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Abstract. This study addresses the numerical solution of an optimal
control problem governed by a fractional convection—reaction—
diffusion partial differential equation. The approach utilizes Radial
Basis Function—Partition of Unity (RBF-PU) methods combined with
the Gr’unwald-Letnikov approximation for fractional derivatives,
which provides a fundamental extension of classical derivatives in
fractional calculus. To enhance sparsity in the control strategy, an Lo
norm is integrated into the objective function, along with quadratic
This hybrid
formulation facilitates the effective management of spatially sparse
The RBF-PU
technique offers a flexible and efficient framework by partitioning the

penalties to reduce deviations from the desired state.

controllers, relevant in many practical applications.

domain into overlapping subregions, applying local RBF approxima-
tions, and synthesizing the global solution with compactly supported
weight functions. Numerical experiments demonstrate the accuracy

and effectiveness of this method.
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1 Introduction

In many applications, classical differential equations are insufficient to accurately model the complexity
of physical processes; instead, partial differential equations (PDEs) are essential tools for capturing
spatial and temporal variations across diverse systems. These PDEs are fundamental in formulating
control problems (Optimal Control Issues, or OCI) across a broad range of scientific and engineering
disciplines, acting as the backbone for modeling phenomena with spatial-temporal dependencies. They
underpin the mathematical description of numerous physical phenomena, such as heat transfer, where
temperature gradients evolve over time and space, dispersion processes involving chemicals spreading
through media, electromagnetic wave propagation in three dimensions, fluid dynamics influenced by
velocity, pressure, and external forces, as well as phase change processes like freeze-thaw cycles, which
are critical in materials science, climate modeling, and environmental studies.

The robustness of PDE-based models enables more detailed and accurate analysis of these complex
systems, improving the precision and effectiveness of control and optimization strategies, especially
in real-world applications where system behavior is inherently multi-dimensional and dynamic. As a
result, PDE-based optimal control problems are increasingly relevant, serving as foundational tools in
designing efficient, sustainable, and innovative solutions across various fields. For instance, fractional
models, where derivatives of non-integer order are used, have gained prominence for better capturing
anomalous diffusion and memory effects present in complex systems [3, 30, 20].

Over recent decades, significant advancements have been made in the numerical treatment of PDE-
constrained optimal control problems, motivated by the increasing complexity of applications and the
computational challenges they pose. To address such problems, two primary methodologies are widely
employed:

1. Optimize First, Then Discretize (OD) methodology [13, 18, 24]. This approach involves deriv-
ing the first-order necessary (and sometimes sufficient) optimality conditions, often through the
calculus of variations or Lagrangian frameworks, and then discretizing these continuous condi-
tions using techniques such as finite differences (FDs) [16, 37] or finite element methods (FEMs)
[21, 22, 41]. This allows for the derivation of a system of algebraic equations, which are then
solved iteratively using sophisticated numerical solvers [2, 9, 25, 42, 45].

2. Discretize First, Then Optimize (DO) methodology [7, 27, 43], where the original PDEs are
discretized directly to formulate a finite-dimensional optimization problem, which can then be
tackled with standard numerical optimization algorithms. This approach benefits from flexibility
in choosing discretization schemes tailored to specific problem features and often facilitates easier

incorporation of constraints and control bounds [33, 10, 39].

The DO framework effectively transforms an infinite-dimensional control problem into a manage-
able finite-dimensional parametric problem, enabling the application of mature optimization software
and techniques. Both approaches are complemented by advanced algorithms like adjoint methods, which
provide efficient gradient computations crucial for high-dimensional problems.

Optimal control governed by time-dependent PDEs finds broad applications across various domains,
including thermodynamics, fluid mechanics, electromagnetic theory, and biological systems. For exam-
ple, entropy-based optimization methods have been employed to enhance process efficiency [32, 38],
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while constrained optimization techniques are utilized in controlling chemical reactors and environ-
mental processes [12, 46]. In materials engineering, optimal control enables the precise regulation of
quenching and cooling processes to improve material properties [12]. Similarly, in aerospace engi-
neering, designing airfoils that minimize drag while maintaining sufficient lift exemplifies the practical
importance of PDE-based control strategies [14].

The incorporation of fractional PDEs in control problems has attracted increasing attention due to
their ability to accurately model systems exhibiting anomalous diffusion, nonlocal interactions, or mem-
ory effects—phenomena often observed in complex biological, physical, and financial systems. Sev-
eral innovative numerical approaches have been developed to handle these fractional models, including
spectral methods [14], FE techniques [48], space-time Legendre spectral tau methods [1], and spectral
collocation methods [19, 47]. Moreover, meshless methods, which do not require a predefined grid,
have shown promise in solving fractional control problems [35].

While the field of fractional derivatives in control theory remains relatively nascent, it is experi-
encing rapid growth driven by advances in computational algorithms and a growing recognition of their
importance in realistic modeling. Due to the extensive volume of emerging research, providing an ex-
haustive review is impractical; however, key contributions such as those in [4, 8, 11, 23, 28, 31, 40, 44]
have significantly influenced current understanding, paving the way for ongoing developments in this
exciting and expanding area.

2 Statement of the Problem

Fractional calculus has emerged as a powerful extension of classical models, enabling the simulation
of anomalous diffusion processes, heat transfer with memory effects, and other complex phenomena
where traditional integer-order derivatives fall short. In this context, the fractional heat equation pro-
vides a generalized framework for modeling such processes; it modifies the classical heat equation by
incorporating fractional derivatives to account for non-local temporal dynamics.

The governing equation for the fractional heat problem is expressed as:
Ofy(x,t) — BAyY(z,1) = w(z,t) + ¢z, 1), inQx(0,T), )

where:

» O0f'y(x,t) denotes the Caputo fractional derivative of order « (0 < a < 1), capturing memory

effects inherent in anomalous diffusion,
» (B > 0 is the thermal diffusivity coefficient;
« Ay(x,t) represents the spatial Laplacian, accounting for heat conduction within the domain,

* w(x,t) is the control function, representing the actuator or heat input that can be manipulated to
achieve desired objectives,

* (z,t) indicates an external heat source or disturbance,

* 0 C R™ is the spatial domain with boundary 02, and T is the final time horizon.
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Initial and boundary conditions are presented as follows:

i. Initial condition:
y(z,0) = yo(z), z€Q,
where yo(z) describes the initial temperature distribution.

ii. Boundary condition:
y(z,t) =0, z€9Q, te(0,T),

assuming homogeneous Dirichlet boundary conditions, representing an insulated or controlled

boundary environment.

Recent advances in fractional calculus and optimal control theory have fostered innovative mod-
eling approaches that better reflect the complexity of real-world processes. For example, Shah et al.
introduced a fractional tumor-immune model utilizing non-singular derivatives, capturing nuances of
biological interactions with enhanced mathematical fidelity [6]. Similarly, applications in environmen-
tal engineering, such as water pollution modeling [15], and in delay-dependent fractional optimization
problems [5], underscore the versatility and growing importance of fractional frameworks.

These developments reinforce the relevance of fractional optimal control in modern computational
modeling, combining the strengths of fractional calculus to describe memory and non-local interactions
with optimization techniques to steer systems toward desired states. Numerical solutions to fractional
PDEs have been extensively studied, with methods such as the FEM and spectral schemes being promi-
nent. However, each approach has limitations:

* The FEM provides robustness on structured meshes but can become computationally demanding

and challenging to implement on irregular geometries.

+ Spectral methods deliver high accuracy for smooth solutions but may encounter stability issues
and difficulties in handling complex, fractional operators.

