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Abstract. Data Envelopment Analysis (DEA) is a well-established
methodology for assessing the efficiency of decision-making units.
In complex systems comprising multiple interconnected subsections,
Network DEA provides a structured framework for efficiency eval-
uation. However, traditional DEA models rely on the assumption of
deterministic data, which inadequately reflects the inherent uncertainty
present in real-world scenarios. Traditional uncertainty-handling
methods, such as fuzzy logic, stochastic models, and interval-based
techniques, often fail when there is limited historical data and when
expert opinions significantly influence the dataset. To address these
limitations, this study introduces an uncertain network DEA model
based on Liu’s uncertainty theory, facilitating a more accurate assess-
ment of efficiency under conditions of data imprecision. The proposed
model is designed for three interconnected subsections and is further
extended into a generalized multi-stage framework, allowing it to
adapt to increasingly complex systems. Its effectiveness and practical
applicability are demonstrated through two numerical case studies in the
banking industry, highlighting its capacity to support decision-making
under uncertainty. The findings emphasize the model’s potential to
enhance efficiency evaluation methods, particularly in environments
characterized by limited and uncertain data.
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1 Introduction

Continuous performance evaluation is essential for organizational growth and development.
Data Envelopment Analysis (DEA) has emerged as a powerful methodology for assessing the
relative efficiency of homogeneous decision-making units (DMUs) that transform multiple in-
puts intomultiple outputs. While traditional DEAmodels provide valuable insights into DMUs’
efficiency, they fail to address critical questions in complex organizational structures where
DMUs consist of interconnected subunits. In such network structures, outputs from one subunit
often serve as inputs to others, creating a need for more sophisticated evaluation frameworks.

Traditional DEA approaches face two significant limitations when applied to network struc-
tures: (1) inability to identify which specific subunit contributes to inefficiency, and (2) diffi-
culty in comparing performance across subunits. Network DEA (NDEA) was developed to ad-
dress these limitations by modeling the internal structure of DMUs. However, existing NDEA
models typically assume deterministic data, which rarely reflects real-world conditions where
data uncertainty is prevalent.

Uncertainty in performance evaluation is applied in various forms, such as:

• Interval data (when only bounds are known)

• Fuzzy data (when values are inaccurate and vague)

• Probabilistic data (when historical distributions exist)

• Uncertain data (when expert opinion is primary)

While approaches exist for each uncertainty type (e.g., stochastic DEA for probabilistic
data, fuzzy DEA for fuzzy data), they often require substantial historical data or make restric-
tive assumptions. The analysis of DEA and network DEA problems typically involves two key
constraints: restricted sample sizes and model dependence on data characteristics. Stochastic
modeling remains feasible only when sufficient empirical observations exist, which is inappro-
priate for data-scarce situations requiring expert input. Conversely, while fuzzy set theory offers
an alternative for uncertain environments, its application can sometimes generate inconsistent
and contradictory solutions that compromise analytical validity.

Liu’s uncertainty theory [26] provides a mathematical framework for such scenarios, serv-
ing as a practical alternative when probability distributions are unknown or data is limited.
While uncertainty theory has been successfully implemented in basic two-stage DEA models
[11, 24, 33], its application remains limited for real-world systems that typically feature more
complex, multi-stage network structures. Current literature reveals a significant research gap
in extending these uncertainty-based approaches to generalized network configurations. This
study makes three key contributions:
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i. We develop a novel three-stage NDEA model based on Liu’s uncertainty theory, specif-
ically designed for cases where expert opinion supplements limited data.

ii. We extend the model to generalized p-stage network structures, significantly expanding
its applicability.

iii. We validate the framework through two banking sector case studies, demonstrating its
practical utility.

The remainder of this paper is organized as follows: Section 2 reviews relevant literature on
non-deterministic NDEA. Section 3 presents our three-stage uncertain NDEA model. Section
4 generalizes the approach to p-stage structures. Section 5 applies the model to banking sector
problems. Section 6 concludes with key findings and implications.

2 Literature Review

DEA is a widely used non-parametric approach for evaluating the efficiency of DMUs initially
developed by Charnes, Cooper, and Rhodes called CCR model (1978). The CCR model, built
upon the constant returns to scale (CRS) assumption, is used as the core structure for deriving
other DEA models. Due to its unique characteristics and strength, DEA has seen widespread
adoption across various disciplines, including management science, applied mathematics, in-
dustrial engineering, and economics. A comprehensive review byMergoni et al. [27] examines
DEA’s development over the past five decades. Traditional DEA models treat DMUs as “black
boxes”, ignoring their internal structures. In contrast, Network DEA combines optimization
methods with network modeling to incorporate internal relationships, thereby improving the
accuracy of efficiency analysis by better reflecting real-world operations. The foundational
work of Färe et al. [9] introduced network-based concepts to DEA. This concept has been
studied by many researchers, the most comprehensive one compiled by Kao [21].

The advanced formulations offer deeper structural insights and greater analytical precision,
allowing for more accurate efficiency assessments [4, 51]. Network DEA offers several distinct
advantages when assessing the efficiency of DMUs with internal network structures. It accu-
rately replicates the internal structure of complex systems, enabling simultaneous evaluation of
both overall system efficiency and individual sub-process performance. This approach provides
decomposable efficiency measures, reducing the number of unreal efficient DMUs and gener-
ating more accurate efficiency estimates. Network DEA facilitates optimal resource alloca-
tion across network components and examination of interdependencies between sub-processes
[2, 17].
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Both traditional DEA and NDEA approaches demonstrate significant sensitivity to data
variations. While these methodologies traditionally assume deterministic inputs and outputs,
real-world applications frequently encounter imprecise or uncertain data. To address this lim-
itation, researchers have developed sophisticated extensions incorporating non-deterministic
frameworks to strengthen efficiency analysis under uncertainty. The literature identifies differ-
ent approaches for managing data uncertainty.

Stochastic DEA applies probability theory to account for random variations. There are three
distinct methodological interpretations in this concept:

• Modeling deviations from efficiency frontiers as random variables

• Accounting for random noise in measurements

• Treating the production possibility set (PPS) as random PPS [29].

Stochastic modeling frameworks can only be properly employed when the dataset contains
a statistically significant number of observations. Interval DEA was originally proposed by
Cooper et al. [5]. It computes efficiency bounds (optimistic and pessimistic) using interval
data and enables DMU classification based on efficiency ranges [6, 18].

Fuzzy DEA effectively handles linguistic ambiguity and vagueness. This method incorpo-
rates Zadeh’s fuzzy set theory [49]. A Comprehensive review of Fuzzy DEA is available in the
study of Hatami-Marbini et al. [14] and Emrouznejad et al. [8]. However, fuzzy DEA models
present notable limitations such as potential for unbounded optimal values and computational
complexity with high solution costs [13, 43]. Some fuzzy DEA models can only be formulated
as linear optimization problems when restricted to trapezoidal fuzzy number representations
[14]. These challenges highlight the need for careful model selection based on the specific
nature of uncertainty in each application context.

Uncertainty theory provides a mathematical framework for quantifying expert opinions
when statistical data is unavailable or unreliable. This axiomatic approach proves particularly
valuable in (1) forecasting during emergencies such as war or pandemic, (2) analyzing scenarios
with scarce historical data, (3) modeling qualitative concepts with linguistic ambiguity, and (4)
analyzing dynamic systems subject to continuous-time noise .In such cases, uncertainty theory
systematically considers domain experts’ opinions [26]. Recently, many studies have applied
uncertainty theory to present an applicable efficiency analysis. Lio and Liu [24] developed an
innovative CCR model that treats inputs and outputs as uncertain variables, deriving an equiv-
alent deterministic formulation through expected value calculations. In another study, a new
model was suggested to achieve the highest degree of belief that the evaluated DMU is efficient
[11]. The field has observed further expansion as additional scholars have successfully adapted
traditional DEA methodologies to incorporate uncertainty principles [11, 34, 46].
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We divide this section to focus on various aspects of DEA, with a particular emphasis on
the methodological approaches employed to address the inherent uncertainty associated with
efficiency assessment.

