids in the timely diagnosis and staging of the disease. To address this, the American
College of Radiology (ACR) introduced BI-RADS, a system for standardizing mammography
reports [7, 37]. BI-RADS categorizes findings into seven levels: 0 (incomplete), 1 (negative),
2 (benign findings), 3 (probably benign), 4 (suspicious abnormality), 5 (highly suggestive of
malignancy), and 6 (biopsy-proven malignancy).

Deep learning and artificial intelligence are increasingly utilized to support physicians in
evidence-based decision-making by analyzing complex, multidimensional data. A key aspect
of this process is decision fusion, which combines information frommultiple sources to address
conflicting or uncertain data, ultimately improving the accuracy and reliability of the decision-
making process [12]. Among the various decision fusion techniques, Yager’s method stands out
due to its ability to effectively manage such uncertainties and contradictions, providing a robust
framework for enhancing the capabilities of medical systems [42]. Furthermore, results from
clinical trials demonstrate that integrating data and decisions leads to more accurate diagnoses
and improved treatment outcomes for breast cancer [32].

This article investigates a novel decision support system designed using Yager’s rule of
combination to achieve accurate and effective classification of breast cancer. The proposed
system leverages clinical data, medical reports, and imaging analysis through deep learning
algorithms. Its innovative approach to data combination enhances classification accuracy while
improving performance in handling data variations and conflicting evidence. This is due to its
flexibility in learning and decision-making processes. The developed decision support system
offers a powerful tool for medical professionals, enabling faster and more effective treatment
decisions, and contributing significantly to improved clinical outcomes for patients.

2 Related Works

Breast cancer diagnosis has been widely studied, with significant research focused on the inte-
gration of medical imaging, clinical reports, and patient history. Several studies have proposed
various approaches for improving breast cancer classification, often relying on either medical
image analysis or text-based clinical reports. However, these approaches tend to have notable
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limitations, which our proposed system aims to address. In recent years, numerous studies
have focused on improving breast cancer diagnosis and treatment by utilizing advanced com-
putational techniques. A significant portion of this research has concentrated on medical image
analysis and text mining from clinical reports. However, many of these studies have limita-
tions in terms of the data sources used, the integration of decision fusion techniques, and the
generalization of results across diverse patient populations.

Esmaeili et al. [18] developed a clinical decision support system (CDSS) using data min-
ing techniques to interpret mammography reports. This approach relied solely on the text data
from the reports, which limited its ability to incorporate visual data from mammograms. Fur-
thermore, the system did not employ decision fusion, which could have improved the robust-
ness and accuracy of the classification. Boumaraf et al. [10] proposed a system that utilized
a genetic algorithm (GA) for BI-RADS classification based solely on mammography images.
While their method achieved reasonable performance, it overlooked the valuable contextual
information provided by patient history and clinical reports. Additionally, the absence of de-
cision fusion techniques in their model hindered its ability to handle conflicting evidence from
different data sources. Borkowski et al. [8] employed deep learning techniques for the au-
tomatic classification of background parenchymal enhancement (BPE) in breast MRI images.
Although their method provided accurate results for image-based analysis, it ignored other crit-
ical sources of information such as medical text and patient history, which could have enriched
the decision-making process. Zhang et al. [47] focused on analyzing clinical text data using
various deep learning approaches. While their method successfully extracted features from the
reports, it did not incorporate imaging data, and lacked decision fusion techniques to recon-
cile information from multiple sources. As a result, the system may have been less robust in
handling the complexity and variability of breast cancer data.

Jesneck et al. [26] evaluates various classification algorithms applied to two breast cancer
datasets, focusing on decision fusion methods that optimize clinically significant performance
measures, such as the area under the curve (AUC) and partial area under the curve (pAUC). The
findings suggest that decision fusion can outperform traditional machine learning techniques
in certain scenarios. Manali et al. [30] proposes a three-parallel-channel artificial intelligence-
based system that combines support vector machines (SVM) and convolutional neural networks
(CNN) through decision fusion. The approach aims to enhance system performance in classi-
fying mammogram images. Yan et al. [43] proposed a fusion network for classifying benign
and malignant breast cancer cases by integrating multimodal data. This approach leverages di-
verse data sources to improve diagnostic accuracy. Fogliatto et al. [19] proposes a method for
feature selection and classification of breast cancer cases into benign or malignant categories
by deriving a feature importance index, contributing to the development of decision support
systems in breast cancer detection.
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Destrempes et al. [17] evaluated different combinations of 13 features derived from shear
wave elasticity (SWE), statistical metrics, and spectral tissue dispersion from ultrasound im-
ages, combined with BI-RADS classifications, using the random forest algorithm. This ap-
proach did not consider the text of medical reports. The most relevant studies [4, 5, 11, 13,
17, 20, 22, 23, 34, 39] center on BI-RADS determination for breast cancer diagnosis, predom-
inantly using either medical images or clinical text alone. In contrast, this article proposes a
novel decision support system that integrates hospital information systems (HIS), medical text,
and imaging data to train classifiers and determine BI-RADS categories. By applying a new
decision fusion method based on Yager’s rule of combination, this approach yields superior
results, promising significant improvements in the breast cancer treatment process.