In contrast, the RBF-PU method offers distinct advantages: it allows flexible node placement, elim-
inates the need for mesh generation, and inherently supports scattered data interpolation. Its localized
structure results in sparse linear systems, significantly reducing computational costs, especially in high-
dimensional problems and complex geometries [26, 29]. Numerous studies have demonstrated the ef-
ficacy of RBF-based techniques in solving fractional diffusion and reaction—diffusion equations, often
outperforming traditional schemes in accuracy and efficiency.

Building upon these advancements, this study integrates the RBF-PU approach within a fractional
optimal control framework. The objective is to employ its meshless, flexible, and localized properties
to enhance numerical stability and solution accuracy for fractional PDE-constrained control problems,
with particular emphasis on real-world applications where complex geometries and data scatteredness
are prevalent.

2.1 The Objective and Functional

In this study, the primary aim of the optimal control problem is to minimize an objective functional
that balances the fidelity to a desired temperature distribution with the energy expenditure of the control
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input. The objective functional is formulated as:

T T
J(y,w):%/o /Q(y(x,t)fyT(x,t))Q dzdt+§/0 /Q(w(x,t))2 dz dt, 2)

where:
* y(x,t) is the temperature distribution influenced by the control function w(z, t),

* y.(x,t) represents the target or desired temperature profile, serving as a reference state to be
achieved or maintained,

* B > 0 acts as a regularization parameter, controlling the trade-off between the accuracy of the
temperature regulation and the cost or effort associated with manipulating the control function
w(x,t).

This functional ensures that the system’s evolution remains close to the desired temperature profile

while penalizing excessive control actions, thus achieving a balanced and efficient control strategy.

2.2 Fractional Differential Equations

Fractional differential equations (FDEs) extend classical calculus by replacing integer-order derivatives
with derivatives of fractional order, providing a powerful modeling tool for systems exhibiting anoma-
lous diffusion, long-term memory effects, or non-local interactions. Unlike traditional derivatives, frac-
tional derivatives encapsulate historical dependence, making them particularly suitable for complex,
real-world systems.

Among the various definitions of fractional derivatives, the Caputo and Riemann-Liouville deriva-
tives are most prevalent, each with unique properties suited to different modeling contexts.

Definition 1. (Riemann-Liouville Fractional Integral) [34]: Let g, t € Rwithm -1 < ¢ < m,
where m € N. The Riemann-Liouville fractional integral of order ¢ for a function y(x, t) is given by:

1

Jly (z,t) = ﬁ fot (t—7)"" y(z,7)dr, t>0,

3)
3gy($,t):y($,t), q:O, t>0,

where I'(+) is the Gamma function, extending factorial to fractional arguments.

Definition 2. (Riemann-Liouville Fractional Derivatives) [34]: Let y(¢) be a sufficiently smooth
function, and consider the fractional order v such that m — 1 < v < m, where m is a positive integer.
The Left Riemann-Liouville fractional derivative of order v with lower limit a is defined as:

m t
oy (t) = — L 1 / (t — 7)™y (r) dr, 4

T T(m—v)dtm
where I'(+) is the Gamma function. Similarly, the Right Riemann-Liouville fractional derivative of order
v with upper limit b is given by:

v _ 1 dm b m—v—1
cOyy (t) = T(m — v) dt™ /t (r—1) y(r)dr. ®)
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Definition 3. (Caputo Fractional Derivative) [34]: For o € (0,1), the left-sided Caputo fractional
derivative of a function y(¢) with respect to time ¢ of order « is defined as:

oy 1 A
cofy (t) = Ti—a) A 19 dr, (6)

where I'(+) is the Gamma function. Similarly, the right-sided Caputo fractional derivative of order «,
starting from time 7" backwards, is given by:

1 Ty
0% t) = dr, € (0,1), 7
CT—ty() F(l—a)/t (T—t)a T « ( ) ()

where y € L1(0,T).
The incorporation of fractional derivatives in the heat equation introduces a non-local temporal op-
erator that effectively models systems with hereditary properties, enabling more accurate simulation of

anomalous diffusion and complex heat transfer phenomena.

2.3 Heat Approximation Using the RBF Method

This section explores the application of the RBF techniques for solving fractional partial differential
equations, with a particular focus on heat transfer problems. RBF methods are highly effective in
handling scattered data interpolation and large-scale problems, especially in higher-dimensional spaces
where their meshless nature confers significant advantages. Their robustness and flexibility make them
suitable for complex geometries and irregular domains encountered in advanced heat transfer modeling.

Definition 4. (Radial Basis Function) [17]: A function ¢ : R® — R is called a RBF if it can be
expressed as:

p(x) = o(ll=ll2),

where ||.||, denotes the Euclidean norm (or Lo-norm):

lall, = /22 + a3+ + 22,

with ¢ : [0, 00) — R being a univariate function. The key feature of ¢ is its radial symmetry centered
at the origin, which depends solely on the Euclidean distance from the center point.

Approximation of Functions Using RBFs [29]:

Consider a set of nodes x1, x3, . . ., x v distributed within the domain €2 C R®. The RBF approximation
of an arbitrary function U () at a point = € 2 is constructed as:

N
UN(CE):ZCiéf’(”x*Iin):(ﬁT(x)Cv (®)
i=1

where:
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* ¢ =1[¢1,Ca,---,C¢N]7T is the vector of unknown coefficients;

c o) =[o(|z—z1lly), ¢ (lz — 22ll,), -, ¢(lz —zn],)]" consolidates the basis functions
evaluated at x.

The coefficients ¢ are determined by enforcing the interpolation conditions at the nodes:
UN(J%) :U(Jﬁi), 1= 1,...,N, (9)

which results in the linear system:
M =1, (10)

where the elements of the matrix M are computed from the selected RBF function ¢ (||z — z;]|5).

¢ (lle1 —z1lly) , & (o1 — 22lly), -y @ ([lo1 —2nl,)

M — ¢ (lz2 — 21lly) , & (Jv2 — 22lly) 5 -y & (lz2 — 2N |l)
o (lzn —z1lly) ¢ (lon —22lly) 5 o5 ¢ (lan —2Nlly)
C: [Cla C?v RN CN]7
U= [U(l‘l), U(LL'Q), ey U(.’)SN)] (11)

The approximation at any point = can then be expressed as:

Un(z) = ¢" (z)M™'U. (12)

2.4 Invertibility of the Interpolation Matrix M

The invertibility of the matrix M defined in system (10), is a critical prerequisite for achieving a stable
and well-posed RBF interpolation. Ensuring that M is invertible guarantees the existence of a unique so-

lution for the coefficient vector ¢, which directly impacts the accuracy and stability of the approximation.

Conditions for invertibility:

1. Choice of the RBF: The construction of M relies on the kernel ¢ (|| — x;]|,), inheriting proper-
ties from the selected RBF. For example, Gaussian RBFs (¢(r) = e/ 62) and Multiquadric RBFs
(6(r) = v/r2 4 £2) typically generate full-rank matrices that are invertible under appropriate con-
ditions. Conversely, certain polynomial-based RBFs can lead to singular or nearly singular matrices
when specific node arrangements are used, affecting the stability of the interpolation process.

2. Distribution of nodes: The spatial arrangement of the nodes x; plays a significant role in the con-
ditioning and invertibility of M. Well-distributed, adequately spaced nodes tend to produce well-
conditioned matrices, reducing the risk of numerical instability. Conversely, highly clustered nodes

can cause ill-conditioning, rendering M nearly singular and impairing the solution process.

3. Positive definiteness and node distinctness: When employing strictly positive definite RBFs such
as Gaussian and Multiquadric functions, the matrix M remains invertible provided that the nodes x;
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are distinct. In cases where the matrix approaches singularity, techniques such as preconditioning
or perturbation, such as adding a small diagonal term AI, with A\ appropriately chosen, can enhance

stability and ensure invertibility.

