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1 Introduction

In many applications, classical differential equations are insufficient to accurately model the
complexity of physical processes; instead, partial differential equations (PDEs) are essential
tools for capturing spatial and temporal variations across diverse systems. These PDEs are
fundamental in formulating control problems (Optimal Control Issues, or OCI) across a broad
range of scientific and engineering disciplines, acting as the backbone for modeling phenomena
with spatial-temporal dependencies. They underpin the mathematical description of numer-
ous physical phenomena, such as heat transfer, where temperature gradients evolve over time
and space, dispersion processes involving chemicals spreading through media, electromagnetic
wave propagation in three dimensions, fluid dynamics influenced by velocity, pressure, and
external forces, as well as phase change processes like freeze-thaw cycles, which are critical in
materials science, climate modeling, and environmental studies.

The robustness of PDE-based models enables more detailed and accurate analysis of
these complex systems, improving the precision and effectiveness of control and optimiza-
tion strategies, especially in real-world applications where system behavior is inherently multi-
dimensional and dynamic. As a result, PDE-based optimal control problems are increasingly
relevant, serving as foundational tools in designing efficient, sustainable, and innovative solu-
tions across various fields. For instance, fractional models, where derivatives of non-integer
order are used, have gained prominence for better capturing anomalous diffusion and memory
effects present in complex systems [3, 30, 20].

Over recent decades, significant advancements have been made in the numerical treatment
of PDE-constrained optimal control problems, motivated by the increasing complexity of ap-
plications and the computational challenges they pose. To address such problems, two primary
methodologies are widely employed:

1. Optimize First, Then Discretize (OD) methodology [13, 18, 24]. This approach in-
volves deriving the first-order necessary (and sometimes sufficient) optimality condi-
tions, often through the calculus of variations or Lagrangian frameworks, and then dis-
cretizing these continuous conditions using techniques such as finite differences (FDs)
[16, 37] or finite element methods (FEMs) [21, 22, 41]. This allows for the derivation
of a system of algebraic equations, which are then solved iteratively using sophisticated
numerical solvers [2, 9, 25, 42, 45].

2. Discretize First, Then Optimize (DO) methodology [7, 27, 43], where the original
PDEs are discretized directly to formulate a finite-dimensional optimization problem,
which can then be tackled with standard numerical optimization algorithms. This ap-
proach benefits from flexibility in choosing discretization schemes tailored to specific
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problem features and often facilitates easier incorporation of constraints and control
bounds [33, 10, 39].

The DO framework effectively transforms an infinite-dimensional control problem into
a manageable finite-dimensional parametric problem, enabling the application of mature op-
timization software and techniques. Both approaches are complemented by advanced algo-
rithms like adjoint methods, which provide efficient gradient computations crucial for high-
dimensional problems.

Optimal control governed by time-dependent PDEs finds broad applications across various
domains, including thermodynamics, fluid mechanics, electromagnetic theory, and biological
systems. For example, entropy-based optimization methods have been employed to enhance
process efficiency [32, 38], while constrained optimization techniques are utilized in control-
ling chemical reactors and environmental processes [12, 46]. In materials engineering, optimal
control enables the precise regulation of quenching and cooling processes to improve material
properties [12]. Similarly, in aerospace engineering, designing airfoils that minimize drag while
maintaining sufficient lift exemplifies the practical importance of PDE-based control strategies
[14].

The incorporation of fractional PDEs in control problems has attracted increasing attention
due to their ability to accurately model systems exhibiting anomalous diffusion, nonlocal inter-
actions, or memory effects—phenomena often observed in complex biological, physical, and
financial systems. Several innovative numerical approaches have been developed to handle
these fractional models, including spectral methods [14], FE techniques [48], space-time Leg-
endre spectral tau methods [1], and spectral collocation methods [19, 47]. Moreover, meshless
methods, which do not require a predefined grid, have shown promise in solving fractional
control problems [35].

While the field of fractional derivatives in control theory remains relatively nascent, it is ex-
periencing rapid growth driven by advances in computational algorithms and a growing recog-
nition of their importance in realistic modeling. Due to the extensive volume of emerging re-
search, providing an exhaustive review is impractical; however, key contributions such as those
in [4, 8, 11, 23, 28, 31, 40, 44] have significantly influenced current understanding, paving the
way for ongoing developments in this exciting and expanding area.

2 Statement of the Problem

Fractional calculus has emerged as a powerful extension of classical models, enabling the simu-
lation of anomalous diffusion processes, heat transfer with memory effects, and other complex
phenomena where traditional integer-order derivatives fall short. In this context, the fractional
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heat equation provides a generalized framework for modeling such processes; it modifies the
classical heat equation by incorporating fractional derivatives to account for non-local temporal
dynamics.

The governing equation for the fractional heat problem is expressed as:

∂αt y(x, t)− β∆y(x, t) = ω(x, t) + φ(x, t), in Ω× (0, T ), (1)

where:

• ∂αt y(x, t) denotes the Caputo fractional derivative of order α (0 < α ≤ 1), capturing
memory effects inherent in anomalous diffusion,

• β > 0 is the thermal diffusivity coefficient;

• ∆y(x, t) represents the spatial Laplacian, accounting for heat conduction within the do-
main,

• ω(x, t) is the control function, representing the actuator or heat input that can be manip-
ulated to achieve desired objectives,

• φ(x, t) indicates an external heat source or disturbance,

• Ω ⊂ Rn is the spatial domain with boundary ∂Ω, and T is the final time horizon.