2.1 Network DEA

Network DEA combines optimization techniques and network modeling to consider internal
structural connections during efficiency assessments. This method increases the realism of
DEA models by more precisely simulating the operational mechanisms present in real-world
systems [21]. The incorporation of network-based ideas into DEA by Färe et al. [9] broadened
traditional methodologies, extending established frameworks like two-stage and hybrid DEA
models.

These expanded formulations offer greater structural detail and analytical oversight, per-
mitting modelers to enhance efficiency evaluations [4, 42, 47]. Such network-based modeling
methods enable the systematic evaluation of individual components by monitoring efficiency at
the sub-component level. They aid in pinpointing underperforming units that obstruct overall
system effectiveness, while concurrently emphasizing optimized entities that boost operational
performance [2, 17].

Network DEA models fall into two primary categories: static and dynamic. Static DEA
depends on predefined elements and relationships that stay unchanged over time, providing a
simplified structure for efficiency analysis. Conversely, dynamic DEA adopts a more realis-
tic method by indexing elements across different time periods, permitting the assessment of
efficiency changes over time.

Apart from these classifications, some network DEA models include uncertainty in rela-
tionships and values. For example, stochastic network DEA incorporates probability theory
to improve the reliability of efficiency assessments in complex real-world situations [39, 50].
However, when probability theory is insufficient due to unreliable or inadequate data, alter-
native nondeterministic approaches—such as fuzzy theory and uncertainty theory—are used
to create refined versions of efficiency measurement frameworks [11, 16]. These techniques
allow a more adaptable and robust assessment of efficiency under uncertain conditions. The
growing availability of big data, alongside progress in computational technologies, has created
new opportunities for improving network DEA models by capturing more complex relation-
ships within intricate systems. These technological enhancements have considerably widened
the applicability of network DEA, enabling more accurate and dynamic efficiency evaluations.
Increased computational power now supports real-time efficiency tracking, further extending
the relevance of network DEA to sectors like healthcare and finance, where continuous perfor-
mance monitoring is crucial. Moving forward, future advancements are anticipated to integrate



Ga
lle
y P

ro
of

6 Network Data Envelopment Analysis and Uncertainty ...

machine learning techniques to refine efficiency assessments and yield deeper insights into
system dynamics, ultimately enhancing decision-making and operational performance [37].

2.2 Non-Determinstic Methods

Stochastic DEA (SDEA) was developed to handle uncertainties in financial activities by inte-
grating random noise into the DEA structure. This technique delivers a more practical evalua-
tion of efficiency in unstable settings, like those in banking [29]. Although SDEA was initially
presented by Charnes et al.[3], the inclusion of stochastic components to DEA is credited to
Banker’s research [30]. The dependability and usefulness of SDEAmodels were shown in mul-
tiple investigations by Korostelev et al. [22], and Simar [40], which prepared the way for incor-
porating distribution functions, stochastic processes, and bootstrapping methods. Nonetheless,
SDEA is vulnerable to sample size and demands strict assumptions about the distributions of
noise and inefficiency, which might not always apply in actual situations [41]. Limited datasets
can cause skewed efficiency estimates, emphasizing the necessity for models that more effec-
tively manage uncertainty in banking information [10].

Fuzzy DEA (FDEA) is a further expansion of conventional DEA, created to manage vague-
ness in input-output information through fuzzy set theory [48]. It has been especially beneficial
in cases where financial information is inexact, such as risk appraisals or qualitative analyses
[1]. However, FDEA brings subjectivity into the examination via the choice of membership
functions, which can introduce human prejudice [12]. Furthermore, resolving fuzzy DEAmod-
els can be complicated, especially when used on extensive datasets typically present in financial
industries [23]. To assess revenue efficiency in fuzzy network data envelopment analysis by
converting a fuzzy efficiency model into an exact linear programming issue employing linear
ranking functions and triangular fuzzy numbers [38].

To address the constraints of SDEA and FDEA, investigators have suggested expert-based
models such as uncertainty theory, established by Liu [26]. Uncertainty theory does not depend
on probability distributions, rendering it more flexible to settings with extremely uncertain in-
formation, like emerging markets in the banking industry [19, 26]. By integrating expert opin-
ions into the DEA structure, this approach supplies a sturdy option for efficiency measurement
in ambiguous settings [28]. Uncertainty theory has proven its utility and significance in repre-
senting real-world issues where information is scarce, untrustworthy, or mainly qualitative and
grounded in human assessment [25]. However, the precision of these models is highly reliant
on the trustworthiness of expert contributions, which can differ in application. Consequently,
it is vital to seize the most critical features of the problem and utilize the interdependencies
among DMUs to attain outcomes that more accurately represent real-world situations.
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Table 1 displays instances of research performed in diverse areas connected to imprecise
information. The included studies tackle the difficulties linked to three-stage and generalized
network structures in ambiguous data settings. In this paper, we intend to suggest amodel within
an uncertainty-based structure that efficiently tackles these difficulties, delivering an organized
and thorough solution to enhance efficiency assessment under data inaccuracy.

Table 1: Some studies of FDEA, SDEA,GDEA and UDEA.

Author(s) Main contributions(FDEA) Studied problem
Puri J, Yadav SP [36] fuzzy DEA model with

undesirable fuzzy outputs banking sector in India
Pourbabagol et al. [31] Fuzzy DEA network based on supply chain performance

possibility and necessity measures
Pourmahmoud, Jafar, and Naser Bafekr [32] cost efficiency with fuzzy DEA models -

Author(s) Main contributions(SDEA) Studied problem
Olesen and Petersen [29] Stochastic data envelopment analysis A review

Author(s) Main contributions(GDEA) Studied problem
Wang et al. [45] Efficiency with DEA and Grey theory estate companies

Pourmahmoud et al. [35] DEA with three-parameter
interval grey number Health System

Author(s) Main contributions(UDEA) Studied problem
Ghaffari-Hadigheh and Lio [11] NDEA in uncertain environment -
Pourmahmoud and Bagheri [33] uncertain model for

a basic two-stage system -

2.3 DEA in Banking System

Financial systems have utilized efficiency assessment models like DEA more broadly than
many other industries. Banks depend significantly on optimizing overall and subdivided pro-
cesses within their systems, employing various measures to evaluate current efficiency. By
recognizing the most efficient units, banks can emulate their behavior and practices, strategize
for other units, merge them, or introduce new inputs or outputs to their task networks. DEA
models, encompassing two-stage and three-stage frameworks, have been extensively used in the
banking sector to evaluate and boost operational efficiency. These models break down bank-
ing activities into interlinked sub-processes, enabling a more detailed performance analysis.
For example, a two-stage DEA model can separate banking operations into deposit-taking and
loan disbursement stages, allowing banks to pinpoint inefficiencies within each phase and ex-
ecute necessary improvements [15]. Likewise, three-stage DEA models include an additional
intermediate stage, offering a more thorough evaluation of the operational structure and im-
proving strategic decision-making [7, 20, 51]. The use of network DEA models aids banks in
optimizing resource allocation, lowering operational costs, and enhancing service delivery by
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detecting bottlenecks and improving process efficiency [44]. As the banking industry grows
more complex, combining network DEA models with advanced data analytics techniques fur-
ther increases their applicability and effectiveness in performance appraisal.

Progressing DEA methodology demands continuous enhancement in uncertainty-handling
techniques, particularly in complex network environments where data imprecision is common.
As a network-based system, banks depend intensely on optimizing both overall and subdivided
processes using various efficiency measures. Nevertheless, in some countries, such as Iran,
where inflation is extremely volatile, customer performance can be impacted by temporary
fluctuations. Thus, when addressing this specific input, it is essential to recognize that the data
is not exact and carries an inherent level of uncertainty. In these instances, the knowledge and
viewpoints of experts can be highly beneficial. In this research, we adopt a three-stage network
structure to assess the loan allocation process, specifically in cases where expert opinions are
pivotal. Moreover, in the second practical illustration, we propose a fresh perspective on the
branch merger issue by analyzing all possible merger outcomes, with experts specifying the
input data for each case. Based on the suggested model, we determine the best merger strategy
and offer it as a data-driven suggestion for bank managers and policymakers.