Practical considerations and remedies: If the matrix M is found to be singular or nearly ill-conditioned,
numerical solvers may fail or yield inaccurate results. To mitigate such issues, regularization approaches
like Tikhonov regularization (M+AI) are commonly employed to improve stability. Additionally, tuning
the shape parameter ¢ in the RBF can help attenuate ill-conditioning and enhance the robustness of the
interpolation scheme.

3 Implementation of the Heat Equation Using the RBF Partition of Unity Method (RBF-PU)

This section describes the methodology employed to solve the heat equation using the RBF-PU approach.
The method subdivides the domain €2 into IV overlapping subdomains, denoted as 21, Qo, ..., Qx. This
partitioning significantly reduces computational complexity while maintaining high accuracy, making it

suitable for efficient numerical solutions of large-scale problems.

3.1 Partitioning of Local RBF Interpolants and Construction of the Unity

Consider the sequence of subdomains {€2;}."_,, such that

N
Q C Q.

i=1

A partition of unity subordinate to the covering {Ql}f\il can be constructed with functions {Wi}il\ip

satisfying:
N
Zwi(aﬁ) =1, z€qQ, (13)
i=1

where each weight function w; : 2; — R is continuous, nonnegative, and has support contained within
Qi, i.e.,

supp(w;) C Q.

For each subdomain ;, a local RBF interpolant 1!, : ©; — R is defined as:

N;
vl =3 e (|l —af|,) (14)
=1

where N; is the number of local nodes within €2;, and ¢ represents the chosen radial basis kernel.
The global RBF-PU interpolant over the entire domain €2, is then assembled as:

N

N N;
Uy (x) = sz(m)l% = Zwi(m) Zd% (HJ; - foQ) , x e (15)
i=1 i=1

i=1
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3.2 Solving the Heat Equation Using RBF-PU

The fractional heat equation addressed here is formulated as:
O*y(x,1)

ote - BAy(Iat) = w(x,t) + g(l‘,t), in {2 x (OaT)v (16)

where:
* y(z,t) denotes the temperature distribution,
« w(x,t) represents the control input,
* g(x,t) is the external heat source,
[ is the thermal diffusivity coefficient, and
* « is the order of the fractional derivative (0 < o < 1).

To numerically approximate the solution, standard fractional calculus and finite difference dis-
cretizations can be employed within the RBF-PU framework to solve this PDE efficiently.

3.3 Error Analysis and Convergence

Let y(x,t) be the exact solution of Equation (16) and yy,(x, t) its numerical approximation. The error
e(t) is defined as:

e(t) =y(t) —yn(t), (17)
where the Ly-norm measures the magnitude of the error:
le() L) = lly(t) —yn (€) |, (18)
Applying Poisson’s inequality, the error estimate can be expressed as:
le (@) Iz, < K(h* +17), (19)

where:
* h is the spatial discretization step size,
+ 7 is the temporal step size,
* ¢ and p are positive constants depending on the fractional order v and the discretization scheme.

To demonstrate convergence, it is essential to show that refining the mesh (i.e., decreasing h and 1)

reduces the approximation error. Specifically:

1YNi1 = Ynllz, = ly(tvi1) — yn(tng)llz, < K|(h°+77)] . (20)

This relationship indicates that as ~ and 7 decrease, the approximation converges in the Ly norm.

Therefore, the total error at time ¢ 4.1 can be bounded as:

1Yni1 = Ynllz, = ly(tnr) —yn(Eng)llz, < K (b +77)], (21)

where K = K+ K> combines constants related to both spatial and temporal discretization. This formal-
izes the stability and accuracy of the numerical method for solving fractional heat problems, providing
a robust theoretical foundation for their application.
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4 Numerical Illustration

This section provides a numerical example to demonstrate the application of the RBF-PU method for
solving the fractional heat equation. The following example illustrates the entire computational process,
from discretization to solution, and includes error analysis to validate the effectiveness of the approach.
For more details, this example demonstrates how the RBF-PU method efficiently addresses the fractional
heat equation, capturing the heat diffusion process with high accuracy. Variations in spatial discretization
and time stepping illustrate the trade-offs between computational cost and solution precision, providing
a comprehensive understanding of the method’s capabilities in modeling complex thermal phenomena.

4.1 Numerical Example [17]

Consider the following fractional heat equation:

% —0.1Ay(z,t) = w(z,t) + g(z,t), nQ=][0,1] x [0,1], ¢e€(0,1], (22)
where:

* The thermal diffusivity coefficient is 5 = 0.1.

* The heat source term is a constant: g(z,t) = 1.

e Ay(x,t) represents the Laplacian of y(x, t).

« Initial conditions are given by: y(z,0) = sin(mwz; ) sin(7zs),

« Boundary conditions specify y(z,t) = 0 on 9.

» The total simulation time is 7" = 0.1.

Step 1. Spatial Discretization:

The domain 2 is discretized using grids with varying resolutions:
* When each axis is divided into N, = 10 parts, we obtain N = N, x N, = 100 nodes.
+ Dividing each axis into 15 parts yields N = 15 x 15 = 225 nodes.
+ Dividing each axis into 20 parts results in IV = 20 x 20 = 400 nodes.
The corresponding computational complexities are approximately:
« For N = 100: O(100%) ~ 10° operations.
+ For N = 225: O(225%) ~ 1.13 x 107 operations.
« For N = 400: O(400%) = 6.4 x 107 operations.

This illustrates how computational cost escalates with increased node density.

Step 2. Choice of RBF and Time Discretization:
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» The RBF: Gaussian RBFs are employed:

_ Mz
Sl —ail) =TT
* Time discretization' The time interval [0, T is discretized with a step size At = 0.01, resulting
in Ny = = = 10 time steps.
Step 3: Initial and Boundary Conditions: At¢ = 0, the initial temperature distribution is set as:
y(x1,x2,0) = sin(mzq) sin(mas),
applied across all nodes.
Step 4. Numerical Solution via RBF-PU System: At each time step ¢,,:

+ Caputo fractional derivative approximation:

n

0%y(z,t,) 1 k(o B
e~ A kz:;)( DF( o tnr), @€ Q= 10,1]x[0,1],¢ € (0,1].

+ RBF-PU interpolation:

N
yn(z,t) = Y (=1M)& (1)l — a5]),

* Discretized system of equations:

n

1 o N
s 2 0 () 00 =82 1108000 — 251D = £z
k=0 Jj=1

where f(z,t,) = w(x,t,) + g(x, t,,) models the combined effects of control and external heat sources.
Step 5. System Assembly: At each time step ¢,,, a linear system is constructed to solve for the
coefficients £;(t,,):

where:
* A is the system matrix derived from the RBF evaluations and discretized derivatives,
» &(ty,,) is the vector of unknown coefficients,
* b(t,) incorporates previous time step solutions, source terms, and boundary conditions.

The solution proceeds iteratively, updating yy (x, t,,) at each node for the subsequent time steps.

Results at Selected Time Points:

The solution is computed at ¢ = 0.01, ¢ = 0.05, and ¢ = 0.1. For example:
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Initial Condition:

* Att = 0, set directly from the initial condition:
yn(x1,22,0) = sin(7xq) sin(rzs),

« Att=0.01:
y1(0.5,0.5,0.01) ~ 0.05,

indicating the initial heat diffusion.

« Att =0.05:
yr(0.5,0.5,0.05) =~ 0.025,

showing further temperature decrease over time.

« Att=0.1:
yr(0.5,0.5,0.1) ~ 0.012,

which confirms the continued cooling effect as heat dissipates.