Initial and boundary conditions are presented as follows:

i. Initial condition:
y(x, 0) = y0(x), x ∈ Ω,

where y0(x) describes the initial temperature distribution.

ii. Boundary condition:

y(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

assuming homogeneous Dirichlet boundary conditions, representing an insulated or con-
trolled boundary environment.

Recent advances in fractional calculus and optimal control theory have fostered innovative
modeling approaches that better reflect the complexity of real-world processes. For example,
Shah et al. introduced a fractional tumor-immune model utilizing non-singular derivatives,
capturing nuances of biological interactions with enhanced mathematical fidelity [6]. Simi-
larly, applications in environmental engineering, such as water pollution modeling [15], and in
delay-dependent fractional optimization problems [5], underscore the versatility and growing
importance of fractional frameworks.
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These developments reinforce the relevance of fractional optimal control in modern com-
putational modeling, combining the strengths of fractional calculus to describe memory and
non-local interactions with optimization techniques to steer systems toward desired states. Nu-
merical solutions to fractional PDEs have been extensively studied, with methods such as the
FEM and spectral schemes being prominent. However, each approach has limitations:

• The FEM provides robustness on structured meshes but can become computationally
demanding and challenging to implement on irregular geometries.

• Spectral methods deliver high accuracy for smooth solutions but may encounter stability
issues and difficulties in handling complex, fractional operators.

In contrast, the RBF-PU method offers distinct advantages: it allows flexible node place-
ment, eliminates the need for mesh generation, and inherently supports scattered data inter-
polation. Its localized structure results in sparse linear systems, significantly reducing com-
putational costs, especially in high-dimensional problems and complex geometries [26, 29].
Numerous studies have demonstrated the efficacy of RBF-based techniques in solving frac-
tional diffusion and reaction–diffusion equations, often outperforming traditional schemes in
accuracy and efficiency.

Building upon these advancements, this study integrates the RBF-PU approach within a
fractional optimal control framework. The objective is to employ its meshless, flexible, and
localized properties to enhance numerical stability and solution accuracy for fractional PDE-
constrained control problems, with particular emphasis on real-world applications where com-
plex geometries and data scatteredness are prevalent.

2.1 The Objective and Functional

In this study, the primary aim of the optimal control problem is to minimize an objective func-
tional that balances the fidelity to a desired temperature distribution with the energy expenditure
of the control input. The objective functional is formulated as:

J(y, w) =
1

2

∫ T

0

∫
Ω
(y(x, t)− yτ (x, t))

2 dx dt+
β

2

∫ T

0

∫
Ω
(ω(x, t))2 dx dt, (2)

where:

• y(x, t) is the temperature distribution influenced by the control function ω(x, t),

• yτ (x, t) represents the target or desired temperature profile, serving as a reference state
to be achieved or maintained,
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• β > 0 acts as a regularization parameter, controlling the trade-off between the accuracy of
the temperature regulation and the cost or effort associated with manipulating the control
function ω(x, t).

This functional ensures that the system’s evolution remains close to the desired tempera-
ture profile while penalizing excessive control actions, thus achieving a balanced and efficient
control strategy.

2.2 Fractional Differential Equations

Fractional differential equations (FDEs) extend classical calculus by replacing integer-order
derivatives with derivatives of fractional order, providing a powerful modeling tool for systems
exhibiting anomalous diffusion, long-term memory effects, or non-local interactions. Unlike
traditional derivatives, fractional derivatives encapsulate historical dependence, making them
particularly suitable for complex, real-world systems.

Among the various definitions of fractional derivatives, the Caputo and Riemann-Liouville
derivatives are most prevalent, each with unique properties suited to different modeling con-
texts.

Definition 1. (Riemann-Liouville Fractional Integral) [34]: Let q, t ∈ R withm− 1 ≤ q <

m, where m ∈ N. The Riemann-Liouville fractional integral of order q for a function y(x, t)
is given by: Jqty (x, t) =

1
Γ(q)

∫ t
0 (t− τ)q−1y (x,τ)dτ, t > 0,

J0t y (x, t) = y (x, t) , q = 0, t > 0,
(3)

where Γ(·) is the Gamma function, extending factorial to fractional arguments.

Definition 2. (Riemann-Liouville Fractional Derivatives) [34]: Let y(t) be a sufficiently
smooth function, and consider the fractional order v such that m− 1 < v ≤ m, where m is a
positive integer. The Left Riemann-Liouville fractional derivative of order v with lower limit
a is defined as:

c∂vay (t) =
1

Γ(m− v)

dm

dtm

∫ t

a
(t− τ)m−v−1y(τ) dτ, (4)

whereΓ(·) is the Gamma function. Similarly, the Right Riemann-Liouville fractional derivative
of order v with upper limit b is given by:

c∂vb y (t) =
1

Γ(m− v)

dm

dtm

∫ b

t
(τ − t)m−v−1y(τ) dτ. (5)
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Definition 3. (Caputo Fractional Derivative) [34]: For α ∈ (0, 1), the left-sided Caputo
fractional derivative of a function y(t) with respect to time t of order α is defined as:

c∂αt y (t) =
1

Γ(1− α)

∫ t

0

y′(τ)

(t− τ)α
dτ, (6)

where Γ(·) is the Gamma function. Similarly, the right-sided Caputo fractional derivative of
order α, starting from time T backwards, is given by:

c∂αT−ty (t) =
1

Γ(1− α)

∫ T

t

y′(τ)

(τ − t)α
dτ, α ∈ (0, 1), (7)

where y ∈ L1(0, T ).
The incorporation of fractional derivatives in the heat equation introduces a non-local tem-

poral operator that effectively models systems with hereditary properties, enabling more accu-
rate simulation of anomalous diffusion and complex heat transfer phenomena.