3 Uncertainty Theory

The content in this section is based on reference [26]. For a detailed discussion and complete
proofs of the theorems, please consult the original source.

Let Γ be a nonempty set and L be a σ-algebra over Γ. Each element Λ ∈ L is called
an event. A set function M : L → [0, 1] that satisfies the following axioms is known as an
uncertain measure:

(Normality Axiom):

M{Γ} = 1. (1)

(Duality Axiom):

M{Λ}+M{Λc} = 1, Λ ∈ L. (2)

(Subadditivity Axiom):

M{
∞∪
i=1

Λi } ≤
∞∑
i=1

M{Λi}, (3)

for any countable sequence of events Λi ⊆ L.
The triplet (Γ,L,M) is called an uncertainty space.
The Product Axiom, which differentiates uncertainty theory from probability theory, is for-

mulated as follows:
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(Product Axiom): Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. Then, the
product uncertain measureM on the product σ-algebra L1 × L2 × . . .× Ln satisfies:

M{
∞∏
k=1

Λk} =
∞∧
k=1

Mk{Λk}. (4)

where
∧

denotes the infimum.

Definition 1. An uncertain variable is introduced to facilitate the quantitative modeling of
phenomena within uncertainty theory. It is a measurable function from an uncertainty space
(Γ,L,M) to the set of real numbers. Specifically, for any Borel set B, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B},

is an event.

The uncertainty distribution of an uncertain variable ξ is defined as:

Φ(x) = M{ξ ≤ x}, x ∈ R. (5)

Furthermore, a set of uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if, for any
Borel sets B1, B2, . . . , Bn, the following holds:

M

{
n∩

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} . (6)

In the literature on uncertainty theory, various types of uncertain variables are explored.
One of the simplest among them is the linear uncertain variable. Building on the previously
introduced definitions, we now present several commonly used uncertainty distributions.

The most widely applied is the linear uncertainty distribution, defined as follows:

Φ(x) =


0, x ≤ a,

x−a
b−a , a < x ≤ b,

1, x > b.

(7)

where a and b are real numbers with a < b.
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The second most commonly used distribution is the zigzag uncertainty distribution, defined
as follows:

Φ(x) =



0, x ≤ a,

x−a
2(b−a) , a < x ≤ b,

x+c−2b
2(c−b) , b < x ≤ c,

1, x > c.

(8)

where a, b, and c are real numbers with a < b < c.
Another commonly used distribution is the normal uncertainty distribution, expressed as

follows:

Φ(x) =

(
1 + exp

(
π(e− x)√

3σ

))−1

, x ≥ 0,

where e and σ are real parameters with σ > 0.

Definition 2. Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then
the inverse function Φ−1(α) is called the inverse uncertainty distribution of ξ.

The inverse distributions corresponding to the three distributions above are as follows, re-
spectively:

Φ−1(α) = (1− α)a+ αb,

Φ(x)−1(α) =

(1− 2α)a+ 2αb, α < 0.5,

(2− 2α)b+ (2α− 1)c, α ≥ 0.5,

Φ−1(α) = e+
σ
√
3

π
ln
(

α

1− α

)
,

for arbitrary Borel sets B1, B2, . . . , Bn. An uncertain distribution Φ(x) is considered regular
if it is a continuous and strictly increasing function with respect to x, satisfying 0 < Φ(x) < 1,
and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1. (9)

Let ξ1, . . . , ξn be independent uncertain variables with regular uncertainty distributions
Φ1, . . . ,Φn, respectively. Suppose that the function f(ξ1, ξ2, . . . , ξn) is strictly increasing with
respect to ξ1, ξ2, . . . , ξm, and strictly decreasing with respect to ξm+1, ξm+2, . . . , ξn. Then, f
itself is an uncertain variable whose uncertainty distribution can be derived accordingly.

Ψ(x) = sup
f(x1,x2,...,xn)=x

(
min

1≤i≤m
Φi(xi) ∧ min

m+1≤i≤n
(1− Φ(xi))

)
. (10)

Theorem 1. If the function f(ξ1, . . . , ξn) is strictly increasing with respect to ξ1, . . . , ξm, and
strictly decreasing with respect to ξm+1, . . . , ξn, then f is an uncertain variable whose inverse
uncertainty distribution is given by:

Ψ−1(α) = f
(
Φ−1
1 (α), . . . ,Φ−1

m (α),Φ−1
m+1(1− α), . . . ,Φ−1

n (1− α)
)
. (11)



Ga
lle
y P

ro
of

Pourmahmoud, et al. 11

The expected value of an uncertain variable ξ is defined as:

E[ξ] =

∫ +∞

0
M{ξ > r} dr −

∫ 0

−∞
M{ξ ≤ r} dr,

provided that at least one of these integrals is finite.

Theorem 2. Given an uncertain variable ξ with uncertainty distribution Φ(x), its expected
value is calculated as follows:

E[ξ] =

∫ ∞

0
(1− Φ(x)) dx−

∫ 0

−∞
Φ(x) dx,

Assuming at least one of these integrals converges, the expected value of an uncertain variable
with a regular uncertainty distribution Φ(x), can also be expressed as:

E[ξ] =

∫ 1

0
Φ−1(α) dα.

Corollary 1. According to Theorem 2:

• The expected value of a zigzag uncertain variable ξ ∼ Z(a, b, c) is:

E[ξ] =
a+ 2b+ c

4
.

• The expected value of a linear uncertain variable ξ ∼ L(e, f) is:

E[ξ] =
e+ f

2
.

Furthermore, if ξ and η are independent uncertain variables with finite expected values, then
for any real numbers a and b: the expected value of the linear combination aξ+ bη is given by:

E[aξ + bη] = aE[ξ] + bE[η]. (12)

4 The Three-Stage Network DEA Model

We employed a three-stage framework to depict the scenario. Following this choice, the uncer-
tain DEA framework is formulated; in this structure, as the variables incorporate an uncertain
character, we utilize their expectation to transform the issue into a solvable form.
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4.1 The Problem at Focus

In this section, we outline an actual process employed by Iran’s banking system for extending
loans to individuals, startups, and enterprises according to their business proposals, job gen-
eration capacity, and intended services or products. Our objective is to appraise the complete
accreditation procedure using an uncertainty theory-based model to gauge the banking system’s
efficiency.

The framework contains three phases, mirroring the real-world process, with a total of n
DMUs participating in judging each applicant’s suitability. The procedure commences when
an organization conducts a preliminary interview with the applicant to assess the knowledge-
oriented character of their business proposal and its capacity to produce employment prospects.
Subsequently, in the second phase, the central bank and its partner organizations appraise the
proposal’s macroeconomic and microeconomic contributions. This analysis seeks to establish
the comprehensive effect of the suggested enterprise on both national and regional economies.
Ultimately, in the third phase, one or more branches of private or public banks evaluate the loan
applicant’s repayment capacity. This stage is critical for safeguarding the banking system’s
financial soundness. Through applying this model, we acquire valuable perspectives on the
accreditation process’s efficiency. The model’s outcomes validate whether the banking system
is successfully executing its function in granting loans to qualified applicants.

4.1.1 Why is there a need to use Liu Uncertainty Theory?

In this context, the banking system possesses minimal, if any, information regarding a business
plan before it undergoes evaluation through multiple stages and DMUs. Even when lenders
obtain the plan, inadequate time prevents comprehensive scrutiny of details or collection of
supplementary relevant data. Consequently, only specific indicators can be connected to his-
torical precedents and comparable cases. Additionally, the actual data employed, processed,
and depended upon for decisions are the viewpoints of experts engaged across various DMUs
at different stages.