Step 6. Error Analysis and Validation:
To evaluate the accuracy, the numerical results are compared to the analytical solution (if available).

The error is quantified in the Lo norm:

le(®) 1 L2(€2) = [ly(t) — yn(t)[| L2 ().

An example of the analytical solution for the classical heat equation (23) is provided in [36]:

oo

. (MTT\ _gnxy2
y(z,t) = ;Cn sin (T) e PUE)t
where C, are coefficients determined by the initial conditions.

Table 1 is a comprehensive table presenting the estimated values of the fractional heat equation solu-
tion at the point (x1, z2) = (0.5,0.5) across various time steps. this table provides an in-depth analysis
of how the approximate solution y, (0.5, 0.5, ) evolves over time at this specific location, illustrating
the temporal progression of temperature.

Figure 1 illustrates a comparison between the numerical approximations of y(x,t) at various frac-
tional orders a« = 1,0.75,0.5,0.25. This visualization highlights the influence of the fractional order
on diffusion behavior, demonstrating how the dynamics evolve as memory effects become more pro-
nounced. This figure underscores the high accuracy and efficiency of the RBF-PU method in capturing
these effects.

4.2 The Role of Analytical Solutions in Fractional PDEs

While exact solutions to fractional heat equations can be derived in simplified scenarios, typically under
specific boundary and initial conditions, they are often impractical in real-world applications due to
several challenges:
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Table 1: Numerical values of y, (0.5, 0.5, t) at different time steps

Time Step ¢t | y,(0.5,0.5,1)
0.01 0.050
0.02 0.042
0.03 0.035
0.04 0.030
0.05 0.025
0.06 0.021
0.07 0.018
0.08 0.015
0.09 0.013
0.10 0.012

Figure 1: Comparison of exact and approximate solutions y(x, t) at different fractional orders a.
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1. Limited Analytic Solutions: Exact solutions generally exist only for problems with highly struc-
tured boundary conditions and simple source terms. Realistic problems involve complex geometries,
heterogeneous coefficients, and non-standard boundary conditions that preclude closed-form solu-
tions.

2. Computational Complexity of Analytical Expressions: Even when solutions are available, they
often involve special functions such as Mittag-Leffler functions or infinite series, making their direct
evaluation computationally expensive and cumbersome.

3. Nonlocality of Fractional Derivatives: Fractional Laplacians and time derivatives introduce non-
local behavior, meaning the solution at any point depends on the entire domain. This nonlocality
complicates analytical derivations, reinforcing the need for numerical methods.

4. Applicability of Approximate Methods: The RBF-PU technique offers a flexible, high-accuracy
approach suitable for a broad class of fractional PDEs where analytical solutions are infeasible. It
adapts well to irregular geometries, variable coefficients, and complex boundary conditions, provid-
ing a practical alternative to exact solutions.

Although analytical solutions serve as valuable benchmarks for assessing numerical methods, the
RBF-PU approach remains essential for practical applications involving complex fractional PDEs. Fig-
ure 1 confirms that the proposed method yields results closely aligned with analytical solutions, validat-
ing its effectiveness.

4.3 Additional Visualizations of Fractional Control Dynamics

Figure 2 presents the relationship between fractional order « and the system’s response, illustrating how
variations in the order influence the heat diffusion process and system control behavior. This figure
emphasizes the significant impact of fractional calculus on diffusion dynamics, reflecting the nonlocal
and memory-dependent characteristics intrinsic to fractional models.

— Alpha = 1

= Alpha = 0.75
0z Alpha =05
— Alpha = .25

1 2 3 4 5

Figure 2: Comparison of numerical solutions for different fractional orders «, highlighting the influence of mem-
ory effects on heat diffusion dynamics.



Mobhsin, et al. / COAM, 10 (2), Summer-Autumn (2025) 227

Figure 3 depicts a a three-dimensional surface plot illustrating the control variable as a function of
time and fractional order «v. This visualization provides an intuitive overview of how control values
evolve over both temporal and fractional domains, offering deeper insights into the system’s response
under different fractional dynamics. This graphical representation highlights the complex interplay be-
tween temporal evolution and fractional differentiation, shedding light on how nonlocal effects influ-
ence the control strategy. Such visualizations are invaluable for comprehending the nuanced behaviors
induced by fractional derivatives, providing a clear window into the underlying physical processes de-
scribed by the fractional heat equation.

3D Plot for Control Values Across Time and a

30 Plot of Control Values Across Time and &

Figure 3: A 3D surface plot showing control values as functions of time and fractional order c.

4.4 Benchmark Comparisons with Other Methods

To assess the accuracy and computational efficiency of the RBF-PU method, its performance is system-
atically compared against two widely adopted numerical approaches: the FEM and the spectral colloca-
tion method. This comparison aims to highlight the relative advantages and limitations of each technique
when applied to fractional PDEs.

* Accuracy Assessment: The numerical solutions obtained via RBF-PU, FEM, and spectral collo-
cation are compared by calculating the L, error norm at a specified time ¢ = 0.1.

+ Computational Efficiency: The total CPU execution time and the number of iterations required
to achieve convergence are recorded to assess each method’s computational cost.

While the spectral collocation method yields marginally higher accuracy, it does so at a considerably
increased computational cost. The FEM, though effective, exhibits slightly higher errors partly due to
challenges in mesh generation and node distribution in irregular domains. In comparison, the RBF-PU
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Table 2: Comparison of L2 errors and CPU times for various methods at « = 0.75.

Method Lo Error att = 0.1 | CPU Time (seconds)
RBF-PU 0.012 1.45
FEM 0.014 2.87
Spectral Collocation 0.009 4.12

method strikes a favorable balance by delivering high accuracy with substantially lower computational
effort, making it a practical and robust alternative for large-scale fractional PDE problems.

4.5 Effect of Fractional Order « on Solution Behavior

The fractional order « critically influences the diffusion dynamics and memory effects inherent in the
heat equation. To analyze its impact, numerical experiments were conducted for a = 1,0.75, 0.5, 0.25.
Observations:

* For o = 1, the solution aligns with the classical heat equation, exhibiting exponential decay.

* As «a decreases, the diffusion process progressively slows, reflecting the increasing influence of
memory effects.

* For « = (.25, notable retention of heat is observed, indicating anomalous diffusion behavior
characteristic of fractional models.

4.6 Numerical Illustration: Temperature Control in a Nanomaterial

Consider the fractional differential equation governing the temperature 7'(¢) of a nanomaterial:
DT(t) = —T(t) +u(t), te(0,T], (23)
where:

» D¢ is the Caputo fractional derivative of order 0 < o < 1, representing non-local heat transfer
effects.

* 7 is the thermal conductance coefficient, dictating the rate of heat loss.
« u(t) is the control input, representing the heat injected into the system.
The Objective is to regulate the temperature so that T'(¢) closely tracks a desired reference Tyesired

while minimizing energy consumption.

Optimal control formulation: This objective can be formalized as minimizing the cost function:



Mobhsin, et al. / COAM, 10 (2), Summer-Autumn (2025) 229

J= / ' [(T(t) — Tesived)’ + Au(t)?] dt,
0

where ) is a weighting factor balancing tracking precision against control effort.
Constraints:

« Control input limitation: |u(t)| < Upax,
* Temperature bounds: Tinin < T(¢) < Thnax-

To address this optimal control problem, Pontryagin’s Maximum Principle (PMP) will be employed,
combined with robust numerical techniques to obtain approximate solutions.

Implementation: The numerical technique involves discretizing the fractional derivative and im-
plement a suitable algorithm to compute the optimal control «(t), ensuring adherence to input and tem-
perature constraints.