Zahaby andMakhdoom [44] proposed a decision support system that combines various clas-
sifiers, such as CNN, Decision Tree, multi-class SVM, and XGBoost, using weighted ensemble
learning with majority voting to determine BIRADS values. This approach aims to improve di-
agnostic accuracy by integrating multiple models, although it may struggle with imbalances in
classifier performance. The weighted ensemble learning method aggregates classifier outputs
based on predefined weights, which can sometimes lead to suboptimal decision fusion when
individual classifier strengths vary significantly. In contrast, our method, based on Weighted
Yager, achieves superior performance by more effectively handling the imbalance in classifier
results and offering enhanced robustness in breast cancer diagnosis.

Sharifonnasabi and Makhdoom [21] compared various deep learning and machine learning
algorithms for breast cancer diagnosis and found that CNN achieved the highest accuracy. This
study explored the effectiveness of several machine learning algorithms, including deep learn-
ing approaches such as multilayer perceptron (MLP) and convolutional neural networks (CNN),
as well as traditional classifiers like decision tree (DT), Naïve Bayesian (NB), support vec-
tor machine (SVM), K-nearest neighbors (KNN), and eXtreme Gradient Boosting (XGBoost).
Their research, conducted using the Breast Cancer Wisconsin Diagnostic dataset, evaluated
classifier performance based on metrics such as confusion matrix, accuracy, and precision. The
results of their study revealed that CNN outperformed all other models.

Zahaby et al. [46] investigates the impact of multimodal data integration in medical deci-
sion support systems. Their work highlights the importance of combining data from multiple
sources, such as imaging and patient history, to improve diagnostic accuracy. However, the
study emphasizes that while multimodal data integration is promising, there are challenges re-
lated to data standardization and the handling of conflicting evidence from diverse data sources.

Boroumandzadeh et al. [9] explores the use ofmachine learning algorithms for breast cancer
diagnosis, focusing on feature selection and classification accuracy. The authors use clinical
and text data but limit their focus to a single data source at a time, with employing decision
fusion for two methods. While the study achieves promising results, the lack of decision fusion
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prevents it from leveraging the full potential of multimodal data, particularly in cases where
data from different sources may conflict or provide incomplete information.

Furthermore, while many studies have attempted to apply deep learning techniques, such as
CNNs for image analysis, they often overlook the importance of integrating textual information
from medical reports. This is a critical gap, as clinical reports provide essential context that can
significantly enhance diagnostic decisions.

Our proposed system builds upon these previous efforts by integrating textual data, imaging
data, and patient history using an innovative decision fusion method based on Yager’s rule of
combination. This approach addresses the limitations observed in previous studies by allowing
for more robust and accurate classifications, even in the presence of contradictory or incomplete
information.

Table 1 summarizes the key characteristics and limitations of the most relevant studies
in breast cancer diagnosis. As shown, while prior studies predominantly rely on single data
sources (text or images), our proposed system benefits from multi-modal integration and deci-
sion fusion, which enhances its diagnostic performance.

Table 1: Comparison of related studies in breast cancer diagnosis.

Study Data Sources Methodology Decision Fusion Limitations
Esmaeili et al. [18] Text Data (Mammography Reports) Data Mining No Only text-based analysis, no image data
Boumaraf et al. [10] Image Data (Mammography Images) Genetic Algorithm (GA) No No integration of patient history or clinical text
Borkowski et al. [8] Image Data (MRI) Deep Convolutional Neural Network (CNN) No No use of clinical text or patient history
Zhang et al. [47] Text Data (Clinical Reports) Deep Learning No Excludes imaging data, lacks decision fusion
Proposed System Text, Image Data, HIS Deep Learning, Weighted Yager’s Decision Fusion Yes Multi-source integration, improved diagnostic accuracy

3 Material and Methods

This paper presents a novel framework for a decision support system for breast cancer diagno-
sis, encompassing dataset preparation, preprocessing, classification, decision fusion, and result
evaluation to optimize BI-RADS classification using an improved Yager method. The segmen-
tation process of the proposed decision support system is illustrated in Figure 1. Initially, the
medical report text for each individual in the dataset is processed and transformed into a vector
representation using the Word2Vec algorithm [45]. Alongside features extracted from mam-
mography reports, additional features derived from patients’ electronic health records (EHR)
are incorporated. These features are combined at the data level and, following preprocessing
in the second stage, are used to train the CNN, SVM, and MLP classifiers in the subsequent
stage. Additionally, mammography images undergo normalization and noise removal before
being used to train the U-Net classifier. In the classification stage, these models are employed
to predict BI-RADS values. The predictions are then aggregated in the decision fusion stage us-



In
Pr
es
s

6 Deep Learning-Based Decision Fusion ...

ing the proposed improved Yager method. Finally, in the evaluation stage, the system’s results
and overall performance are reviewed and assessed.

Figure 1: Segmentation of the proposed DSS.

3.1 Dataset

The dataset used in this research includes twomain sources; Mammography images and reports,
as well as the patient’s electronic file, which were extracted from PACS and patient records,
respectively. These datasets were obtained from the information available in Shahidzadeh Hos-
pital Medical Training Center in Behbahan City in the period of 2020 to 2022, which includes
mammography reports and electronic files of 400 patients, and since the information of some
patients was incomplete and had missing data, finally, only the information of 250 patients who
had complete information was used. According to Equation (1), which is known as Cochran’s
formula [16] and was presented by William Cochran, to achieve an accuracy with an error of
5% in performing calculations, at least 138 samples will be needed, and considering that in this
research, the sample size is 250 cases, it indicates the appropriateness of the sample size for
conducting this research with an error accuracy of 5%.

n =
z2p(1− p)

d2
. (1)
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In Equation (1), p represents the estimated proportion of breast cancer in the population. The
parameter z is the Z − score corresponding to the desired confidence level, which is set to
1.96 for a 95% confidence interval, thus z2 = 3.8416. The term d denotes the margin of error,
chosen as 0.05 to reflect acceptable precision in the estimation. Finally, n indicates the required
minimum sample size, which was calculated to be 138 using these parameter values.