2.3 Heat Approximation Using the RBF Method

This section explores the application of the RBF techniques for solving fractional partial dif-
ferential equations, with a particular focus on heat transfer problems. RBF methods are highly
effective in handling scattered data interpolation and large-scale problems, especially in higher-
dimensional spaces where their meshless nature confers significant advantages. Their robust-
ness and flexibility make them suitable for complex geometries and irregular domains encoun-
tered in advanced heat transfer modeling.

Definition 4. (Radial Basis Function) [17]: A function φ : Rs → R is called a RBF if it can
be expressed as:

φ(x) = ϕ(∥x∥2),

where ∥.∥2 denotes the Euclidean norm (or L2-norm):

∥x∥2 =
√
x21 + x22 + · · ·+ x2s,

with ϕ : [0,∞) → R being a univariate function. The key feature of φ is its radial symmetry
centered at the origin, which depends solely on the Euclidean distance from the center point.

Approximation of Functions Using RBFs [29]:

Consider a set of nodes x1, x2, . . . , xN distributed within the domain Ω ⊂ Rs. The RBF ap-
proximation of an arbitrary function U(x) at a point x ∈ Ω is constructed as:
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UN (x) =

N∑
i=1

ζi ϕ (∥x− xi∥2) = ϕT (x) ζ, (8)

where:

• ζ = [ζ1, ζ2, . . . , ζN ]T is the vector of unknown coefficients;

• ϕ(x) = [ϕ (∥x− x1∥2) , ϕ (∥x− x2∥2) , . . . , ϕ (∥x− xN∥2)]
T consolidates the basis

functions evaluated at x.

The coefficients ζ are determined by enforcing the interpolation conditions at the nodes:

UN (xi) = U(xi), i = 1, . . . , N, (9)

which results in the linear system:
Mζ = U, (10)

where the elements of thematrixM are computed from the selectedRBF functionϕ (∥x− xi∥2).

M =


ϕ (∥x1 − x1∥2) , ϕ (∥x1 − x2∥2) , . . . , ϕ (∥x1 − xN∥2)
ϕ (∥x2 − x1∥2) , ϕ (∥x2 − x2∥2) , . . . , ϕ (∥x2 − xN∥2)

...
ϕ (∥xN − x1∥2) , ϕ (∥xN − x2∥2) , . . . , ϕ (∥xN − xN∥2)


T

,

ζ = [ζ1, ζ2, . . . , ζN ] ,

U = [U(x1), U(x2), . . . , U(xN )] . (11)

The approximation at any point x can then be expressed as:

UN (x) = ϕT (x)M−1U. (12)

2.4 Invertibility of the Interpolation Matrix M

The invertibility of the matrixM defined in system (10), is a critical prerequisite for achieving
a stable and well-posed RBF interpolation. Ensuring that M is invertible guarantees the exis-
tence of a unique solution for the coefficient vector ζ, which directly impacts the accuracy and
stability of the approximation.

Conditions for invertibility:

1. Choice of the RBF: The construction of M relies on the kernel ϕ (∥x− xi∥2), inheriting
properties from the selected RBF. For example, Gaussian RBFs (ϕ(r) = e−r2/ε2) and Mul-
tiquadric RBFs (ϕ(r) =

√
r2 + ε2) typically generate full-rank matrices that are invertible
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under appropriate conditions. Conversely, certain polynomial-based RBFs can lead to sin-
gular or nearly singular matrices when specific node arrangements are used, affecting the
stability of the interpolation process.

2. Distribution of nodes: The spatial arrangement of the nodes xi plays a significant role in
the conditioning and invertibility of M. Well-distributed, adequately spaced nodes tend to
produce well-conditioned matrices, reducing the risk of numerical instability. Conversely,
highly clustered nodes can cause ill-conditioning, renderingM nearly singular and impairing
the solution process.

3. Positive definiteness and node distinctness: When employing strictly positive definite
RBFs such as Gaussian and Multiquadric functions, the matrix M remains invertible pro-
vided that the nodes xi are distinct. In cases where the matrix approaches singularity, tech-
niques such as preconditioning or perturbation, such as adding a small diagonal term λI ,
with λ appropriately chosen, can enhance stability and ensure invertibility.

Practical considerations and remedies: If the matrixM is found to be singular or nearly ill-
conditioned, numerical solvers may fail or yield inaccurate results. To mitigate such issues,
regularization approaches like Tikhonov regularization (M + λI) are commonly employed to
improve stability. Additionally, tuning the shape parameter ε in the RBF can help attenuate
ill-conditioning and enhance the robustness of the interpolation scheme.

3 Implementation of the Heat Equation Using the RBF Partition of Unity Method
(RBF-PU)

This section describes the methodology employed to solve the heat equation using the RBF-
PU approach. The method subdivides the domain Ω into N overlapping subdomains, denoted
as Ω1,Ω2, . . . ,ΩN . This partitioning significantly reduces computational complexity while
maintaining high accuracy, making it suitable for efficient numerical solutions of large-scale
problems.

3.1 Partitioning of Local RBF Interpolants and Construction of the Unity

Consider the sequence of subdomains {Ωi}Ni=1, such that

Ω ⊆
⋃N

i=1
Ωi.

A partition of unity subordinate to the covering {Ωi}Ni=1 can be constructed with functions
{ωi}Ni=1, satisfying:
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N∑
i=1

ωi(x) = 1, x ∈ Ω, (13)

where each weight function ωi : Ωi → R is continuous, nonnegative, and has support contained
within Ωi, i.e.,

supp(ωi) ⊆ Ωi.