Given these constraints, the banking system encounters substantial difficulty in acquiring
thorough knowledge about a business proposal. The informational deficit remains until the
plan is formally submitted and appraised by successive stages and DMUs. Regrettably, lenders
frequently face time limitations and cannot deeply inspect the plan’s complexities or assemble
additional information. As a result, lenders must depend on restricted signals tied to prior
occurrences and similar circumstances. Furthermore, final decisions rest on the judgments of
specialists participating in distinct DMUs throughout multiple phases.
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Under these conditions, the accessible data is inadequate to effectively employ probability
theory as a verification mechanism. Thus, substitute methodologies like Bayesian or Fuzzy
theory require examination. Bayesian theory entails considerable computational expenses and
difficulties in establishing appropriate prior probabilities, since deriving suitable values from
human validators’ beliefs lacks clarity. Conversely, Fuzzy theory, as emphasized by Liu, ex-
hibits constraints related to its theoretical basis and axiom selection. Moreover, selecting an apt
membership function is chiefly problem-specific and lacks a defined methodology for initiating
the process or achieving the intended membership function.

Considering these factors, the present data insufficiency clearly necessitates exploring al-
ternative validation approaches. While Bayesian and fuzzy theories offer potential remedies,
each method introduces unique challenges and intricacies requiring careful assessment.

4.2 The Proposed Model

Consider the following three-stage network structure as shown in Figure 1. The deterministic
model of this structure, based on Kao’s framework [21], is formulated as follows when the data
is deterministic.

  

 

1 3 2 
𝒁𝟏 

 

𝑿𝟏 𝒁𝟐 

 

𝒀𝟑 

 

𝑿𝟑 

 

𝑿𝟐 

 

𝒀𝟐 

 

𝒀𝟏 

 
Figure 1: Structure of the three-stage system.
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max
s∑

r=1
urYr0 +

h∑
g=1

wgZg0

s.t.
m∑
i=1

viXi0 +
h∑

g=1
wgZg0 = 1,

∑s(1)

r=1 urY
(1)
rj +

∑h(1)

g=1wgZ
(1)
gj −

∑m(1)

i=1 viX
(1)
ij ≤ 0,

∑s(2)

r=s(1)+1 urY
(2)
rj +

∑h(2)

g=h(1)+1wgZ
(2)
gj

−
(∑m(2)

i=m(1)+1 viX
(2)
ij +

∑h(1)

g=h(0)+1wgZ
(1)
gj

)
≤ 0,

∑s(3)

r=s(2)+1 urY
(3)
rj −

(∑m(3)

i=m(2)+1 viX
(3)
ij +

∑h(2)

g=h(1)+1wgZ
(2)
gj

)
≤ 0,

vi, ur, wg ≥ ϵ.

(13)

• X(k)
ij , k = 1, . . . , 3, j = 1, . . . , n, i = 1, . . . ,m(k) are the exogenous inputs. Spe-

cially, X(1)
i0 ’s are the first stage inputs, X(2)

i0 are the second stage’s exogenous inputs
and X(3)

i0 are the third exogenous inputs of the target DMU. We also assume the all the
variables are independent throughout the study.

• Z(k)
gj , k = 1, 2, j = 1, . . . , n, g = h(k−1) + 1, · · · , h(k) are intermediate products at

each stage.

• Y (k)
rj , k = 1, . . . , 3, j = 1, · · · , n, r = 1, . . . , s(k) are final outputs of the model at each

stage.

• vi, ur, wg ≥ ϵ are positive weights that are needed to be optimally chosen.

Consider the following sketch of the three-stage model where all the variables are consid-
ered to be in an uncertain environment with information provided out of it through the opinions
of some experts. In this model, following assumptions are considered. We also note that all the
uncertain variable are positive. Therefore, based on our assumptions and the flowchart of the
model, we present the uncertain DEA model through the following optimization problem

maxE

[
s∑

r=1

urYr0 +
h∑

g=1

wgZg0

]

s.t.E

[
m∑
i=1

viXi0 +

h∑
g=1

wgZg0

]
= 1,

E

[
s(1)∑
r=1

urY
(1)
rj +

h(1)∑
g=1

wgZ
(1)
gj −

m(1)∑
i=1

viX
(1)
ij

]
≤ 0,
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E

[
s(2)∑

r=s(1)+1

urY
(2)
rj +

h(2)∑
g=h(1)+1

wgZ
(2)
gj (14)

−
( m(2)∑

i=m(1)+1

viX
(2)
ij +

h(1)∑
g=h(0)+1

wgZ
(1)
gj

)]
≤ 0,

E

[
s(3)∑

r=s(2)+1

urY
(3)
rj −

( m(3)∑
i=m(2)+1

viX
(3)
ij +

h(2)∑
g=h(1)+1

wgZ
(2)
gj

)]
≤ 0,

vi, ur, wg ≥ ϵ.

After interviewing various experts across different stages and DMUs, and taking into account
each uncertain variable, we represent their beliefs through uncertain distributions. We assume
that each uncertain distribution is regular and has a well-defined inverse. Consequently, the
uncertain inverse distributions of the model’s variables are represented as follows:

ψ
−1(k)
ij −→ X

(k)
ij , k = 1, . . . , 3, j = 1, . . . , n, i = 1, . . . ,m(k),

ϕ
−1(k)
rj −→ Y

(k)
rj , k = 1, . . . , 3, j = 1, . . . , n, r = 1, . . . , s(k),

Γ
−1(k)
gj −→ Z

(k)
gj , k = 1, 2, j = 1, . . . , n, g = h(k−1) + 1, . . . , h(k).

Theorem 3. Suppose for any DMUj , inputs, intermediate and output variables are uncertain
then equivalent crisp appearance of model (14) is model (15).

max
∫ 1
0

(∑s
r=1 urϕ

−1
r0 (α) +

∑h
g=1wgΓ

−1
g0 (α)

)
dα

s.t.
∫ 1
0

(∑m
i=1 viψ

−1
i0 (α) +

∑h
g=1wgΓ

−1
g0 (α)

)
dα = 1,

∫ 1
0

(∑s(1)

r=1 urϕ
−1(1)
rj (α) +

∑h(1)

g=1wgΓ
−1(1)
gj (α)−

∑m(1)

i=1 viψ
−1(1)
ij (1− α)

)
dα ≤ 0,

∫ 1
0

(∑s(2)

r=s(1)+1 urϕ
−1(2)
rj (α) +

∑h(2)

g=h(1)+1wgΓ
−1(2)
gj (α)

−

(∑m(2)

i=m(1)+1 viψ
−1(2)
ij (1− α) +

∑h(1)

g=h(0)+1wgΓ
−1(1)
gj (1− α)

))
dα ≤ 0,

∫ 1
0

(∑s(3)

r=s(2)+1 urϕ
−1(3)
rj (α)

−

(∑m(3)

i=m(2)+1 viψ
−1(3)
ij (1− α) +

∑h(2)

g=h(1)+1wgΓ
−1(2)
gj (1− α)

))
dα ≤ 0,

vi, ur, wg ≥ ϵ.

(15)
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Proof. Considering the following relationships:

F 0 =
s∑

r=1

urYr0 +
h∑

g=1

wgZg0.

F 0 is increasing in relation to Yr0, Zg0 then as stated in Theorem 1 the inverse uncertainty
distribution of F 0 is:

(F 0)−1 =

s∑
r=1

urϕ
−1
r0 (α) +

h∑
g=1

wgΓ
−1
g0 (α),

and according to Theorem 2

E

(
F 0

)
=

∫ 1

0

(
s∑

r=1

urϕ
−1
r0 (α) +

h∑
g=1

wgΓ
−1
g0 (α)

)
d(α),

for the third constraint of model (14) considering

F 3 =

[
s(2)∑

r=s(1)+1

urY
(2)
rj +

h(2)∑
g=h(1)+1

wgZ
(2)
gj −

( m(2)∑
i=m(1)+1

viX
(2)
ij +

h(1)∑
g=h(0)+1

wgZ
(1)
gj

)]
.

F 3 is increasing in relation to Y (2)
rj , Z

(2)
gj and decreasing related to X(2)

ij , Z
(1)
gj then as stated in

Theorem 1 the inverse uncertainty distribution of F 3 is:

(F 3)−1 =

s(2)∑
r=s(1)+1

urϕ
−1(2)
rj (α) +

h(2)∑
g=h(1)+1

wgΓ
−1(2)
gj (α)

−

(
m(2)∑

i=m(1)+1

viψ
−1(2)
ij (1− α) +

h(1)∑
g=h(0)+1

wgΓ
−1(1)
gj (1− α)

)
.