Some of the key features and elements extracted from themedical text reports and keywords
are: density, asymmetry, distribution pattern, shape, size, and history of breast surgery. Also,
some of the characteristics checked by medical experts and patient records (related to HIS)
were: menopause, breastfeeding history, sports activities, pregnancy history, marital status,
age, family history of cancer, etc.

3.2 Preprocessing and Processing

In this research, preprocessing was applied to the textual data from mammography reports.
Key medical descriptors were extracted from the mammography text reports, including breast
density, asymmetry, architectural distortion, distribution patterns, lesion size, prior breast surg-
eries, and lesion shape. These elements were identified and standardized during preprocessing
to ensure consistency and enhance the quality of text-based feature extraction. This involved
comprehensive cleaning steps, including removing impurities, standardizing characters, and
correcting grammatical and spelling errors. Tokenization was used to break the data into pro-
cessable units. Stopwords were removed, and abbreviated phrases were expanded to their full
forms. The text was converted to lowercase, and words were stemmed or lemmatized to re-
duce them to their root forms. These steps improved the effectiveness of subsequent modeling.
Feature extraction was performed using Word2Vec embeddings combined with min-max nor-
malization [33], transforming each report into a numerical vector.

Additionally, structured clinical data was extracted from the Hospital Information System
(HIS) data included 30 features related to patient history and clinical context. These features
encompassed elements such as breastfeeding history, physical activity levels, pregnancy history,
marital status, patient age, and family history of cancer. Each feature was rated by seven expert
physicians on a scale from 1 to 10 based on its perceived clinical relevance to breast cancer
diagnosis. The average scores were used to select the top 24 most relevant features for further
analysis and classification.

To reduce dimensionality, Principal Component Analysis (PCA) was applied. PCA was
chosen to eliminate multicollinearity among features, reduce computational cost, and preserve
the most informative variance in the data. This step enhanced model performance and helped
prevent overfitting.
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To enhance the quality of diagnosis and classification, the vectors extracted from medical
text reports were combined with selected features from the Hospital Information System (HIS)
at the data level and processed using CNN,MLP, and SVM classification algorithms. Addition-
ally, due to the challenges posed by mammography images—such as noise, intensity variations,
and non-uniform contrasts—preprocessing was applied. The first step in image processing in-
volved normalizing the images by adjusting their contrast and brightness, ensuring homogeneity
across the dataset. To remove noise and perform post-processing tasks, a Gaussian filter was ap-
plied, which preserves the most important edges and details. Geometric corrections were made
to the mammography images, followed by advanced metadata segmentation algorithms that en-
hanced edge differentiation and eliminated unnecessary data. This process strengthened feature
extraction by providing a cleaner and more distinct surface for pattern recognition. These pre-
processing steps allow for more accurate analysis of mammography images, leading to reliable
results when using the U-Net deep learning technique.

3.3 Classification

In this section, the vectors generated in the previous step are passed to the CNN, MLP, and
SVM classification algorithms to predict the BI-RADS score in patient reports. Additionally,
mammography images are processed by the U-Net classification algorithm to determine the
corresponding BI-RADS value.

Machine learning algorithms are essential for extracting knowledge from data and typically
operate within reasonable computational times for specific problems [3]. Convolutional neural
networks (CNNs) [31] are a class of deep learning models commonly applied to image, speech,
and text analysis in machine learning. In this study, CNNs are used for BI-RADS classification,
as they can capture complex relationships between data variables and handle noisy data effec-
tively. A convolution operation is performed on the input, followed by pooling layers where
sampling is applied to reduce dimensionality and prevent overfitting [41].

During the backpropagation phase, the parameter θ is updated by minimizing the error. The
ReLU activation function is used in both the first and second convolutional layers, while the
output layer employs the softmax function, and the loss function used is the mean squared error.
The Adam optimization algorithm [24], an adaptive learning rate optimizer, is also utilized.

The U-Net architecture is a convolutional neural network originally designed for medical
image segmentation at the University of Freiburg’s Computer Science Department [36]. U-
Net has been modified and extended for tasks requiring fewer training images, achieving more
accurate segmentation [29]. This algorithm allows for high-speed processing and learning with
reduced reliance on complex or expensive hardware. It can operate efficiently with smaller
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datasets, improving accuracy by extracting complex features [35]. In this study, the U-Net
architecture is used for BI-RADS classification and detection.

Support Vector Machines (SVM) are used to find the optimal separating hyperplane that
maximizes the margin between two classes. In this paper, the Radial Basis Function (RBF )
kernel is employed [14], and once the model is trained, the possible BI-RADS class values for
each sample are determined. A one-vs-all approach is utilized for BI-RADS classification, as
there are seven possible classes. This approach involves using seven distinct SVMs, with each
SVMmaking a decision for each sample, and the sample is assigned to the class corresponding
to the highest probability [40].