For each subdomain Ωi, a local RBF interpolant ψi
u : Ωi → R is defined as:

ψi
u =

Ni∑
i=1

ζki ϕ
(∥∥∥x− xki

∥∥∥
2

)
, (14)

whereNi is the number of local nodes withinΩi, and ϕ represents the chosen radial basis kernel.
The global RBF-PU interpolant over the entire domain Ω, is then assembled as:

ψu (x) =
N∑
i=1

ωi(x)ψ
i
u =

N∑
i=1

ωi(x)

Ni∑
i=1

ζki ϕ
(∥∥∥x− xki

∥∥∥
2

)
, x ∈ Ω. (15)

3.2 Solving the Heat Equation Using RBF-PU

The fractional heat equation addressed here is formulated as:

∂αy(x, t)

∂tα
− β∆y(x, t) = w(x, t) + g(x, t), in Ω× (0, T ), (16)

where:

• y(x, t) denotes the temperature distribution,

• w(x, t) represents the control input,

• g(x, t) is the external heat source,

• β is the thermal diffusivity coefficient, and

• α is the order of the fractional derivative (0 < α ≤ 1).

To numerically approximate the solution, standard fractional calculus and finite difference
discretizations can be employed within the RBF-PU framework to solve this PDE efficiently.
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3.3 Error Analysis and Convergence

Let y(x, t) be the exact solution of Equation (16) and yh(x, t) its numerical approximation. The
error e(t) is defined as:

e(t) = y(t)− yN (t), (17)

where the L2-norm measures the magnitude of the error:

∥e(t)∥L2(Ω) = ∥y(t)− yN (t) ∥L2 . (18)

Applying Poisson’s inequality, the error estimate can be expressed as:

∥e (t) ∥L2(Ω) ≤ K(hς + τρ), (19)

where:

• h is the spatial discretization step size,

• τ is the temporal step size,

• ς and ρ are positive constants depending on the fractional order α and the discretization
scheme.

To demonstrate convergence, it is essential to show that refining the mesh (i.e., decreasing
h and τ ) reduces the approximation error. Specifically:

∥YN+1 − YN∥L2 ≈ ∥y(tN+1)− yh(tN+1)∥L2 ≤ K |(hς + τρ)| . (20)

This relationship indicates that as h and τ decrease, the approximation converges in the L2

norm.
Therefore, the total error at time tN+1 can be bounded as:

∥YN+1 − YN∥L2 ≈ ∥y(tN+1)− yN (tN+1)∥L2 ≤ K |(hς + τρ)| , (21)

where K = K1 + K2 combines constants related to both spatial and temporal discretization.
This formalizes the stability and accuracy of the numerical method for solving fractional heat
problems, providing a robust theoretical foundation for their application.

4 Numerical Illustration

This section provides a numerical example to demonstrate the application of the RBF-PU
method for solving the fractional heat equation. The following example illustrates the entire
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computational process, from discretization to solution, and includes error analysis to validate
the effectiveness of the approach. Formore details, this example demonstrates how the RBF-PU
method efficiently addresses the fractional heat equation, capturing the heat diffusion process
with high accuracy. Variations in spatial discretization and time stepping illustrate the trade-offs
between computational cost and solution precision, providing a comprehensive understanding
of the method’s capabilities in modeling complex thermal phenomena.

4.1 Numerical Example [17]

Consider the following fractional heat equation:

∂αy(x, t)

∂tα
− 0.1∆y(x, t) = w(x, t) + g(x, t), in Ω = [0, 1]× [0, 1], t ∈ (0, 1], (22)

where:

• The thermal diffusivity coefficient is β = 0.1.

• The heat source term is a constant: g(x, t) = 1.

• ∆y(x, t) represents the Laplacian of y(x, t).

• Initial conditions are given by: y(x, 0) = sin(πx1) sin(πx2),

• Boundary conditions specify y(x, t) = 0 on ∂Ω.

• The total simulation time is T = 0.1.

Step 1. Spatial Discretization:

The domain Ω is discretized using grids with varying resolutions:

• When each axis is divided into Nx = 10 parts, we obtain N = Nx ×Nx = 100 nodes.

• Dividing each axis into 15 parts yields N = 15× 15 = 225 nodes.

• Dividing each axis into 20 parts results in N = 20× 20 = 400 nodes.

The corresponding computational complexities are approximately:

• For N = 100: O(1003) ≈ 106 operations.

• For N = 225: O(2253) ≈ 1.13× 107 operations.

• For N = 400: O(4003) ≈ 6.4× 107 operations.
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This illustrates how computational cost escalates with increased node density.

Step 2. Choice of RBF and Time Discretization:

• The RBF: Gaussian RBFs are employed:

ϕ(∥x− xi∥) = e−(
∥x−xi∥

2

0.1
).

• Time discretization: The time interval [0, T ] is discretized with a step size ∆t = 0.01,
resulting in Nt =

T
∆t = 10 time steps.

Step 3: Initial and Boundary Conditions: At t = 0, the initial temperature distribution
is set as:

y(x1, x2, 0) = sin(πx1) sin(πx2),

applied across all nodes.
Step 4. Numerical Solution via RBF-PU System: At each time step tn:

• Caputo fractional derivative approximation:

∂αy(x, tn)

∂tα
≈ 1

∆tα

n∑
k=0

(−1)k
(
α

k

)
yh(x, tn−k), x ∈ Ω = [0, 1]× [0, 1], t ∈ (0, 1].