According to Theorem 2

E

(
F 3

)
=

∫ 1

0

(
s(2)∑

r=s(1)+1

urϕ
−1(2)
rj (α) +

h(2)∑
g=h(1)+1

wgΓ
−1(2)
gj (α)

−

(
m(2)∑

i=m(1)+1

viψ
−1(2)
ij (1− α) +

h(1)∑
g=h(0)+1

wgΓ
−1(1)
gj (1− α)

))
dα.

Do the same for other conditions. Therefore, using the results of Theorems 1 and 2 the claim
is proved.

Theorem 4. Considering the optimization problem (14), there is at least one feasible solution.
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Proof. Since all the uncertain variables are positive, their expected values are also positive.
Now we choose the weights of exogenous variables, vi as following

vi =
1−

∑h
g=1 ϵ(Zg0)

mXi0
. (16)

We also assume that

wg = ur = ϵ. (17)

We place the assumed solution in the model constraints:

E

[
m∑
i=1

1−
∑h

g=1 ϵ(Zg0)

mXi0
Xi0 +

h∑
g=1

ϵZg0

]
= 1,

E

[
s(1)∑
r=1

ϵY
(1)
rj +

h(1)∑
g=1

ϵZ
(1)
gj −

m(1)∑
i=1

1−
∑h

g=1 ϵ(Zg0)

mXi0
X

(1)
ij

]
≤ 0,

E

[
s(2)∑

r=s(1)+1

ϵY
(2)
rj +

h(2)∑
g=h(1)+1

ϵZ
(2)
gj −

( m(2)∑
i=m(1)+1

1−
∑h

g=1 ϵ(Zg0)

mXi0
X

(2)
ij +

h(1)∑
g=h(0)+1

ϵZ
(1)
gj

)]

≤ 0,

E

[
s(3)∑

r=s(2)+1

ϵY
(3)
rj −

( m(3)∑
i=m(2)+1

1−
∑h

g=1 ϵ(Zg0)

mXi0
X

(3)
ij +

h(2)∑
g=h(1)+1

ϵZ
(2)
gj

)]
≤ 0,

vi, ur, wg ≥ ϵ.

Since all data values are strictly positive, the proof is finalized by simplifying the given expres-
sions, ensuring logical consistency and correctness. With these choices for vi, wg, ur all the
constrained are satisfied and we prove that there is at least one feasible solution.

Theorem 5. The optimization problem (14) has an optimal solution.

Proof. Based on the first constraint, bothE

[
m∑
i=1

viXi0

]
andE

[
h∑

g=1
wgZg0

]
are finite. There-

fore, using the sum constraints two, three and four we have

E

[
s∑

r=1

urYrj +

h∑
g=1

wgZgj −
m∑
i=1

viXij

]
≤ 0,

E

[
s∑

r=1

urYrj +
h∑

g=1

wgZgj

]
≤

m∑
i=1

viXij .

It is resulted that the objective function of the model (14) is finite, therefore, using the previous
theorem, it has an optimal solution.
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4.3 The Model with Linear and Zigzag Uncertain Variables

For the sake of illustration, assume that inputs are all have uncertain linear distribution L(e, f),
intermediates and outputs have uncertain zigzag distribution Z(a, b, c).

Since all the uncertain variables in the model are independent, the expectation operator can
be moved inside the summation symbols. According to Corollary 1 model (14) is given as

max
s∑

r=1
ur

(ar0+2br0+cr0)
4 +

h∑
g=1

wg
(ag0+2bg0+cg0)

4

s.t.
m∑
i=1

vi
(ei0+fi0)

2 +
h∑

g=1
wg

(ag0+2bg0+cg0)
4 = 1,

∑s(1)

r=1 ur
(arj+2brj+crj)

4 +
∑h(1)

g=1wg
(agj+2bgj+cgj)

4 −
∑m(1)

i=1 vi
(eij+fij)

2 ≤ 0,∑s(2)

r=s(1)+1 ur
(arj+2brj+crj)

4 +
∑h(2)

g=h(1)+1wg
(agj+2bgj+cgj)

4 −(∑m(2)

i=m(1)+1 vi
(eij+fij)

2 +
∑h(1)

g=h(0)+1wg
(agj+2bgj+cgj)

4

)
≤ 0,∑s(3)

r=s(2)+1 ur
(arj+2brj+crj)

4

−
(∑m(3)

i=m(2)+1 vi
(eij+fij)

2 +
∑h(2)

g=h(1)+1wg
(agj+2bgj+cgj)

4

)
≤ 0,

vi, ur, wg ≥ ϵ.

(18)

Therefore, in the original uncertain optimization model, each uncertain variable can be replaced
by its expected value, resulting in the deterministic equivalent shown above. This transfor-
mation preserves the structure of the optimization while removing the uncertainty, making it
solvable by standard mathematical programming methods.

5 Generalizing to a P -Stage Model

In real-world applications, problems often exhibit a higher degree of internal structural com-
plexity. Consequently, accurately modeling such multifaceted issues typically requires the im-
plementation of a generalized P -stage network. In this section, we extend the proposed model
to the general network case. For a system with p stages, as illustrated in Figure 2, we have the
following Model 19.
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Figure 2: Structure of the p-stage system.

max E

[
s∑

r=1
urYr0 +

h∑
g=1

wgZg0

]

s.t. E

[
m∑
i=1

viXi0 +
h∑

g=1
wgZg0

]
= 1,

E

[∑s(1)

r=1 urY
(1)
rj +

∑h(1)

g=1wgZ
(1)
gj −

∑m(1)

i=1 viX
(1)
ij

]
≤ 0,

E

[∑s(2)

r=s(1)+1 urY
(2)
rj +

∑h(2)

g=h(1)+1wgZ
(2)
gj

−
(∑m(2)

i=m(1)+1 viX
(2)
ij +

∑h(1)

g=h(0)+1wgZ
(1)
gj

)]
≤ 0,

E

[∑s(k)

r=s(k−1)+1 urY
(k)
rj +

∑h(k)

g=h(k−1)+1wgZ
(k)
gj

−
(∑m(k)

i=m(k−1)+1 viX
(k)
ij +

∑h(k−1)

g=h(k−2)+1wgZ
(k−1)
gj

)]
≤ 0, k = 2, · · · , p− 1,

E

[∑sp

r=s(p−1)+1 urY
p
rj −

(∑mp

i=m(p−1)+1 viX
(3)
ij +

∑h(p−1)

g=h(p−2)+1wgZ
(p−1)
gj

)]
≤ 0,

vi, ur, wg ≥ ϵ.

(19)

Similarly, we define the distributions of the uncertain variables as follow

ψ
−1(k)
ij −→ X

(k)
ij , k = 1, . . . , p, j = 1, . . . , n, i = 1, . . . ,m(k),

ϕ
−1(k)
rj −→ Y

(k)
rj , k = 1, . . . , p, j = 1, . . . , n, r = 1, . . . , s(k),

Γ
−1(k)
gj −→ Z

(k)
gj , k = 1, . . . , p− 1, j = 1, . . . , n, g = h(k−1) + 1, . . . , h(k).