Themultilayer perceptron (MLP)model consists of input, hidden, and output layers. The in-
put layer assigns a neuron to each input variable, while the hidden layer performs the main com-
putational tasks of the network. In this study, the output layer comprises seven neurons, which
are used to detect BI-RADS, along with the softmax activation function. In this research,
seven neurons were used for the output layer to detect BI-RADS along with the softmax ac-
tivation function. The primary computational power of the MLP comes from the hidden units
between the input and output layers. Data flows forward through the network, similar to a
feed-forward structure. The neurons are trained using a backpropagation algorithm. MLPs are
composed of neurons, each referred to as a perceptron. A perceptron takes n features as input
ip = {ip1, ip2, . . . , ipn}, and each feature is assigned a weight, and the weights assigned to
the features must be a value be numerical [1]. In this article, the multilayer perceptron model
is used for BI-RADS classification and diagnosis.

3.4 Decision Fusion

In this paper, we propose a framework for predicting and determining BI-RADS by combining
the decisions of various classifier methods along with the assigned weight for each class, based
on Yager’s rule of combination. The models derived from CNN, MLP, SVM, and U-Net are
integrated to aid decision-making in determining BI-RADS. Yager introduced and formulated
an efficient method that also accounts for conflicts between evidences. To address this issue,
Yager defined a new function, q, known as the probability mass allocation function. According
to Equation (2), the probability mass allocation value can be greater than or equal to zero,
indicating the possibility of conflict between the evidence [2].

q(ϕ) ≥ 0. (2)

Yager considers only oneweight for each evidence, which can reduce accuracy, especially in
datasets where the class distribution is not uniform or when evidence lacks sufficient accuracy
to distinguish a class. However, in the proposed method, a weight is assigned to each class
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within each piece of evidence. Let O⃗i(J) represent the estimation of classifier i for class j, and
A⃗i(J) denote the weight of classifier i for class j. The mass values of the function mi(J) are
then defined in Equation eq3. Additionally, the value A⃗i(J), which represents the accuracy of
evidence i for class j, is computed based on the trained model and is given by (4).

mi(J) = A⃗i(J) ◦ O⃗i(J), (3)

A⃗i(J) =
TP j

i + TN j
i

TP j
i + TN j

i + FP j
i + FN j

i

= Accuracyji . (4)

According to Equation (5), the contradiction between evidences is classified in a set Ω⃗i(J)

which is equal to Ω⃗i(J) =
{
ω1
i , . . . , ω

j
i

}
. The combination of evidence decision in the pro-

posed method is also calculated by Equations (6)-(8).

Ω⃗i(J) = 1− A⃗i(J), (5)

q(J j) =
∑

∩Jj
i =Jj

[
mj

1(J
j
1)×mj

2(J
j
2)× . . .×mj

i (J
j
i ) + ωj

i ×mj
i

]
, (6)

q(ϕ)j =
∑

∩mj
i=ϕ

mj
i , (7)

mi(J
j) =

q(J j)

1− q (ϕ)j
. (8)

In the proposed method, a weight is assigned to each class within each evidence, giving
more influence to evidence that has better accuracy in distinguishing a certain class. The weight
assigned to each class of evidence is based on the accuracy obtained from each classifier for
that particular class during the classification phase. Finally, based on (8), a weight is calculated
for each class, and the class with the highest value is selected as the decision integration output
of the proposed system.

The procedural framework of the proposed method is presented in Algorithm 1, providing
a systematic overview of its key algorithmic steps.

4 Results

In this study, we encountered the inherent imbalance in breast cancer datasets, which poses
challenges for effective classification. To address this, we employed various data balancing
techniques, including the Synthetic Minority Over-sampling Technique (SMOTE) and under-
sampling of the majority class. These approaches are well-recognized in the literature for their
effectiveness in dealing with class imbalance [6, 15]. Using SMOTE, we synthetically gen-
erated new instances for the minority class by interpolating between existing instances. This
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Algorithm 1 The algorithm of the proposed method.
Inputs: Models, O⃗i(J), A⃗i(J)

Output: Predictedmi(J
j)

mi(J) = A⃗i(J) ◦ O⃗i(J).

Ω⃗i(J) = 1− A⃗i(J).

for j in O⃗i(J) do

for i in Models do

q(ϕ)j =
∑

∩mj
i=ϕ

mj
i .

Calculating q(J j) using (6)

mi(J
j) = q(Jj)

1−q(ϕ)j
.

end for

end for

Returnmi(J
j).

method enhances the representation of the minority class and aids in mitigating imbalance. Ad-
ditionally, we implemented under-sampling to reduce the size of the majority class, ensuring
a more balanced distribution of instances across classes. Given the balanced dataset achieved
through these preprocessing methods, we deemed accuracy to be a suitable and fair metric for
determining classifier weights in Yager’s rule. Accuracy provides a comprehensive measure
of the overall performance of the classifier, especially in scenarios where the dataset has been
balanced [25]. While we acknowledge that metrics such as recall, precision, or F1-score are cru-
cial for imbalanced datasets, in our context, the preprocessing steps allowed us to use accuracy
reliably.

Zahaby et al. [45], systematically analyzed the impact of multi-source data (EHR + text
vs. text alone). The findings confirmed that EHR data complements textual information and
improved outcomes. This aligns with the current study’s objective of leveraging multimodal
data for improved performance.