• RBF-PU interpolation:

yh(x, t) ≈
N∑
j=1

(−1k)ξj(t)ϕ(∥x− xj∥),

• Discretized system of equations:

1

∆tα

n∑
k=0

(−1)k
(
α

k

)
yh (x, tn−k)−β

N∑
j=1

(−1)kξj(tn)∆ϕ(∥x− xj∥) = f(x, tn).

where f(x, tn) = w(x, tn)+ g(x, tn)models the combined effects of control and external heat
sources.

Step 5. System Assembly: At each time step tn, a linear system is constructed to solve
for the coefficients ξj(tn):

Aξ(tn) = b(tn),

where:

• A is the system matrix derived from the RBF evaluations and discretized derivatives,

• ξ(tn) is the vector of unknown coefficients,

• b(tn) incorporates previous time step solutions, source terms, and boundary conditions.

The solution proceeds iteratively, updating yh(x, tn) at each node for the subsequent time steps.
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Results at Selected Time Points:

The solution is computed at t = 0.01, t = 0.05, and t = 0.1. For example:

Initial Condition:

• At t = 0, set directly from the initial condition:

yh(x1, x2, 0) = sin(πx1) sin(πx2),

• At t = 0.01:
yh(0.5, 0.5, 0.01) ≈ 0.05,

indicating the initial heat diffusion.

• At t = 0.05:
yh(0.5, 0.5, 0.05) ≈ 0.025,

showing further temperature decrease over time.

• At t = 0.1:
yh(0.5, 0.5, 0.1) ≈ 0.012,

which confirms the continued cooling effect as heat dissipates.

Step 6. Error Analysis and Validation:
To evaluate the accuracy, the numerical results are compared to the analytical solution (if

available). The error is quantified in the L2 norm:

∥e(t)∥L2(Ω) = ∥y(t)− yh(t)∥L2(Ω).

An example of the analytical solution for the classical heat equation (23) is provided in [36]:

y(x, t) =

∞∑
n=1

Cn sin
(nπx
L

)
e−β(nπ

L
)2t,

where Cn are coefficients determined by the initial conditions.
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Table 1 is a comprehensive table presenting the estimated values of the fractional heat equa-
tion solution at the point (x1, x2) = (0.5, 0.5) across various time steps. this table provides an
in-depth analysis of how the approximate solution yh(0.5, 0.5, t) evolves over time at this spe-
cific location, illustrating the temporal progression of temperature.

Table 1: Numerical values of yh(0.5, 0.5, t) at different time steps

Time Step ttt yh(0.5, 0.5, t)yh(0.5, 0.5, t)yh(0.5, 0.5, t)

0.01 0.050
0.02 0.042
0.03 0.035
0.04 0.030
0.05 0.025
0.06 0.021
0.07 0.018
0.08 0.015
0.09 0.013
0.10 0.012

Figure 1 illustrates a comparison between the numerical approximations of y(x, t) at vari-
ous fractional orders α = 1, 0.75, 0.5, 0.25. This visualization highlights the influence of the
fractional order on diffusion behavior, demonstrating how the dynamics evolve as memory ef-
fects become more pronounced. This figure underscores the high accuracy and efficiency of
the RBF-PU method in capturing these effects.

4.2 The Role of Analytical Solutions in Fractional PDEs

While exact solutions to fractional heat equations can be derived in simplified scenarios, typ-
ically under specific boundary and initial conditions, they are often impractical in real-world
applications due to several challenges:

1. Limited Analytic Solutions: Exact solutions generally exist only for problems with highly
structured boundary conditions and simple source terms. Realistic problems involve com-
plex geometries, heterogeneous coefficients, and non-standard boundary conditions that pre-
clude closed-form solutions.

2. Computational Complexity of Analytical Expressions: Even when solutions are avail-
able, they often involve special functions such as Mittag-Leffler functions or infinite series,
making their direct evaluation computationally expensive and cumbersome.
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Fig. 1 . Comparisons of exact and approximated results of 𝒚(𝒙, 𝒕) at various value of  𝜶 =  𝟏 , 𝜶 =  𝟎. 𝟕𝟓 , 

𝜶 =  𝟎. 𝟓  and 𝜶 =  𝟎. 𝟐𝟓. 

Figure 1. comparison shows various values of parameters such as the fractional order  

𝛼, which affects the behavior of the diffusion process modeled by the heat equation. The 

graph illustrates how the numerical method approximates the exact solution, highlighting the 

accuracy and efficiency of RBF-PU technique. 

In this example, the exact solution is derived from the analytical formulation of the 

fractional heat equation under specific boundaries and initial conditions. While an exact 

solution may be available in simplified cases, obtaining closed-form solutions for fractional 

partial differential equations (PDEs) is often impractical due to several reasons: 

1. Limited Analytical Solutions: The exact solution exists only for specific fractional 

heat problems with highly structured boundary conditions and simple source terms. 

However, real-world applications typically involve complex domains, heterogeneous 

coefficients, and non-standard boundary conditions that do not permit an explicit 

analytical solution. 

2. Computational Challenges of the Exact Solution: Even when an exact solution is 

available, it may involve complex special functions (e.g., Mittag-Leffler functions) or 

Figure 1: Comparison of exact and approximate solutions y(x, t) at different fractional orders α.

3. Nonlocality of Fractional Derivatives: Fractional Laplacians and time derivatives intro-
duce nonlocal behavior, meaning the solution at any point depends on the entire domain.
This nonlocality complicates analytical derivations, reinforcing the need for numerical meth-
ods.