Based on the above discussion, we present the following theorems:
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Theorem 6. Consider Model (19). Then the following representation holds

max
∫ 1

0

s∑
r=1

urϕ
−1
r0 (α) +

h∑
g=1

wgΓ
−1
g0 (α)dα

s.t.
∫ 1
0

∑m
i=1 viψ

−1
i0 (α) +

∑h
g=1wgΓ

−1
g0 (α) dα = 1,

∫ 1
0

∑s(1)

r=1 urϕ
−1(1)
rj (α) +

∑h(1)

g=1wgΓ
−1(1)
gj (α)−

∑m(1)

i=1 viψ
−1(1)
ij (1− α) dα ≤ 0,

∫ 1
0

∑s(k)

r=s(k−1)+1 urφ
−1(k)
rj (α) +

∑h(k)

g=h(k−1)+1wgΓ
−1(k)
gj

−
(∑m(k)

i=m(k−1)+1 viψ
−1(k)
ij (1− α) +

∑h(k−1)

g=h(k−2)+1wgΓ
−1(k−1)
gj (1− α)

)
dα ≤ 0,

k = 2, · · · , p− 1,

∫ 1
0

∑s(p)

r=s(p−1)+1 urϕ
−1(p)
rj (α)

−

(∑m(p)

i=m(p−1)+1 viψ
−1(p)
ij (1− α) +

∑h(p−1)

g=h(p−2)+1wgΓ
−1(p−1)
gj (1− α)

)
dα ≤ 0,

vi, ur, wg ≥ ϵ.

(20)

Proof. The proof follows similarly to that of Theorem 3, with the argument being repeated for
each k = 4, . . . , p. See Appendix A for more details.

Theorem 7. Consider optimization problem (19). Then there exists at least one feasible solu-
tion.

Proof. Given the positivity of all uncertain variables, their expected values are strictly positive.
Adopting weighting coefficients similar to Theorem 4 and following the same proof methodol-
ogy guarantees constraint satisfaction. See Appendix A.

Theorem 8. The optimization problem (19) admits an optimal solution.

Proof. Observe that the objective function of model (19) is identical to that of model (14).
Since model (14) possesses an optimal solution, this property consequently extends to model
(19). For complete technical details of this proof, we refer the reader to Appendix A.
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6 Numerical Implementation

Example 1. In this example, we analyze 10 loan applications submitted by companies and
business owners seeking financial support from a private bank in Iran. Our analysis focused
on four branches of this bank. Among these applicants, some possess strong financial back-
grounds, while others were perceived as untrustworthy due to financial instability or previous
loan repayment issues. Several applicants had previously applied for loans but were rejected.
The primary challenge is to evaluate the capability of each branch to accurately identify suitable
candidates for loan approval.

However, the input data provided to these branches fluctuates significantly and is highly in-
fluenced by expert opinions. Each branch received diverse input sets characterized by different
statistical distributions, contributed by five financial experts offering distinct perspectives on
the key variables representing customer financial conditions. Consequently, each branch is as-
sessed using five separate data groups, enabling us to evaluate their ability to analyze customer
financial credentials across various scenarios. For instance, some data sets prioritize customer
income and estimated business revenue, while others emphasize loan history and geographical
location. This approach ensures a broad spectrum of input variables and distributions, providing
comprehensive information for accurate financial assessment.

Each branch, analyzed through these five data groups, represents a set of decision-making
units (DMUs). Based on these assumptions, the relevant variables are defined as follows:
Initial inputs Xij:

• Applicant’s average monthly turnover (income history),

• Declared initial capital or shares by the applicant,

• Business plan score (based on preliminary expert review),

• Number of jobs proposed to be created,

• Applicant’s personal financial reliability (e.g., credit history or reputation),

• Industry experience and professional background relevant to the proposed business

• Knowledge-based project score,

• Innovation index,

• Local economic contribution score,

• Alignment with the national economic goals,

• Projected employment impact,
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• Loan repayment risk index,

• Market readiness and commercialization potential.

Final output Yij:

• Overall loan approval score,

• Estimated probability of repayment,

• Anticipated loan return (profitability for the bank),

• Risk-adjusted strength of loan recommendation,

• Applicant’s financial leverage and debt-to-income ratio.

Distribution Modeling:

i. For inputs (linear distribution): ψ−1(k)
ij (α) = 0.05aij + 0.95bij ,

ii. For intermediate outputs (linear distribution): ϕ−1(k)
rj (α) = 0.05crj + 0.95drj

iii. For final outputs (normal distribution):

Γ
−1(k)
gj (α) = egj +

(
σ
√
3

π
ln
(
0.95

0.05

))
,

where (a, b), (c, d) and (e, σ) are parameters provided in the accompanying tables.

Example Variable Explanation:

For instance, setting α = 0.95, the scaled value for the “Number of jobs to be created” variable
represents the estimated maximum number of jobs that a customer might generate if granted
the loan.

Results and Insights

The analysis indicates that DMUs 11, 13, and 14 are efficient within this network. Their high
efficiency scores suggest that these branches have successfully evaluated applicants despite
data uncertainties and have demonstrated effective loan allocation or rejection decisions. Con-
versely, units 9, 8, and 16 exhibit the lowest efficiency scores, indicating subpar performance
in customer evaluation and loan decision-making. This inefficiency has led to potential misal-
locations, such as granting loans to ineligible applicants or denying credit to worthy candidates.
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Table 2: Exogenous inputs.

DMU ψ−1(Inputs)

1 [(5.25, 9.5), (5.25, 7.5), (7.25, 9.5), (7, 9), (8.5, 9.5)]
2 [(2.5, 7.0), (5.0, 6.5), (8.5, 10.5), (7.0, 9.0), (6.5, 8.0)]
3 [(4.5, 8.5), (6.5, 9.0), (7.5, 9.5), (7.5, 9.5), (6.0, 8.0)]
4 [(4.0, 7.5), (5.5, 7.0), (8.0, 9.0), (7.0, 8.5), (6.5, 8.0)]
5 [(6.0, 8.5), (7.0, 9.0), (7.0, 9.0), (7.5, 8.5), (6.0, 8.0)]
6 [(4.0, 8.0), (5.0, 6.0), (8.0, 9.5), (7.5, 9.0), (7.0, 9.0)]
7 [(5.5, 7.5), (6.0, 8.0), (8.5, 10.0), (7.5, 9.0), (7.5, 9.5)]
8 [(3.5, 8.0), (5.5, 6.5), (8.5, 9.5), (7.5, 9.0), (6.5, 8.5)]
9 [(2.5, 8.5), (6.5, 8.0), (7.5, 9.0), (6.0, 8.5), (7.0, 9.5)]
10 [(5.0, 8.0), (5.5, 7.5), (8.0, 9.5), (7.5, 9.0), (7.5, 9.0)]
11 [(6.0, 8.5), (7.5, 8.5), (7.5, 9.0), (7.5, 8.5), (6.5, 8.0)]
12 [(5.0, 7.5), (6.5, 7.5), (8.0, 9.5), (7.5, 9.0), (7.5, 9.0)]
13 [(3.0, 7.5), (4.5, 6.0), (7.5, 8.5), (6.5, 8.0), (7.0, 8.5)]
14 [(6.0, 8.5), (7.0, 9.0), (8.0, 9.5), (7.5, 9.0), (6.5, 8.0)]
15 [(4.5, 8.0), (5.5, 6.5), (8.0, 9.0), (7.5, 8.5), (6.5, 8.5)]
16 [(5.0, 8.0), (5.5, 7.5), (8.5, 9.0), (7.5, 8.5), (7.0, 9.0)]
17 [(4.0, 7.0), (5.0, 6.0), (8.5, 9.5), (6.5, 8.0), (7.5, 9.0)]
18 [(5.0, 8.5), (6.0, 8.5), (7.5, 9.0), (7.0, 8.5), (6.5, 8.5)]
19 [(3.5, 7.5), (5.5, 6.5), (8.0, 9.0), (6.5, 8.0), (7.0, 8.5)]
20 [(4.0, 8.5), (6.5, 8.0), (8.5, 9.5), (7.0, 9.0), (6.5, 8.5)]

These branches should revisit their evaluation criteria, weightings, and data quality to enhance
decision accuracy.

Importantly, the integrated uncertainty theory, combined with our proposed model, effec-
tively captures the optimal performance of these DMUs given their inputs and network struc-
ture. This approach underscores the potential of uncertainty theory as a viable alternative to
probability-based methods in DEA, especially when data is scarce, unreliable, or primarily
based on expert judgment.