Figure 2 illustrates the accuracies of the CNN, MLP, and SVM classifiers, which utilized
text mining and HIS to detect BI-RADS. Since a large number of features are obtained through
text mining, and some features extracted from HIS do not significantly contribute to the classi-
fication, PCAwas applied to identify the most suitable and relevant features [27]. Features with
dimensions ranging from 110 to 200 were selected and classified using CNN, MLP, and SVM.
It was observed that as the dimensionality increased, the classification accuracy also increased,
but the accuracy began to decrease at dimensions greater than 160. Several studies, includ-



In
Pr
es
s

12 Deep Learning-Based Decision Fusion ...

ing [28], have shown that the quality of word2vec deteriorates with increasing dimensionality,
which leads to a reduction in accuracy. Ultimately, the maximum accuracy for the CNN, MLP,
and SVM classifiers at 160 dimensions was 86.37%, 92.11%, and 87.92%, respectively. This
value was chosen as the base dimension for subsequent calculations and processes.

Figure 2: The variation of accuracy with the number of features.

Figures 3 and 4 present a comparison of the evaluation parameters of the proposed Deci-
sion Support System (DSS) with other methods and classifiers. Figure 3 shows the evaluation
parameters of accuracy, sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), and F1-measure for all classifiers used in this research, along with the
Yager method and the proposed DSS.

The best accuracy for the proposed DSS was 96.23%, compared to 86.37%, 92.11%,
87.92%, 92.97%, and 93.49% for CNN, MLP, SVM, U-Net, and the Yager method, respec-
tively.

The highest sensitivity for the proposed DSS was 85.90%, whereas CNN, MLP, SVM, U-
Net, and Yager achieved sensitivity values of 78.39%, 83.55%, 77.97%, 81.76%, and 84.89%,
respectively. The best specificity for the proposed DSS was 97.80%, while CNN, MLP,
SVM, U-Net, and Yager recorded specificity values of 85.76%, 90.48%, 86.15%, 92.54%, and
92.91%, respectively.

The highest PPV for the proposed DSS was 86.21%, whereas the PPV values for CNN,
MLP, SVM, U-Net, and Yager were 79.71%, 83.49%, 76.46%, 83.87%, and 84.62%, respec-
tively. The best NPV value for the proposed DSS was 97.82%, compared to 85.33%, 91.02%,
85.27%, 91.35%, and 92.48% for CNN, MLP, SVM, U-Net, and Yager, respectively. Finally,
the highest F1-measure for the proposed DSSwas 85.87%, while CNN,MLP, SVM, U-Net, and
Yager had F1-measure values of 77.28%, 78.93%, 75.21%, 81.17%, and 82.25%, respectively.
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Figure 3: Comparison of evaluation parameters of the proposed DSS with other classifiers.

Figure 4: Comparison of evaluation parameters of the proposed DSS with other methods.

Figure 4 presents the parameters of accuracy, specificity, sensitivity, PPV, NPV, and F1-
measure for different methods, all using the same dataset employed in this study. The results
demonstrate that the proposed Decision Support System (DSS) outperforms the other methods.
By examining the evaluation metrics, it is evident that the proposed method, which employs
decision fusion to enhance accuracy, performs better than similar methods used for identifying
BI-RADS classes. This improvement in diagnostic performance ultimately contributes to more
effective patient treatment and follow-up care.

To further validate the performance of our proposed method, we compared it with Yager’s
original decision fusion approach as well as other commonly used classifiers. As illustrated in
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Figure 3, our method consistently achieved superior results across all evaluation metrics. This
improvement is mainly attributed to the introduction of a weighted fusion mechanism, where
the contribution of each classifier is adjusted based on its classification accuracy, unlike Yager’s
original method which assumes equal importance for all sources of evidence.

Table 2: Confusion matrix of proposed decision support system.

Confusion Matrix Class Sensitivity Specificity PPV NPV F1-Measure Accuracy
32 0 2 1 0 1 0 BI-RADS 0 76.67% 97.73% 82.14% 96.85% 79.31% 95.20%
0 33 1 0 1 3 2 BI-RADS 1 95.65% 96.57% 86.27% 98.99% 90.72% 96.40%
1 1 25 2 0 0 1 BI-RADS 2 88.57% 97.21% 83.78% 98.12% 86.11% 96.00%
0 0 1 32 1 1 2 BI-RADS 3 81.82% 97.81% 78.26% 98.24% 80.00% 96.40%
0 1 2 0 26 1 1 BI-RADS 4 94.74% 97.64% 87.80% 99.04% 91.14% 97.20%
1 1 0 1 0 37 0 BI-RADS 5 86.05% 99.03% 94.87% 97.16% 90.24% 96.80%
1 1 0 1 3 1 29 BI-RADS 6 77.78% 98.60% 90.32% 96.35% 83.58% 95.60%

Table 2 displays the confusion matrix of the proposed system for BI-RADS classification,
along with the evaluation metrics of sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), F1-measure, and accuracy. Most disease classes were detected
with an accuracy exceeding 95%. The average sensitivity value is 85.90%, with the lowest
sensitivity for BI-RADS 0 and the highest sensitivity for BI-RADS 1 (95.65%).

The specificity value for healthy individuals is 96.57%, demonstrating the system’s high
performance in detecting healthy people. The average specificity value is 97.80%, with the
minimumvalue for BI-RADS 1 and themaximumvalue for BI-RADS 5, which reaches 99.03%.
These values indicate that the proposed method performs well in terms of specificity.

The average positive predictive value (PPV) is 86.21%, with the highest PPV value of
94.87% for BI-RADS 5. The negative predictive value (NPV) for healthy individuals is 98.99%,
showcasing the proposed method’s strong performance. The maximum NPV value is 99.04%
(BI-RADS 4), and the minimum value is 96.35% (BI-RADS 6).