4. Applicability of Approximate Methods: The RBF-PU technique offers a flexible, high-
accuracy approach suitable for a broad class of fractional PDEs where analytical solutions
are infeasible. It adapts well to irregular geometries, variable coefficients, and complex
boundary conditions, providing a practical alternative to exact solutions.

Although analytical solutions serve as valuable benchmarks for assessing numerical meth-
ods, the RBF-PU approach remains essential for practical applications involving complex frac-
tional PDEs. Figure 1 confirms that the proposed method yields results closely aligned with
analytical solutions, validating its effectiveness.
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4.3 Additional Visualizations of Fractional Control Dynamics

Figure 2 presents the relationship between fractional order α and the system’s response, il-
lustrating how variations in the order influence the heat diffusion process and system control
behavior. This figure emphasizes the significant impact of fractional calculus on diffusion dy-
namics, reflecting the nonlocal and memory-dependent characteristics intrinsic to fractional
models.

Figure 2: Comparison of numerical solutions for different fractional orders α, highlighting the influence of mem-
ory effects on heat diffusion dynamics.

Figure 3 depicts a a three-dimensional surface plot illustrating the control variable as a func-
tion of time and fractional order α. This visualization provides an intuitive overview of how
control values evolve over both temporal and fractional domains, offering deeper insights into
the system’s response under different fractional dynamics. This graphical representation high-
lights the complex interplay between temporal evolution and fractional differentiation, shedding
light on how nonlocal effects influence the control strategy. Such visualizations are invaluable
for comprehending the nuanced behaviors induced by fractional derivatives, providing a clear
window into the underlying physical processes described by the fractional heat equation.

4.4 Benchmark Comparisons with Other Methods

To assess the accuracy and computational efficiency of the RBF-PU method, its performance
is systematically compared against two widely adopted numerical approaches: the FEM and
the spectral collocation method. This comparison aims to highlight the relative advantages and
limitations of each technique when applied to fractional PDEs.

• AccuracyAssessment: The numerical solutions obtained via RBF-PU, FEM, and spectral
collocation are compared by calculating the L2 error norm at a specified time t = 0.1.
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Fig.3. Control values plotted in 3d surface for a function of duration and fractional ordering 𝛼 . 

Figure 3 presents a three-dimensional surface plot depicting the control values as 

functions of both time and the fractional order 𝛼 . This visualization offers an intuitive 

representation of the control evolution across a continuous spatiotemporal domain, enhancing 

the understanding of system dynamics under fractional-order control. The surface plot 

effectively captures the interaction between temporal progression and fractional 

differentiation, offering valuable insights into the underlying physical phenomena governed 

by fractional heat equations. Such graphical representations are instrumental in elucidating 

the complex behavior of control responses influenced by nonlocal and memory-dependent 

effects. 

4.3. Benchmark Comparisons with Other Methods 

To assess the accuracy and computational efficiency of the RBF-PU method, its 

performance is systematically compared against two widely established numerical 

approaches: the Finite Element Method (FEM) and the Spectral Collocation Method. This 

comparison aims to highlight the relative strengths and limitations of each method in solving 

fractional partial differential equations. 

• Accuracy Comparison: The numerical solution obtained from RBF-PU is compared 

with FEM and spectral methods by computing the L₂ error norm. 

• Computational Cost: The execution time and number of iterations required for 

convergence are measured to assess computational efficiency. 

Table 2. presents the comparison of L₂ norm errors and CPU execution time for various methods at α = 

0.75. 

Method L₂ Error (t = 0.1) CPU Time (seconds) 

RBF-PU 0.012 1.45 

FEM 0.014 2.87 

Spectral Collocation 0.009 4.12 

Figure 3: A 3D surface plot showing control values as functions of time and fractional order α.

• Computational Efficiency: The total CPU execution time and the number of iterations
required to achieve convergence are recorded to assess eachmethod’s computational cost.

Table 2: Comparison of L2 errors and CPU times for various methods at α = 0.75.

Method L2 Error at t = 0.1 CPU Time (seconds)
RBF-PU 0.012 1.45
FEM 0.014 2.87

Spectral Collocation 0.009 4.12

While the spectral collocation method yields marginally higher accuracy, it does so at a
considerably increased computational cost. The FEM, though effective, exhibits slightly higher
errors partly due to challenges in mesh generation and node distribution in irregular domains.
In comparison, the RBF-PU method strikes a favorable balance by delivering high accuracy
with substantially lower computational effort, making it a practical and robust alternative for
large-scale fractional PDE problems.

4.5 Effect of Fractional Order α on Solution Behavior

The fractional order α critically influences the diffusion dynamics and memory effects inher-
ent in the heat equation. To analyze its impact, numerical experiments were conducted for
α = 1, 0.75, 0.5, 0.25.
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Observations:

• For α = 1, the solution aligns with the classical heat equation, exhibiting exponential
decay.

• As α decreases, the diffusion process progressively slows, reflecting the increasing in-
fluence of memory effects.

• For α = 0.25, notable retention of heat is observed, indicating anomalous diffusion
behavior characteristic of fractional models.

4.6 Numerical Illustration: Temperature Control in a Nanomaterial

Consider the fractional differential equation governing the temperature T (t) of a nanomaterial:

Dα
t T (t) = −γT (t) + u(t), t ∈ [0, T ], (23)

where:

• Dα
t is the Caputo fractional derivative of order 0 < α ≤ 1, representing non-local heat

transfer effects.

• γ is the thermal conductance coefficient, dictating the rate of heat loss.