Example 2. Consider a bank operating in a city with six branches. The management realizes
that the system is underperforming, as evidenced by a decline in customer numbers and bank-
ing activities. To address this, they propose merging the six branches into three. To determine
the most efficient combination, we propose a new approach to this task, examining all possible
merger scenarios (choosing three out of six). Experts identify relevant data and important in-
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Table 3: Intermediate products.

DMU ϕ−1(Intermediate Outputs)

1 [(15.0, 26.5), (18.0, 21.5), (11.5, 16.0), (14, 17), (11, 13.5), (12.5, 14.5)]
2 [(13.0, 22.5), (19.0, 24.5), (14.5, 17.0), (10.0, 12.5), (16.0, 18.5)]
3 [(14.0, 25.5), (18.5, 21.0), (12.5, 15.0), (10.0, 13.5), (16.5, 19.5)]
4 [(13.5, 22.5), (20.0, 23.0), (11.5, 13.5), (11.5, 14.5), (16.0, 17.5)]
5 [(14.5, 25.0), (19.5, 21.0), (12.5, 14.0), (12.5, 15.0), (16.5, 18.0)]
6 [(15.5, 24.5), (17.5, 19.5), (12.0, 13.0), (10.0, 12.5), (16.5, 18.5)]
7 [(14.5, 23.5), (18.0, 21.5), (12.5, 14.5), (12.5, 14.0), (16.0, 17.0)]
8 [(12.5, 23.0), (19.0, 21.0), (11.5, 13.0), (10.0, 12.5), (17.0, 18.5)]
9 [(13.5, 22.5), (18.0, 21.0), (11.5, 13.0), (11.0, 12.5), (16.5, 18.5)]
10 [(15.0, 24.0), (20.0, 22.5), (12.0, 14.5), (12.0, 14.0), (17.0, 19.0)]
11 [(14.5, 24.5), (18.5, 20.5), (12.5, 13.5), (10.5, 12.5), (16.5, 17.5)]
12 [(14.0, 24.0), (19.0, 21.5), (11.5, 12.5), (11.0, 13.0), (16.5, 18.0)]
13 [(13.5, 23.5), (18.5, 20.5), (12.0, 14.5), (10.5, 12.5), (16.0, 18.5)]
14 [(14.5, 24.5), (18.5, 20.5), (12.5, 14.0), (11.5, 13.0), (16.5, 18.5)]
15 [(14.0, 23.5), (19.5, 21.0), (11.5, 13.5), (10.0, 11.5), (16.5, 17.5)]
16 [(14.5, 23.0), (19.5, 22.0), (11.5, 13.5), (10.0, 12.0), (16.0, 18.5)]
17 [(13.0, 22.5), (20.0, 22.0), (12.0, 14.0), (11.0, 13.0), (17.0, 19.0)]
18 [(14.5, 24.5), (19.5, 22.0), (12.0, 13.0), (10.5, 12.5), (17.0, 18.5)]
19 [(12.5, 22.5), (18.5, 21.5), (12.5, 14.0), (10.0, 12.5), (17.0, 19.0)]
20 [ (13.0, 23.5), (19.0, 21.5), (12.0, 13.5), (10.5, 12.5), (17.0, 18.0)]

dicators for each scenario. Applying the proposed model, we analyze the results to determine
the most efficient option for bank managers.

To solve this problem, we employ a three-stage uncertain DEA model with the following
considerations:

• x1: Operational costs

• x2: Non-operational costs

• y1: Income from banking facilities

• y2: Income from service fees

• y3: Non-performing facilities
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Table 4: Final outputs.

DMU Γ−1(Final Outputs)
1 [(3.30, 0.75), (3.5, 0.5), (4, 0.85), (3.5, 0.9)]
2 [(3.50, 0.90), (3.50, 0.85), (6.40, 0.95), (6.80, 0.88)]
3 [(3.40, 0.80), (5.90, 0.90), (6.80, 0.95), (7.90, 0.85)]
4 [(3.60, 0.70), (6.20, 0.85), (7.00, 0.95), (7.10, 0.80)]
5 [(3.30, 0.85), (5.70, 0.90), (6.90, 0.95), (7.30, 0.90)]
6 [(3.40, 0.80), (5.80, 0.85), (7.00, 0.90), (7.20, 0.75)]
7 [(3.30, 0.85), (5.90, 0.95), (7.10, 0.85), (7.40, 0.80)]
8 [(3.60, 0.80), (6.20, 0.90), (7.10, 0.85), (7.30, 0.90)]
9 [(3.50, 0.90), (5.90, 0.85), (6.80, 0.95), (7.20, 0.90)]
10 [(3.50, 0.85), (6.30, 0.90), (7.00, 0.95), (7.60, 0.80)]
11 [(3.40, 0.85), (5.80, 0.90), (7.00, 0.90), (7.30, 0.90)]
12 [(3.60, 0.80), (5.90, 0.90), (7.10, 0.95), (7.40, 0.85)]
13 [(3.40, 0.85), (5.80, 0.85), (7.10, 0.90), (7.30, 0.80)]
14 [(3.40, 0.80), (5.90, 0.85), (7.10, 0.90), (7.50, 0.80)]
15 [(3.50, 0.90), (5.80, 0.90), (7.00, 0.95), (7.30, 0.90)]
16 [(3.50, 0.85), (6.10, 0.85), (7.20, 0.95), (7.60, 0.90)]
17 [(3.60, 0.90), (5.90, 0.90), (7.20, 0.95), (7.30, 0.85)]
18 [(3.40, 0.85), (5.80, 0.90), (7.00, 0.90), (7.20, 0.85)]
19 [(3.40, 0.90), (5.70, 0.85), (7.00, 0.95), (7.30, 0.90)]
20 [(3.50, 0.85), (5.90, 0.90), (7.00, 0.90), (7.40, 0.80)]

Table 5: Efficiency results for DMUs.

DMU Efficiency DMU Efficiency
1 0.6591 11 1.0000
2 0.4088 12 0.7769
3 0.7242 13 1.0000
4 0.7223 14 1.0000
5 0.7362 15 0.9447
6 0.5421 16 0.4900
7 0.6991 17 0.7473
8 0.4894 18 0.8080
9 0.4279 19 0.8529
10 0.8480 20 0.7016
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• z1: Personnel exchanged between branches

• z2: Money transferred between branches

We assume that all these variables are uncertain in nature because their values are derived
through multiple layers of filtering and assessment processes. As a result, the reported fig-
ures may not fully represent their true origins or underlying causes. This inherent uncertainty
stems from the complexity and variability in data collection, processing, and interpretation. To
address this, we rely on expert opinions to construct appropriate distributions for each variable,
ensuring a more realistic and reliable depiction of the underlying uncertainty.

The variables in our three-stage uncertain DEA model are defined with the following dis-
tribution functions:

• For inputs (x1 and x2):

ψ
−1(k)
ij (α) = 0.05aij + 0.95bij ,

• For intermediate outputs (z1 and z2):

ϕ
−1(k)
rj (α) = 0.05crj + 0.95drj ,

• For final outputs (y1, y2, y3):

Γ
−1(k)
gj (α) = egj +

(
σ
√
3

π
ln
(
0.95

0.05

))
.

The most efficient combination is C15, with an efficiency score of 0.642. This combination
corresponds to the following branches:

• Branch 1: Represents strong performance in operational costs and intermediate outputs.

• Branch 3: Provides high final output, including income from banking facilities and ser-
vice fees.

• Branch 5: Balances low operational costs with significant intermediate and final output
contributions.

These branches together maximize efficiency while minimizing redundancy, making C15 the
optimal choice.
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Table 6: Inputs (x1, x2).

Combination a1j b1j a2j b2j
C1 10 15 5 8
C2 12 18 6 9
C3 14 20 7 10
C4 11 16 5 9
C5 13 17 6 8
C6 9 14 4 7
C7 10 16 5 8
C8 12 17 6 10
C9 11 18 5 9
C10 13 19 7 11
C11 10 15 4 7
C12 12 17 6 9
C13 11 16 5 8
C14 10 14 5 8
C15 6 10 3 5
C16 14 20 7 10
C17 13 19 6 8
C18 12 18 5 9
C19 11 15 4 7
C20 10 16 5 9

Table 7: Intermediate outputs (z1, z2).