The average F1-measure value is 85.87%, with themaximumvalue of 91.14% for BI-RADS
4 and the minimum value of 79.31% for BI-RADS 0. These results indicate that the proposed
method provides a good detection rate.

The overall accuracy, or the system’s ability to correctly diagnose both healthy and sick
individuals, is 96.23% on average, with minimum and maximum accuracy values of 95.20%
and 97.20%, respectively.

In conclusion, by analyzing these evaluationmetrics, it is evident that the proposedDecision
Support System (DSS) performs effectively in detecting BI-RADS classes, which aids in dis-
ease diagnosis and the determination of appropriate treatment methods. Since multi-evidence
decision fusion was employed, the proposed method improved the detection performance of
BI-RADS.
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5 Discussion

The proposed method was examined and implemented on a desktop computer with the follow-
ing specifications: Intel® Core™ i7-4790 CPU @ 3.60 GHz, 16 GB DDR RAM (2x8 GB), 2
GB GT 730 graphics card, and a 256 GB SSD hard drive with an additional 1 TB SATA hard
drive. For implementation, Python 3.8.7 was used within the Visual Studio Code environment.

5.1 Evaluation Parameters

K-fold cross-validation was employed to assess the quality and validity of the results. The data
was first divided into 10 subsets (K = 10), and for each subset, the system was trained based
on the proposed framework, with the average evaluation criteria being reported.

The confusion matrix is one of the evaluation criteria for classifiers [46]. It is an N × N

matrix, where N represents the number of classes; in this case, there are 7 BI-RADS classes.
The diagonal of thematrix contains the number of correct predictions (True Positives), while the
off-diagonal elements represent false detections. In binary classification models, which only
detect the presence or absence of a disease, the confusion matrix includes concepts such as
True Positives (TP ), True Negatives (TN), False Positives (FP ), and False Negatives (FN).
This study aims to classify patients into the 7BI-RADS categories. Here, TPi refers to the True
Positive value for class i, which indicates cases where both the true class and predicted class are
i. The value for TPi is calculated using Equation (9). False Positives (FP ) are represented by
FPi, where the true class is i, but the predicted class is different. The value forFPi is calculated
using Equation (10). Additionally, FNi, representing False Negatives, denotes cases where the
predicted class is i, but the true class is different from i. FNi is computed with Equation (11).
Finally, TNi is the True Negative value, indicating cases where the true class is not i, and the
predicted class is also not i. The value for TNi is calculated using (12).

TP i = Cii, i = 0, 1, . . . , 6, (9)

FP i =
6∑

i ̸=j=0

Cij , i = 0, 1, . . . , 6, (10)

FN i =
6∑

i ̸=j=0

Cji, i = 0, 1, . . . , 6, (11)

TN i =

6∑
i ̸=j=0

6∑
i ̸=k=0

Cjk, i = 0, 1, . . . , 6. (12)

Using these values, other important parameters such as accuracy, specificity, sensitivity, Posi-
tive Predictive Value (PPV), Negative Predictive Value (NPV), and the F1-score can be calcu-
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lated. These metrics are computed using Equations (13)-(18), where TP , TN , FP , and FN

represent the averages of TPi, TNi, FPi, and FNi, respectively [28].

Accuracy =
TP + TN

TP + TN + FP + FN
, (13)

Specificity =
TN

TN + FP
, (14)

Sensitivity =
TP

TP + FN
, (15)

PPV =
TP

TP + FP
, (16)

NPV =
TN

TN + FN
, (17)

F1−measure =
2× PPV × Sensitivity
PPV + Sensitivity

. (18)

5.2 Evaluation of Methodologies

In this segment, we analyze the methods employed in this study from the perspective of statisti-
cal hypothesis testing. Initially, each method was executed 30 times under identical conditions,
and the accuracy for each iteration was recorded. Table 3 presents the cumulative and mean
execution times for all methods, including their respective results.

The proposed model exhibits a longer runtime compared to some other classifiers, as shown
in Table 3, this increase in execution time is justified by its superior diagnostic performance.
In clinical practice, particularly in the context of cancer diagnosis, the emphasis is primarily on
accuracy and reliability rather than speed. Since cancer detection does not usually require real-
time processing, a slightly longer processing time is acceptable if it results in a more accurate
and trustworthy diagnosis. Therefore, the runtime of the proposed method is not expected to
hinder its practical applicability in clinical environments.

Subsequently, an ANOVA test, conducted using SPSS version 25, was performed to com-
pare the six methods. The results of the analysis are presented in Tables 3 and 4.

Table 3: Descriptives statistics.

Runtime (ms) 95% Confidence Interval for Mean
N

Overall Average
Mean Std. Deviation Std. Error

Lower Bound Upper Bound
Minimum Maximum

CNN 30 325821 10861 .757257142933 .0192775351727 .0035195802891 .750058792998 .764455492868 .7314285710 .8171428570
MLP 30 16699 557 .841980952333 .0131712977633 .0024047389655 .837062708919 .846899195747 .8125714290 .8662857140
SVM 30 13909 464 .826057142833 .0154861905440 .0028273786303 .820274504249 .831839781417 .7954285710 .8514285710
U-Net 30 76281 2543 .870857142833 .0205341753768 .0037490103512 .863189555734 .878524729932 .8022857140 .8982857140
Yager 30 30664 1022 .902929482433 .0073922379998 .0013496318343 .900169175400 .905689789467 .8891428570 .9154285710
Proposed DSS 30 231870 7729 .911042385433 .0049901840045 .0009110787818 .909179020102 .912905750764 .8971428570 .9165714290
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Table 4: ANOVA.