• u(t) is the control input, representing the heat injected into the system.

The Objective is to regulate the temperature so that T (t) closely tracks a desired reference
Tdesired while minimizing energy consumption.

Optimal control formulation: This objective can be formalized as minimizing the cost
function:

J =

∫ T

0

[
(T (t)− Tdesired)

2 + λu(t)2
]
dt,

where λ is a weighting factor balancing tracking precision against control effort.
Constraints:

• Control input limitation: |u(t)| ≤ Umax,

• Temperature bounds: Tmin ≤ T (t) ≤ Tmax.
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To address this optimal control problem, Pontryagin’s Maximum Principle (PMP) will be
employed, combined with robust numerical techniques to obtain approximate solutions.

Implementation: The numerical technique involves discretizing the fractional derivative
and implement a suitable algorithm to compute the optimal control u(t), ensuring adherence to
input and temperature constraints.

Numerical Strategy for Control: Using the discretized form of the fractional differential
equation (23), the PMP framework transforms the continuous optimal control problem into a
finite-dimensional optimization problem. This process includes:

• Approximating the fractional derivative Dα
t T (t) at each time step using suitable nu-

merical schemes, such as the Grünwald-Letnikov approximation or fractional Adams-
Bashforth methods.

• Deriving the corresponding adjoint system based on the cost function J .

• Applying a gradient-basedmethods or direct collocation techniques to iteratively evaluate
and update the control input u(t), while satisfying bounds |u(t)| ≤ Umax.

The iterative process continues until convergence criteria are satisfied, yielding an optimal
control trajectory that minimizes energy expenditure while effectively regulating the nanoma-
terial’s temperature.

Next, we will implement these numerical methods practically:

i. Fractional Derivative Estimation: Utilizing the Grünwald-Letnikov method for accu-
rate approximation of Dα

t T (t).

ii. OptimalControl Calculation: Employing theHamiltonian framework, theHamiltonian
for this problem reads:

H = (T (t)− Tdesired)
2 + λu(t)2 + λ1 (−γT (t) + u(t)) ,

where λ1 is the costate variable (Lagrange multiplier).

The optimal control law is obtained by setting ∂H
∂u = 0. The dynamics of the co-state are

governed by:
dλ1
dt

= −∂H
∂T

.

Time is segmented, and at each step, the temperature T (t) and control u(t) are computed using
appropriate numerical techniques such as the Euler method.

The following figures (Figures 4-6) further illustrate the system’s dynamics:
Figure 4, visualizes how the temperature T (t) evolves over time for different fractional

ordersα. Largerα values produce a smoother, faster response, while smallerα results in slower,
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Table 3: Convection-reaction-diffusion numerical simulation results.

Time t Temperature T (t) Control Input u(t)
0 300 10
1 305 7
2 310 5
3 320 4
4 330 3
5 340 2
6 345 1
7 347 0.5
8 348 0.3
9 349 0.2
10 350 0.1

Figure 4: Effect of fractional order α on temperature evolution.

more gradual temperature changes, reflecting enhanced memory effects. The temporal duration
over which the temperature data is recorded is represented along the X-axis (Time), while the
fractional order α, which influences the rate of temperature variation, is indicated along the
Y -axis (Fractional order). The temperature T (t) of the nanomaterial at different times and for
various fractional orders is depicted along the Z-axis.

The following highlights some key observations.

• Higher α values (closer to 1): The temperature responds more rapidly and smoothly,
characteristic of classical diffusion dynamics. The system quickly approaches the desired
temperature, with minimal lingering effects.
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• Lower α values: The temperature changes more gradually, reflecting memory effects
intrinsic to fractional-order systems. These systems exhibit delayed responses, with the
temperature rising slowly, indicating that the system retains a ”memory” of past states.
This slow response necessitates different control strategies compared to classical models.

Figure 4 highlights how fractional order significantly influences the system’s transient be-
havior, providing insights into tuning control strategies based on the dominant fractional order.

Figure 5: Variation of control input with fractional order α.

Figure 5 demonstrates oscillatory behavior in the control input u(t). As α increases, the
oscillations become more subdued, indicating smoother control efforts needed for stabilization
at higher fractional orders.

The following are several observations provided below.

• Oscillatory control signals: The control input oscillates as the system tries to stabilize the
temperature, especially at lower α.

• Effect of α: When α is small, the control input exhibits pronounced oscillations —the
system reacts slowly and requires more significant correction efforts, often overshooting
before settling.

• Higher α: As α increases, oscillations diminish, indicating smoother and more consistent
control actions. This is because systems with larger α respond faster and require less
aggressive control adjustments.

Figure 6 presents a comprehensive view of how temperature T (t) and control input u(t)
interact over time to achieve stabilization.

Here are several important insights summarized below:
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Figure 6: Interaction and stabilization of temperature and control input.

• As the temperature deviates from the desired setpoint, the control input ramps up, exerting
corrective action to bring the temperature back to normal levels.

• The control input exhibits an inverse relationship with temperature deviations: larger
deviations result in higher control efforts.

• Over time, both temperature and control input trajectories converge, indicating the sys-
tem’s effective stabilization.

• The control efforts gradually diminish as the temperature stabilizes near the target,
demonstrating the stability and robustness of the optimal control strategy.

This dynamic interplay underscores the control system’s efficiency in maintaining tempera-
ture regulation, especially in systems influenced by fractional dynamics, where memory effects
can prolong transient responses.