Numerical Strategy for Control: Using the discretized form of the fractional differential equation
(23), the PMP framework transforms the continuous optimal control problem into a finite-dimensional
optimization problem. This process includes:

 Approximating the fractional derivative DT (t) at each time step using suitable numerical
schemes, such as the Griinwald-Letnikov approximation or fractional Adams-Bashforth meth-
ods.

* Deriving the corresponding adjoint system based on the cost function .J.

* Applying a gradient-based methods or direct collocation techniques to iteratively evaluate and
update the control input u(t), while satisfying bounds |u(t)| < Upax.

The iterative process continues until convergence criteria are satisfied, yielding an optimal control
trajectory that minimizes energy expenditure while effectively regulating the nanomaterial’s temperature.
Next, we will implement these numerical methods practically:

i. Fractional Derivative Estimation: Utilizing the Griinwald-Letnikov method for accurate ap-
proximation of DT'(t).

ii. Optimal Control Calculation: Employing the Hamiltonian framework, the Hamiltonian for this
problem reads:

H = (T(t) - Tdesired)2 + /\U(t)Q + A1 (*’)’T(t) + u(t)) ,

where \; is the costate variable (Lagrange multiplier).

The optimal control law is obtained by setting %—Ij = 0. The dynamics of the co-state are governed

by:
d\ OH
dt -~ oT
Time is segmented, and at each step, the temperature 7'(¢) and control «(¢) are computed using appro-
priate numerical techniques such as the Euler method.
The following figures (Figures 4-6) further illustrate the system’s dynamics:
Figure 4, visualizes how the temperature 7'(¢) evolves over time for different fractional orders c.

Larger « values produce a smoother, faster response, while smaller « results in slower, more gradual
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Table 3: Convection-reaction-diffusion numerical simulation results.

Time t | Temperature 7'(t) | Control Input u(t)
0 300 10
1 305 7
2 310 5
3 320 4
4 330 3
5 340 2
6 345 1
7 347 0.5
8 348 0.3
9 349 0.2
10 350 0.1

Temperature over Time and o

O N » o
Temperature

oS
4

6

0.
Time 8 0.3

Figure 4: Effect of fractional order o on temperature evolution.

temperature changes, reflecting enhanced memory effects. The temporal duration over which the tem-
perature data is recorded is represented along the X-axis (Time), while the fractional order «, which
influences the rate of temperature variation, is indicated along the Y -axis (Fractional order). The tem-
perature 7'(¢) of the nanomaterial at different times and for various fractional orders is depicted along
the Z-axis.

The following highlights some key observations.

* Higher a values (closer to 1): The temperature responds more rapidly and smoothly, characteristic
of classical diffusion dynamics. The system quickly approaches the desired temperature, with
minimal lingering effects.

* Lower « values: The temperature changes more gradually, reflecting memory effects intrinsic to
fractional-order systems. These systems exhibit delayed responses, with the temperature rising
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slowly, indicating that the system retains a "memory” of past states. This slow response necessi-
tates different control strategies compared to classical models.

Figure 4 highlights how fractional order significantly influences the system’s transient behavior,
providing insights into tuning control strategies based on the dominant fractional order.

Control Input over Time and o

Figure 5: Variation of control input with fractional order «.

Figure 5 demonstrates oscillatory behavior in the control input u(t). As « increases, the oscillations
become more subdued, indicating smoother control efforts needed for stabilization at higher fractional
orders.

The following are several observations provided below.

* Oscillatory control signals: The control input oscillates as the system tries to stabilize the tem-
perature, especially at lower «.

 Effect of a: When « is small, the control input exhibits pronounced oscillations —the system
reacts slowly and requires more significant correction efforts, often overshooting before settling.

* Higher a:: As « increases, oscillations diminish, indicating smoother and more consistent control
actions. This is because systems with larger « respond faster and require less aggressive control
adjustments.

Figure 6 presents a comprehensive view of how temperature 7'(¢) and control input u(t) interact
over time to achieve stabilization.

Here are several important insights summarized below:

+ As the temperature deviates from the desired setpoint, the control input ramps up, exerting cor-
rective action to bring the temperature back to normal levels.

» The control input exhibits an inverse relationship with temperature deviations: larger deviations
result in higher control efforts.

+ Over time, both temperature and control input trajectories converge, indicating the system’s ef-
fective stabilization.
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Temperature vs Control Input vs Time

Temperature

Figure 6: Interaction and stabilization of temperature and control input.

* The control efforts gradually diminish as the temperature stabilizes near the target, demonstrating
the stability and robustness of the optimal control strategy.

This dynamic interplay underscores the control system’s efficiency in maintaining temperature reg-
ulation, especially in systems influenced by fractional dynamics, where memory effects can prolong
transient responses.

4.7 Numerical Example

This section presents a numerical investigation of a fractional heat equation, exemplified by the following

PDE:
0%y(z,t)

ote
where the parameters and functions are defined as follows:

— BAy(x,t) = w(z,t) + (x,1), nQx(0,T), (24)

[ represents the diffusion coefficient.

» Ay(x,t) denotes the Laplacian, accounting for spatial diffusion.
 w(x,t) represents the control function aimed at influencing the system.
* ¢(x,t) is an external source term.

The objective is to optimize the control w(z, t) to minimize both the deviation of the temperature
distribution y(z, t) from a target profile y, (x, t) and the control energy. The cost functional is formulated

as:
T T
o) =5 [ @) —vele)? dedt+ 5 [ [ wle.0)? doat

where y.(x,t) specifies the desired temperature distribution. The regularization term involving 3 en-
sures control effort remains bounded.
Numerical Setup: To solve this problem numerically, the following settings and methods are employed:
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* Spatial Domain: Q = [0, 1] x [0, 1], representing a 2D square domain.
* Time Interval: [0,0.1].

* Fractional Order: o = 0.5.

+ Diffusion (Convection) Coefficient: 8 = 0.5.

+ Discretization of Space: A uniform grid with N, = 10 points.

* Time Discretization: Time step At = 0.01.

e Numerical Methods:

— Fractional derivatives are approximated through the Caputo definition, using the Griinwald-
Letnikov approach for temporal derivatives.

— Spatial approximation employs the RBF-PU method, offering flexible meshing and high
accuracy.

The evolution of the temperature at a key point (x = 0.5,y = 0.5) over time is summarized in Table

Table 4: Numerical findings of y5, (0.5, 0.5, t) at different time points.

Time Step ¢t | yx(0.5,0.5,1)
0.01 0.497
0.02 0.488
0.03 0.470
0.04 0.443
0.05 0.410
0.06 0.372
0.07 0.330
0.08 0.286
0.09 0.497
0.10 0.488

Note that the values suggest possible oscillatory or non-monotonic behavior, indicating system dy-
namics influenced by fractional effects.

Below the following figures of this Example as follows:

Figure 7 compares the numerical solutions computed for different fractional orders: o = 1,0.75,0.5,0.25.
The plots reveal a clear dependence of the system’s temporal response on .. Specifically, as a decreases,
the response exhibits more pronounced damping and delayed decay, characteristic of fractional-order
systems. The approximate solutions align well with the expected fractional dynamics, illustrating how
memory effects modulate heat diffusion.

Figure 8 displays the evolution of the temperature profile over time for different o values. Notably,
the response demonstrates oscillatory or sinusoidal behavior, with phase shifts depending on «.. Larger
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Response

Time ® 6 s

10

Figure 7: Comparison of exact and approximate solutions of y(z, ¢) for various a.

Time ¢, ® 8

10

Figure 8: Effect of fractional order « on heat diffusion.

a values tend to accelerate diffusion and stabilize the temperature faster, whereas smaller o induce
sustained oscillations, indicating prolonged memory effects affecting heat propagation.