Sum of Squares df Mean Square F Sig.
Between Groups .484 5 .097 453.019 .000
Within Groups .037 174 .000
Total .523 179

To compare the accuracy of the mentioned methods, the ANOVA test with Fisher’sF
statistic was used with the hypothesis outlined in Equation (19) as follows:

H0 : µCNN = µDecisionTree = µMLF = µSVM = µXGboost = µProposed DSS
HA : At least one of the means is different from the others.

(19)

Based on the findings presented in Table 4, the p-value (Sig : 0.000) is clearly below the
predetermined significance level of α = 0.05. Therefore, the null hypothesis is rejected, indi-
cating that at least one of the means significantly deviates from the others. To further investigate
this discrepancy, a post hoc test was conducted. As shown by the p-values highlighted in yel-
low in Tables 5 and 6, all values associated with the proposed DSS are less than 0.05, which
results in the rejection of the null hypotheses. This suggests a significant difference between
the mean of the proposed DSS and the means of the other classifiers. Consequently, post hoc
tests (Tukey’s HSD and LSD) reveal a significant difference between the mean of the proposed
method and the means of the other classifiers, but no significant difference between the pro-
posed DSS (weighted Yager) and Yager’s method. Furthermore, Figure 5 visually demonstrates
the superiority of the proposed DSS method over its counterparts.

Figure 5: Comparison of accuracy of proposed DSS with other classifiers.
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Table 5: Multiple comparisons for tukey HSD.

95% Confidence Interval
(I) Classifier (J) Classifier

Mean Difference
(I-J)

Std. Error Sig.
Lower Bound Upper Bound

MLP -.0847238094000* 0.003780253 0 -0.095617527 -0.073830092
SVM -.0687999999000* 0.003780253 0 -0.079693718 -0.057906282
U-Net -.1135999999000* 0.003780253 0 -0.124493718 -0.102706282
Yager -.1456723395000* 0.003780253 0 -0.156566057 -0.134778622

CNN

Proposed DSS -.1537852425000* 0.003780253 0 -0.16467896 -0.142891525
CNN .0847238094000* 0.003780253 0 0.073830092 0.095617527
SVM .0159238095000* 0.003780253 0.001 0.005030092 0.026817527
U-Net -.0288761905000* 0.003780253 0 -0.039769908 -0.017982473
Yager -.0609485301000* 0.003780253 0 -0.071842248 -0.050054812

MLP

Proposed DSS -.0690614331000* 0.003780253 0 -0.079955151 -0.058167715
CNN .0687999999000* 0.003780253 0 0.057906282 0.079693718
MLP -.0159238095000* 0.003780253 0.001 -0.026817527 -0.005030092
U-Net -.0448000000000* 0.003780253 0 -0.055693718 -0.033906282
Yager -.0768723396000* 0.003780253 0 -0.087766057 -0.065978622

SVM

Proposed DSS -.0849852426000* 0.003780253 0 -0.09587896 -0.074091525
CNN .1135999999000* 0.003780253 0 0.102706282 0.124493718
MLP .0288761905000* 0.003780253 0 0.017982473 0.039769908
SVM .0448000000000* 0.003780253 0 0.033906282 0.055693718
Yager -.0320723396000* 0.003780253 0 -0.042966057 -0.021178622

U-Net

Proposed DSS -.0401852426000* 0.003780253 0 -0.05107896 -0.029291525
CNN .1456723395000* 0.003780253 0 0.134778622 0.156566057
MLP .0609485301000* 0.003780253 0 0.050054812 0.071842248
SVM .0768723396000* 0.003780253 0 0.065978622 0.087766057
U-Net .0320723396000* 0.003780253 0 0.021178622 0.042966057

Yager

Proposed DSS -0.008112903 0.003780253 0.002 -0.019006621 0.002780815
CNN .1537852425000* 0.003780253 0 0.142891525 0.16467896
MLP .0690614331000* 0.003780253 0 0.058167715 0.079955151
SVM .0849852426000* 0.003780253 0 0.074091525 0.09587896
U-Net .0401852426000* 0.003780253 0 0.029291525 0.05107896

Proposed DSS

Yager 0.008112903 0.003780253 0.002 -0.002780815 0.019006621
*. The mean difference is significant at the 0.05 level.

5.3 Practical Challenges and Limitations

Although the proposed decision fusion method demonstrates significant improvements in diag-
nostic accuracy, there are several practical challenges and limitations that need to be addressed
for its successful application in clinical practice:

• Computational Cost: Deep learning models such as CNN and U-Net are computation-
ally intensive, which could limit their real-time use in clinical settings, especially when
processing large datasets. To optimize runtime, techniques such as model pruning, par-
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Table 6: Multiple comparisons for tukey LSD.