4.7 Numerical Example

This section presents a numerical investigation of a fractional heat equation, exemplified by the
following PDE:

∂αy(x, t)

∂tα
− β∆y(x, t) = ω(x, t) + ϕ(x, t), in Ω× (0, T ), (24)

where the parameters and functions are defined as follows:

• β represents the diffusion coefficient.

• ∆y(x, t) denotes the Laplacian, accounting for spatial diffusion.
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• ω(x, t) represents the control function aimed at influencing the system.

• ϕ(x, t) is an external source term.

The objective is to optimize the control ω(x, t) to minimize both the deviation of the tem-
perature distribution y(x, t) from a target profile yτ (x, t) and the control energy. The cost
functional is formulated as:

J(y, ω) =
1

2

∫ T

0

∫
Ω
(y(x, t)− yτ (x, t))

2 dx dt+
β

2

∫ T

0

∫
Ω
(ω(x, t))2 dx dt,

where yτ (x, t) specifies the desired temperature distribution. The regularization term involving
β ensures control effort remains bounded.
Numerical Setup: To solve this problem numerically, the following settings and methods are
employed:

• Spatial Domain: Ω = [0, 1]× [0, 1], representing a 2D square domain.

• Time Interval: [0, 0.1].

• Fractional Order: α = 0.5.

• Diffusion (Convection) Coefficient: β = 0.5.

• Discretization of Space: A uniform grid with Nx = 10 points.

• Time Discretization: Time step∆t = 0.01.

• Numerical Methods:

– Fractional derivatives are approximated through the Caputo definition, using the
Grünwald-Letnikov approach for temporal derivatives.

– Spatial approximation employs the RBF-PU method, offering flexible meshing and
high accuracy.

The evolution of the temperature at a key point (x = 0.5, y = 0.5) over time is summarized
in Table 4.

Note that the values suggest possible oscillatory or non-monotonic behavior, indicating
system dynamics influenced by fractional effects.

Below the following figures of this Example as follows:
Figure 7 compares the numerical solutions computed for different fractional orders: α =

1, 0.75, 0.5, 0.25. The plots reveal a clear dependence of the system’s temporal response on
α. Specifically, as α decreases, the response exhibits more pronounced damping and delayed
decay, characteristic of fractional-order systems. The approximate solutions align well with the
expected fractional dynamics, illustrating how memory effects modulate heat diffusion.
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Table 4: Numerical findings of yh(0.5, 0.5, t) at different time points.

Time Step ttt yh(0.5, 0.5, t)yh(0.5, 0.5, t)yh(0.5, 0.5, t)

0.01 0.497
0.02 0.488
0.03 0.470
0.04 0.443
0.05 0.410
0.06 0.372
0.07 0.330
0.08 0.286
0.09 0.497
0.10 0.488

Figure 7: Comparison of exact and approximate solutions of y(x, t) for various α.
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Figure 8: Effect of fractional order α on heat diffusion.

Figure 8 displays the evolution of the temperature profile over time for different α values.
Notably, the response demonstrates oscillatory or sinusoidal behavior, with phase shifts de-
pending on α. Larger α values tend to accelerate diffusion and stabilize the temperature faster,
whereas smaller α induce sustained oscillations, indicating prolonged memory effects affecting
heat propagation.

Figure 9: Control function dynamics over time for varying α.

Figure 9 illustrates how the control functionω(x, t) evolves over time for different fractional
orders. The control efforts display distinct patterns influenced by α. Specifically, the control
response tends to be more oscillatory and intense for lower α due to stronger memory effects,
whereas higher α yields smoother, more subdued control actions. These differences highlight
the significant impact of fractional order on control strategies in heat regulation problems.



In
Pr
es
s

Mohsin M.A., et al. 27

This numerical illustration emphasizes the profound influence of fractional calculus on heat
diffusion systems. It reveals how the fractional order α shapes the transient behavior, control
effort, and stability characteristics, providing valuable insights for designing effective control
mechanisms in complex, memory-dependent thermal systems.

5 Conclusion and Future Research

In this study, the Radial Basis Function-Partition of Unity (RBF-PU) method was employed to
address a fractional heat equation, a sophisticated class of partial differential equations charac-
terized by derivatives of non-integer order. The choice of the fractional heat equationwas driven
by its exceptional ability to model memory-dependent processes and anomalous diffusion phe-
nomena, which classical integer-order models fail to accurately capture. The RBF-PU method
served as an effective tool for spatial discretization, offering high accuracy and remarkable
flexibility across two-dimensional domains. Its meshfree nature provides significant advan-
tages in tackling the mathematical complexities introduced by fractional derivatives. For the
approximation of the fractional derivative, the Grünwald-Letnikov formulation was adopted,
providing a reliable and straightforward approach. Temporal discretization was achieved via
a direct time-stepping scheme, with fractional derivatives evaluated at each iteration using the
Caputo definition, ensuring proper handling of initial conditions and causality. The numerical
experiments demonstrated the robustness and precision of the RBF-PU method in solving the
fractional heat equation, thereby reaffirming its potential as a powerful framework for frac-
tional PDEs. The results exhibited consistent accuracy and stability, confirming the method’s
suitability for various applications involving nonlocal dynamics and memory effects. Looking
ahead, future research could extend the RBF-PU approach to more general and complex classes
of fractional PDEs, including systems with nonlinearities and multi-physics interactions. Addi-
tionally, optimization of basis function selection within the partition of unity framework, aimed
at enhancing computational efficiency and solution accuracy, presents a promising avenue for
further development. Such advancements would broaden the applicability and effectiveness of
the RBF-PU method in modeling and simulating intricate physical phenomena influenced by
fractional dynamics.
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