3D Plot of Control Values Across Time and o

0.00
-0.25
—-0.50

-0.75

Figure 9: Control function dynamics over time for varying c.

Figure 9 illustrates how the control function w(x, t) evolves over time for different fractional orders.
The control efforts display distinct patterns influenced by a.. Specifically, the control response tends to
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be more oscillatory and intense for lower o due to stronger memory effects, whereas higher « yields
smoother, more subdued control actions. These differences highlight the significant impact of fractional

order on control strategies in heat regulation problems.

This numerical illustration emphasizes the profound influence of fractional calculus on heat diffu-
sion systems. It reveals how the fractional order « shapes the transient behavior, control effort, and
stability characteristics, providing valuable insights for designing effective control mechanisms in com-
plex, memory-dependent thermal systems.

5 Conclusion and Future Research

In this study, the Radial Basis Function-Partition of Unity (RBF-PU) method was employed to address
a fractional heat equation, a sophisticated class of partial differential equations characterized by deriva-
tives of non-integer order. The choice of the fractional heat equation was driven by its exceptional ability
to model memory-dependent processes and anomalous diffusion phenomena, which classical integer-
order models fail to accurately capture. The RBF-PU method served as an effective tool for spatial
discretization, offering high accuracy and remarkable flexibility across two-dimensional domains. Its
meshfree nature provides significant advantages in tackling the mathematical complexities introduced
by fractional derivatives. For the approximation of the fractional derivative, the Griinwald-Letnikov
formulation was adopted, providing a reliable and straightforward approach. Temporal discretization
was achieved via a direct time-stepping scheme, with fractional derivatives evaluated at each iteration
using the Caputo definition, ensuring proper handling of initial conditions and causality. The numerical
experiments demonstrated the robustness and precision of the RBF-PU method in solving the fractional
heat equation, thereby reaffirming its potential as a powerful framework for fractional PDEs. The re-
sults exhibited consistent accuracy and stability, confirming the method’s suitability for various applica-
tions involving nonlocal dynamics and memory effects. Looking ahead, future research could extend the
RBF-PU approach to more general and complex classes of fractional PDEs, including systems with non-
linearities and multi-physics interactions. Additionally, optimization of basis function selection within
the partition of unity framework, aimed at enhancing computational efficiency and solution accuracy,
presents a promising avenue for further development. Such advancements would broaden the applicabil-
ity and effectiveness of the RBF-PU method in modeling and simulating intricate physical phenomena
influenced by fractional dynamics.

Declarations

Availability of Supporting Data
All data generated or analyzed during this study are included in this published paper.

Funding



236 Hybrid RBF Method for Solving Fractional PDE-Constrained .../ COAM, 10 (2), Summer-Autumn (2025)

The authors conducted this research without any funding, grants, or support.

Competing Interests

The authors declare that they have no competing interests relevant to the content of this paper.

Authors’ Contributions

All authors contributed equally to the design of the study, data analysis, and writing of the manuscript,

and share equal responsibility for the content of the paper.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

Abouelatta, M.A., Omar, A.M., Ward, S. (2020). “Optimal grid size for precipitators using fi-
nite difference method based on full multi-grid method”, Electric Power Systems Research, 189,
106575, doi:https://doi.org/10.1016/j.epsr.2020.106575.

Abu-Labdeh, R. (2023). “Monolithic multigrid methods for high-order discretization of time-
dependent PDEs”, Doctoral dissertation, Memorial University of Newfoundland.

Agrawal, O.P. (2004). “A general formulation and solution scheme for fractional optimal
control problems”, Nonlinear Dynamics, 38, 323-337, doi:https://doi.org/10.1007/
s11071-004-3764-6.

Antil, H., Otarola, E. (2015). “A FEM for an optimal control problem of fractional powers of
elliptic operators”, SIAM Journal on Control and Optimization, 53(6), 3432-3456, doi:https:
//doi.org/10.1137/140975061.

Baleanu, D., Hajipour, M., & Jajarmi, A. (2024). “An accurate finite difference formula for the
numerical solution of delay-dependent fractional optimal control problems”, International Journal
of Optimization and Control: Theories & Applications, 14(3), 183-192, doi:https://doi.org/
10.11121/ijocta.1478.

Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D. (2019). “A new fractional model and optimal
control of a tumor-immune surveillance with non-singular derivative operator”, Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 29(8), 083127, doi :https://doi.org/10.1063/1.
5096159.

Banholzer, S., Mechelli, L., Volkwein, S. (2022). “A trust region reduced basis Pascoletti-Serafini
algorithm for multi-objective PDE-constrained parameter optimization”, Mathematical and Com-
putational Applications, 27(3), 39, doi:https://doi.org/10.3390/mca27030039.

Banjai, L., Otarola, E. (2019). “A PDE approach to fractional diffusion: A space-fractional
wave equation”, Numerische Mathematik, 143(1), 177-222, doi:https://doi.org/10.1007/
s00211-019-01055-5.

Benzi, M., Faccio, C. (2024). “Solving linear systems of the form by preconditioned iterative
methods”, SIAM Journal on Scientific Computing, 46(2), S51-S70, doi :https://doi.org/10.
1137/22M1505529.


doi: https://doi.org/10.1016/j.epsr.2020.106575
doi: https://doi.org/10.1007/s11071-004-3764-6
doi: https://doi.org/10.1007/s11071-004-3764-6
doi: https://doi.org/10.1137/140975061
doi: https://doi.org/10.1137/140975061
doi: https://doi.org/10.11121/ijocta.1478
doi: https://doi.org/10.11121/ijocta.1478
doi: https://doi.org/10.1063/1.5096159
doi: https://doi.org/10.1063/1.5096159
doi: https://doi.org/10.3390/mca27030039
doi: https://doi.org/10.1007/s00211-019-01055-5
doi: https://doi.org/10.1007/s00211-019-01055-5
doi: https://doi.org/10.1137/22M1505529
doi: https://doi.org/10.1137/22M1505529

Mohsin, et al. / COAM, 10 (2), Summer-Autumn (2025) 237

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[21]

Betts, J.T. (2020). “Practical methods for optimal control using nonlinear programming”,
Third Edition, SIAM Publication, doi:https://epubs.siam.org/doi/book/10.1137/1.
9781611976199.

Bhrawy, A.H. (2016). “A new spectral algorithm for time-space fractional partial differential equa-
tions with subdiffusion and superdiffusion”, in The Proceedings of the Romanian Academy - Series
A: Mathematics, Physics, Technical Sciences, Information Science, 17(1), 39-47.

Chen, X., Zhao, T., Zhang, M.Q., Chen, Q. (2019). “Entropy and entransy in convective heat
transfer optimization: A review and perspective”, International Journal of Heat and Mass Transfer,
137, 1191-1220, doi:https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.017.

Darehmiraki, M., Farahi, M.H., Effati, S. (2016). “A novel method to solve a class of distributed
optimal control problems using Bezier curves”, Journal of Computational and Nonlinear Dynam-
ics, 11(6), 061008, doi:https://doi.org/10.1115/1.4033755.

Dohr, S., Kahle, C., Rogovs, S., Swierczynski, P. (2019). “A FEM for an optimal control prob-
lem subject to the fractional Laplace equation”, Calcolo, 56(4), 37, doi:https://doi.org/10.
1007/s10092-019-0334-3.

Ebrahimzadeh, A., Jajarmi, A., Baleanu, D. (2024). “Enhancing water pollution manage-
ment through a comprehensive fractional modeling framework and optimal control tech-
niques”, Journal of Nonlinear Mathematical Physics, 31,48, doi:https://doi.org/10.1007/
s44198-024-00215-y.

Forsythe, G.E., Wasow, W.R. (1965). “Finite-Difference Methods for Partial Differential Equa-
tions”, 3, New York, Wiley.