95% Confidence Interval
(I)Classifier (J) Classifier

Mean Difference
(I-J)

Std. Error Sig.
Lower Bound Upper Bound

MLP -.0847238094000* 0.003780253 0 -0.092184862 -0.077262757
SVM -.0687999999000* 0.003780253 0 -0.076261053 -0.061338947
U-Net -.1135999999000* 0.003780253 0 -0.121061053 -0.106138947
Yager -.1456723395000* 0.003780253 0 -0.153133392 -0.138211287

CNN

Proposed DSS -.1537852425000* 0.003780253 0 -0.161246295 -0.14632419
CNN .0847238094000* 0.003780253 0 0.077262757 0.092184862
SVM .0159238095000* 0.003780253 0 0.008462757 0.023384862
U-Net -.0288761905000* 0.003780253 0 -0.036337243 -0.021415138
Yager -.0609485301000* 0.003780253 0 -0.068409583 -0.053487477

MLP

Proposed DSS -.0690614331000* 0.003780253 0 -0.076522486 -0.06160038
CNN .0687999999000* 0.003780253 0 0.061338947 0.076261053
MLP -.0159238095000* 0.003780253 0 -0.023384862 -0.008462757
U-Net -.0448000000000* 0.003780253 0 -0.052261053 -0.037338947
Yager -.0768723396000* 0.003780253 0 -0.084333392 -0.069411287

SVM

Proposed DSS -.0849852426000* 0.003780253 0 -0.092446295 -0.07752419
CNN .1135999999000* 0.003780253 0 0.106138947 0.121061053
MLP .0288761905000* 0.003780253 0 0.021415138 0.036337243
SVM .0448000000000* 0.003780253 0 0.037338947 0.052261053
Yager -.0320723396000* 0.003780253 0 -0.039533392 -0.024611287

U-Net

Proposed DSS -.0401852426000* 0.003780253 0 -0.047646295 -0.03272419
CNN .1456723395000* 0.003780253 0 0.138211287 0.153133392
MLP .0609485301000* 0.003780253 0 0.053487477 0.068409583
SVM .0768723396000* 0.003780253 0 0.069411287 0.084333392
U-Net .0320723396000* 0.003780253 0 0.024611287 0.039533392

Yager

Proposed DSS -.0081129030000* 0.003780253 0.033 -0.015573956 -0.00065185
CNN .1537852425000* 0.003780253 0 0.14632419 0.161246295
MLP .0690614331000* 0.003780253 0 0.06160038 0.076522486
SVM .0849852426000* 0.003780253 0 0.07752419 0.092446295
U-Net .0401852426000* 0.003780253 0 0.03272419 0.047646295

Proposed DSS

Yager .0081129030000* 0.003780253 0.033 0.00065185 0.015573956
*. The mean difference is significant at the 0.05 level.

allel processing, or cloud-based solutions are necessary to improve system performance
in high-throughput environments.

• Data Quality and Completeness: The system’s performance heavily depends on the
quality and completeness of input data, includingmammography reports, clinical records,
and medical images. Incomplete or erroneous data may lead to inaccurate predictions,
posing a major challenge for real-world applications.
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• IntegrationwithHospital Information Systems (HIS) andElectronicHealthRecords
(EHR):Our system’s integration with HIS and EHR presents practical challenges related
to data privacy, security, and interoperability. Different healthcare institutions may use
various HIS and EHR platforms, which could make it difficult to develop a universal
solution that works seamlessly across all hospitals.

• System Complexity: The fusion of multiple classifiers improves accuracy but also in-
creases system complexity. This added complexity could pose challenges for system
maintenance, updates, and ease of interpretability. For clinical adoption, ensuring the
system’s outputs are understandable and actionable by healthcare professionals is essen-
tial.

6 Conclusions

The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data
System (BI-RADS) to standardize mammogram reporting and improve patient care. This stan-
dard aims to help patients prioritize treatment progress more accurately based on their condi-
tion. However, certain challenges remain, such as disagreements among clinicians regarding
BI-RADS results, which may hinder the determination of precise treatment strategies based on
these values. To address these challenges, this paper proposes a hybrid model that integrates un-
structured data (medical reports) with structured data from Hospital Information Systems (HIS)
and medical images to create a biological model for medical data analysis. Mammography re-
ports were converted into vectors using Word2Vec, following text processing. Essential fea-
tures were selected using Principal Component Analysis (PCA). The classification of BI-RADS
features was performed using CNN, MLP, SVM, and U-Net classifiers. These classification
outputs were then combined using the proposed method to generate BI-RADS classification
results. To evaluate the system, K-fold cross-validation was employed with K = 10. Met-
rics such as specificity, sensitivity, positive predictive value (PPV), negative predictive value
(NPV), and F1-measure were calculated. Themaximum values achieved for thesemetrics in the
proposed method were 85.90%, 97.80%, 86.21%, 97.82%, and 85.87%, respectively, with an
overall diagnostic accuracy of 96.23%. The proposed decision support system (DSS) converts
medical textual records into vectors, utilizes HIS features derived from medical literature, and
processes medical images for BI-RADS diagnosis. By synthesizing these various evidences,
the DSS aids physicians in making informed decisions. Consequently, the system enhances the
evaluation of patient treatment progress, potentially saving many lives by facilitating timely
and accurate medical interventions. Although this study demonstrates promising results, there
are several potential areas for future research and development. First, further research could
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focus on optimizing the system’s computational efficiency to enable real-time clinical applica-
tions. This may include reducing model complexity and utilizing hardware accelerations like
GPUs. Second, expanding the dataset to include data from different healthcare institutions, as
well as incorporating additional data types such as genetic and demographic data, would help
improve the generalizability and robustness of the system. Third, enhancing the explainability
and interpretability of the decision fusion process is essential for ensuring the system’s adoption
in clinical environments. Finally, investigating the real-time integration of the system into clin-
ical workflows would allow for continuous patient monitoring and decision support, improving
patient care in practice.
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