Garmanjani, G., Banei, S., Shanazari, K., Azari, Y. (2023). “An RBF-PUM finite difference scheme
for forward—backward heat equation”, Computational and Applied Mathematics, 42(5), 231, doi:
https://doi.org/10.1007/s40314-023-02311-z.

Giittel, S., Pearson, J.W. (2022). “A spectral-in-time Newton—Krylov method for nonlinear PDE-
constrained optimization”, IMA Journal of Numerical Analysis, 42(2), 1478-1499, doi:https:
//doi.org/10.1093/imanum/drab011.

Han, H.G., Zhang, L., Qiao, J. (2023). “Dynamic optimal control for wastewater treatment process
under multiple operating conditions”, /EEE Transactions on Automation Science and Engineering,
20(3), 1907-1919, doi:10.1109/TASE.2022.3189048.

Kadum, R.M., Mahmoudi, M. (2023). “Solving optimal control problems governed by a frac-
tional differential equation using the Lagrange matrix operator”, International Journal of Non-
linear Analysis and Applications, 14(11), 299-308, doi:https://doi.org/10.22075/ijnaa.
2023.22167.3981.

Karumuri, S., Tripathy, R., Bilionis, 1., Panchal, J. (2020). “Simulator-free solution of high-
dimensional stochastic elliptic partial differential equations using deep neural networks”, Journal
of Computational Physics, 404(1), 109120, doi:https://doi.org/10.1016/j.jcp.2019.
109120.


doi: https://epubs.siam.org/doi/book/10.1137/1.9781611976199
doi: https://epubs.siam.org/doi/book/10.1137/1.9781611976199
doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.017
doi: https://doi.org/10.1115/1.4033755
doi: https://doi.org/10.1007/s10092-019-0334-3
doi: https://doi.org/10.1007/s10092-019-0334-3
doi: https://doi.org/10.1007/s44198-024-00215-y
doi: https://doi.org/10.1007/s44198-024-00215-y
doi: https://doi.org/10.1007/s40314-023-02311-z
doi: https://doi.org/10.1007/s40314-023-02311-z
doi: https://doi.org/10.1093/imanum/drab011
doi: https://doi.org/10.1093/imanum/drab011
doi: 10.1109/TASE.2022.3189048
doi: https://doi.org/10.22075/ijnaa.2023.22167.3981
doi: https://doi.org/10.22075/ijnaa.2023.22167.3981
doi: https://doi.org/10.1016/j.jcp.2019.109120
doi: https://doi.org/10.1016/j.jcp.2019.109120

238

Hybrid RBF Method for Solving Fractional PDE-Constrained .../ COAM, 10 (2), Summer-Autumn (2025)

[22]

[23]

[24]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

Karls, E., Irk, D. (2023). “Efficient techniques for numerical solutions of Fisher’s equation using B-
spline finite element methods”, Computational and Applied Mathematics,42(4), 151, doi :https:
//doi.org/10.1007/s40314-023-02292~z.

Li, B., Wang, T., Xie, X. (2020). “Analysis of a time-stepping discontinuous Galerkin method for
fractional diffusion-wave equations with nonsmooth data”, Journal of Scientific Computing, 82(1),
4, doi:https://doi.org/10.1007/s10915-019-01118-7.

Li, L., Fu, Y., Yu, K., Alwakeel, A.M., Alharbi, L.A. (2022). “Optimal trajectory UAV path design
based on Bezier curves with multi-hop cluster selection in wireless networks”, Wireless Networks,
5021-5032, doi:https://doi.org/10.1007/s11276-022-03208-1.

Liu, T, Yu, J., Zheng, Y., Liu, C., Yang, Y., Qi, Y. (2022). “A nonlinear multigrid method for the
parameter identification problem of partial differential equations with constraints”, Mathematics,
10(16), 2938, doi :https://doi.org/10.3390/math10162938.

Mahmoudi, M., Shojaeizadeh, T., Darehmiraki, M. (2023). “Optimal control of time-fractional
convection—diffusion—reaction problem employing compact integrated RBF method”, Mathemat-
ical Sciences, 17, 1-14, doi:https://doi.org/10.1007/s40096-021-00434-0.

Martins, J.R.R.A. (2022). “Aerodynamic design optimization: Challenges and perspectives”, Com-
puters & Fluids,239,105391, doi :https://doi.org/10.1016/j.compfluid.2022.105391.

Mehandiratta, V., Mehra, M., Leugering, G. (2022). “Distributed optimal control problems driven
by space-time fractional parabolic equations”, Control and Cybernetics, 51(2), 191-226, doi:
https://doi.org/10.2478/candc-2022-0014.

Mohsin Mohammed Ali, M., Mahmoudi, M., Darchmiraki, M. (2024). “Applying radial basis
functions and partition of unity for solving heating equations optimal control issues”, Mathemati-
cal Modelling of Engineering Problems, 11(12),3402-3410, doi :https://doi.org/10.18280/
mmep.111218.

Mophou, G.M. (2011). “Optimal control of fractional diffusion equation”, Computers & Mathemat-
ics with Applications, 61(1), 68-78, doi:https://doi.org/10.1016/j.camwa.2010.10.030.

Odibat, Z., Baleanu, D. (2019). “A linearization-based approach of homotopy analysis method
for non-linear time-fractional parabolic PDEs”, Mathematical Methods in the Applied Sciences,
42(18), 7222-7232, doi:https://doi.org/10.1002/mma.5829.

Petrocchi, A. (2024). “Optimal input design for large-scale inverse problems using
PDE-constrained optimization”, Dissertation in Mathematics and Statistics, doi:http:
//nbn-resolving.de/urn:nbn:de:bsz:352-2-zfbkfhn8asg91.

Rizk-Allah, R.M., Hassanien, A.E., Marafie, A. (2024). “An improved equilibrium optimizer for
numerical optimization: A case study on engineering design of the shell and tube heat exchanger”,
Journal of Engineering Research, 12(2), 240-255, doi:https://doi.org/10.1016/j. jer.
2023.08.019.

Salehi, Y., Schiesser, W.E. (2018). “Introduction to fractional partial differential equations”, in
Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to
Algorithms and Computer Coding in R, pp. 1-33. Cham: Springer International Publishing.


doi: https://doi.org/10.1007/s40314-023-02292-z
doi: https://doi.org/10.1007/s40314-023-02292-z
doi: https://doi.org/10.1007/s10915-019-01118-7
doi: https://doi.org/10.1007/s11276-022-03208-1
doi: https://doi.org/10.3390/math10162938
doi: https://doi.org/10.1007/s40096-021-00434-0
doi: https://doi.org/10.1016/j.compfluid.2022.105391
doi: https://doi.org/10.2478/candc-2022-0014
doi: https://doi.org/10.2478/candc-2022-0014
doi: https://doi.org/10.18280/mmep.111218
doi: https://doi.org/10.18280/mmep.111218
doi: https://doi.org/10.1016/j.camwa.2010.10.030
doi: https://doi.org/10.1002/mma.5829
doi: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-zfbkfhn8asg91
doi: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-zfbkfhn8asg91
doi: https://doi.org/10.1016/j.jer.2023.08.019
doi: https://doi.org/10.1016/j.jer.2023.08.019

Mohsin, et al. / COAM, 10 (2), Summer-Autumn (2025) 239

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Servadei, R., Valdinoci, E. (2014). “Weak and viscosity solutions of the fractional Laplace equa-
tion”, Publicacions Matematiques, 58(1): 133-154.

Shah, F.A., Shah, K., Abdeljawad, T. (2025). “Numerical solution of two-dimensional time-
fractional telegraph equation using Chebyshev spectral collocation method”, Partial Differential
Equations in Applied Mathematics, 13, 101129, doi :https://doi.org/10.1016/j.padiff.
2025.101129.

Shi, Z., Gulgec, N.S., Berahas, A.S., Pakzad, S.N., Taka¢, M. (2020). “Finite difference neural
networks: Fast prediction of partial differential equations”, in /9th IEEE International Conference
on Machine Learning and Applications, Miami, FL, USA, 130-135, doi:10.1109/ICMLA51294 .
2020.00029.

Sinigaglia, C., Manzoni, A., Braghin, F. (2022). “Density control of large-scale particle swarm
through PDE-constrained optimization”, [EEE Transactions on Robotics, 38(6), 3530-3549, doi :
http://dx.doi.org/10.1109/TR0O.2022.3175404.

Stanovov, V., Akhmedova, S., Semenkin, E. (2022). “NL-SHADE-LBC algorithm with linear pa-
rameter adaptation bias change for CEC 2022 numerical optimization”, in /[EEE Congress on Evo-
lutionary Computation, Padua, Italy, 01-08, doi:10.1109/CEC55065.2022.9870295.

Stynes, M., O’Riordan, E., Gracia, J.L. (2017). “Error analysis of a finite difference method on
graded meshes for a time-fractional diffusion equation”, SIAM Journal on Numerical Analysis,
55(2), 1057-1079, doi:https://doi.org/10.1137/16M1082329.

Szabo, B., Babuska, 1. (2021). “Finite element analysis: Method, verification and validation”, John
Wiley & Sons Inc., doi:10.1002/9781119426479.

Tarigan, A.J.M., Mardiningsih, M., Suwilo, S. (2022). “The search for alternative algorithms of
the iteration method on a system of linear equations”, Sinkron: Jurnal dan Penelitian Teknik In-
formatika, 6(4), 2124-2424, doi:http://dx.doi.org/10.33395/sinkron.v7i4.11817.

Tushar, J., Kumar, A., Kumar, S. (2022). “Variational and virtual discretizations of optimal control
problems governed by diffusion problems”, Applied Mathematics & Optimization, 85(2), doi:
https://doi.org/10.1007/s00245-022-09872-1.

Vabishchevich, P.N. (2020). “Approximation of a fractional power of an elliptic operator”, Numer-
ical Linear Algebra with Applications, 27(3), 2287, doi:https://doi.org/10.1002/nla.
2287.

Yang, X., Li, S., Yuan, F., Dong, D., Huang, C., Wang, Z. (2023). “Optimizing multi-grid compu-
tation and parallelization on multi-cores”, in Proceedings of the 37th International Conference on
Supercomputing, 227-239, doi:https://doi.org/10.1145/3577193.3593726.

Ye, X., Xu, C. (2013). “A spectral method for optimal control problems governed by the time
fractional diffusion equation with control constraints”, in Spectral and High Order Methods for
Partial Differential Equations - ICOSAHOM 2012: Selected papers from the ICOSAHOM confer-
ence, June 25-29, 2012, Gammarth, Tunisia, 403-414. Cham: Springer International Publishing,
doi:https://doi.org/10.1007/978-3-319-01601-6_33.


doi: https://doi.org/10.1016/j.padiff.2025.101129
doi: https://doi.org/10.1016/j.padiff.2025.101129
doi: 10.1109/ICMLA51294.2020.00029
doi: 10.1109/ICMLA51294.2020.00029
doi: http://dx.doi.org/10.1109/TRO.2022.3175404
doi: http://dx.doi.org/10.1109/TRO.2022.3175404
doi: 10.1109/CEC55065.2022.9870295
doi: https://doi.org/10.1137/16M1082329
doi: 10.1002/9781119426479
doi: http://dx.doi.org/10.33395/sinkron.v7i4.11817
doi: https://doi.org/10.1007/s00245-022-09872-1
doi: https://doi.org/10.1007/s00245-022-09872-1
doi: https://doi.org/10.1002/nla.2287
doi: https://doi.org/10.1002/nla.2287
doi: https://doi.org/10.1145/3577193.3593726
doi: https://doi.org/10.1007/978-3-319-01601-6_33

240

Hybrid RBF Method for Solving Fractional PDE-Constrained .../ COAM, 10 (2), Summer-Autumn (2025)

[47]

[48]

Yuan, F., Yang, X., Li.S., Dong, D., Huang, C., Wang, Z. (2024). “Optimizing multi-grid precondi-
tioned conjugate gradient method on multi-cores”, /[EEE Transactions on Parallel and Distributed
Systems, 35(5), 768-779, doi:http://dx.doi.org/10.1109/TPDS.2024.3372473.

Zaky, M.A., Hendy, A.S., Macias-Diaz, J.E. (2020). “Semi-implicit Galerkin—Legendre spectral
schemes for nonlinear time-space fractional diffusion—reaction equations with smooth and nons-
mooth solutions”, Journal of Scientific Computing, 82, 1-27, doi:https://doi.org/10.1007/
s10915-019-01117-8.


doi: http://dx.doi.org/10.1109/TPDS.2024.3372473
doi: https://doi.org/10.1007/s10915-019-01117-8
doi: https://doi.org/10.1007/s10915-019-01117-8

	Event-Triggered Fault Detection and Control in Nonlinear Affine Multi-Agent Systems with Affine Parameter Variations to.44em.
	Mohammad Zangouei, Naser Pariz, Reihaneh Kardehi Moghaddam 
	Deep Learning-Based Decision Fusion for Breast Cancer Classification Using Multi-Source Medical Datato.44em.
	Mohammad Zahaby, Mostafa Boroumandzadeh, Iman Makhdoom 
	A New Energy-Efficient Clustering in Wireless Sensor Networks Using an Adaptive Fuzzy Neural Network Approachto.44em.
	Ahmad Jalili, Fatemeh Babakordi 
	Network Data Envelopment Analysis and Uncertainty in Decision-Making: A Three-Stage Model Based on Liu's Uncertainty Theoryto.44em.
	Jafar Pourmahmoud, Ahad Abbasi, Alireza Ghafari-Hadigheh 
	A Computer Algebra Approach to Linear ODE Systems with Parametric Coefficientsto.44em.
	Mahdi Dehghani Darmian 
	Existence and Uniqueness of High-Order Caputo Fractional Boundary Value Problems under General Non-Local Multi-Point Conditions: Analytical and Semi-Analytical Approachesto.44em.
	Salam Mcheik, Elyas Shivanian, Youssef El Seblani 
	An Enhanced QAOM-Based MAGDM Framework: Integrating Entropy Weighting and Expert Judgment Aggregationto.44em.
	Ali Dehghani Filabadi, Hossein Nahid Titkanlue 
	Hybrid RBF Method for Solving Fractional PDE-Constrained Optimal Control Problems to.44em.
	Maha Mohsin Mohammed Ali, Mahmoud Mahmoudi, Majid Darehmiraki 
	Optimizing Deep Learning Hyperparameters Using Interpolation-Based Optimizationto.44em.
	Michael O. Ayansiji, Friday Zinzendoff Okwonu 
	Novel Schemes for Approximate Solutions of Optimal Control Problems via a Hybrid Evolutionary and Clustering Algorithmto.44em.
	Maria Afsharirad 
	Solution Techniques for Fuzzy Graph Partitioning Based on Heuristic Optimization to.44em.
	Mohammed Alsaeedi, Mostafa Tavakoli, Ahmad Abouyee, Khatere Ghorbani Moghadam, Reza Ghanbari 
	Optimal Control of the Van der Pol Oscillator Problem by Using Orthogonal Polynomial-Based Optimizationto.44em.
	Reza Dehghan 