Combination c1j d1j c2j d2j
C1 3 5 2 4
C2 4 6 3 5
C3 5 7 4 6
C4 3 6 2 5
C5 4 7 3 6
C6 3 5 2 4
C7 4 6 3 5
C8 5 8 4 6
C9 3 7 2 5
C10 4 9 3 6
C11 3 5 2 4
C12 4 6 3 5
C13 3 7 2 5
C14 4 8 3 6
C15 2 4 1 3
C16 5 7 4 6
C17 4 8 3 6
C18 3 6 2 5
C19 5 7 4 6
C20 4 6 3 5

Table 8: Final outputs (y1, y2, y3).

Combination e1j σ1j e2j σ2j e3j σ3j

C1 20 0.5 30 0.8 15 0.6
C2 18 0.6 28 0.7 16 0.5
C3 22 0.4 32 0.6 17 0.5
C4 19 0.5 29 0.8 15 0.7
C5 21 0.6 31 0.7 18 0.5
C6 20 0.5 30 0.7 16 0.6
C7 19 0.6 29 0.8 15 0.5
C8 23 0.5 33 0.6 18 0.5
C9 21 0.6 31 0.7 17 0.6
C10 22 0.4 34 0.6 19 0.5
C11 20 0.5 30 0.7 15 0.6
C12 19 0.6 29 0.8 16 0.5
C13 21 0.5 31 0.6 17 0.6
C14 20 0.6 30 0.8 15 0.5
C15 35 0.4 40 0.6 30 0.5
C16 22 0.5 32 0.7 18 0.6
C17 23 0.4 33 0.6 19 0.5
C18 21 0.5 31 0.7 16 0.6
C19 20 0.6 30 0.8 15 0.5
C20 22 0.4 32 0.7 18 0.5

Table 9: Rankings and efficiency.

Rank Combination Efficiency
1 C15 0.642
2 C10 0.631
3 C8 0.615
4 C16 0.600
5 C5 0.592
6 C20 0.580
7 C9 0.575
8 C18 0.568
9 C12 0.560
10 C7 0.554
11 C4 0.543
12 C2 0.537
13 C13 0.530
14 C3 0.520
15 C6 0.515
16 C1 0.502
17 C17 0.495
18 C19 0.482
19 C11 0.470
20 C14 0.455

7 Conclusion

This research proposes a systematic approach to evaluating efficiency in complex decision-
making environments, especially where data uncertainty poses significant challenge. Tradi-
tional DEA models often encounter limitations when dealing with uncertain data due to their



Ga
lle
y P

ro
of

28 Network Data Envelopment Analysis and Uncertainty ...

dependence on deterministic inputs, reducing their effectiveness in practical scenarios charac-
terized by limited or expert-derived information. To address this gap, this study integrates Liu’s
uncertainty theory into a three-stage network DEA framework, enhancing the accuracy of ef-
ficiency evaluations when historical data is sparse. The validation through two case studies in
the banking sector highlights the practical utility of the proposed model. Results demonstrate
that uncertainty-aware DEA provides more reliable efficiency assessments for activities such
as loan distribution and branch consolidation. By effectively capturing uncertainties driven
by expert judgement, the model proves particularly beneficial for applications like financial
risk analysis, credit evaluation, and strategic resource distribution. Looking forward, several
potential avenues could further expand and refine this framework:

• Integration with machine learning: Merging this uncertainty-based DEA with predictive
analytics can bolster efficiency forecasts .

• Dynamic uncertainty modeling: Future research could examine how uncertainties evolve
over time, enabling real-time decision-making in dynamic markets.

• Extending this approach to sectors such as healthcare, energy, and supply chain manage-
ment, areas where expert-driven uncertainty significantly influences efficiency assess-
ments.

By advancing the measurement of efficiency under uncertain conditions, this study contributes
to a more adaptable and resilient decision-making process, ensuring organizations to better
navigate uncertainty with increased confidence.

A Appendix: Detailed Proof of Theorems 6 and 7

Proof of Theorem 6

We consider an uncertain optimization model in which both the objective function and con-
straints involve uncertain variables with known uncertainty distributions. To derive the de-
terministic equivalent formulation, we employ inverse uncertainty distributions and expected
value operators established in uncertainty theory. Our analysis specifically relies on the fol-
lowing fundamental results:

• Theorem 1 (Inverse Distribution Transformation),

• Theorem 2 (Expected Value of Regular Uncertain Variables)

from Section 3.
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Step 1: Objective Function

The objective function in the uncertain model is expressed as:

maxE

 s∑
r=1

urφr0 +
h∑

g=1

wgΓg0

 .
Applying linearity of expectation and Theorem 2, we obtain:

E[φr0] =

∫ 1

0
φ−1
r0 (α) dα,

E[Γg0] =

∫ 1

0
Γ−1
g0 (α) dα.

Consequently, the objective simplifies to:

max
∫ 1

0

 s∑
r=1

urφ
−1
r0 (α) +

h∑
g=1

wgΓ
−1
g0 (α)

 dα.

Step 2: Constraints

Similarly, the first constraint becomes:

E

 m∑
i=1

viψi0 +

h∑
g=1

wgΓg0

 = 1,

which translates into: ∫ 1

0

 m∑
i=1

viψ
−1
i0 (α) +

h∑
g=1

wgΓ
−1
g0 (α)

 dα = 1.

For the k-th piecewise constraint, where k = 1, . . . , p, the structure involves differences be-
tween weighted uncertain outputs and inputs. Utilizing Theorem 1, and noting the monotonicity
properties, the inverse distributions involved are:

• φ−1(k)
rj (α) and Γ−1(k)

gj (α) for increasing functions,

• ψ−1(k)
ij (1− α) for decreasing functions.

Accordingly, the constraints are formulated as follows:

• For k = 1:∫ 1

0

s(1)∑
r=1

urφ
−1(1)
rj (α) +

h(1)∑
g=1

wgΓ
−1(1)
gj (α)−

m(1)∑
i=1

viψ
−1(1)
ij (1− α)

 dα ≤ 0.
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• For k = 2, . . . , p− 1:∫ 1

0

(
s(k)∑

r=s(k−1)+1

urφ
−1(k)
rj (α) +

h(k)∑
g=h(k−1)+1

wgΓ
−1(k)
gj (α)

)
−

(∑m(k)

i=m(k−1)+1 viψ
−1(k)
ij (1− α) +

∑h(k−1)

g=h(k−2)+1wgΓ
−1(k−1)
gj (1− α)

)
dα ≤ 0.

Finally, for k = p:∫ 1

0

s(p)∑
r=s(p−1)+1

urϕ
−1(p)
rj (α)−

(
m(p)∑

i=m(p−1)+1

viψ
−1(p)
ij (1− α) +

h(p−1)∑
g=h(p−2)+1

wgΓ
−1(p−1)
gj (1− α)

)
dα ≤ 0

Step 3: Non-Negativity Constraints

The decision variables are constrained to be non-negative:

vi, ur, wg ≥ ϵ, ∀i, r, g.

Proof of Theorem 7

Since all the uncertain variables in the model are assumed to be positive, their expected values,
computed via their inverse uncertainty distributions, are also strictly positive. This positivity
ensures that, for the input-oriented DEA model under uncertainty, it is possible to construct a
feasible solution explicitly by selecting the weights accordingly.

Define the input weights vi as:

vi =
1−

∑h
g=1 εZg0

mXi0
, i = 1, . . . ,m,

where ε > 0 is a sufficiently small scalar, and Zg0 and Xi0 are the expected values of the re-
spective uncertain variables associated with the decision-making unit (DMU) under evaluation.

In addition, set the output and intermediate output weights uniformly as:

wg = ur = ε, g = 1, . . . , h, r = 1, . . . , s.

With these choices, we verify the satisfaction of the model constraints:
Normalization (input) constraint: The input constraint (normalization condition) is satisfied
because:
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E

[
m∑
i=1

1−
∑h

g=1 ϵ(Zg0)

mXi0
Xi0 +

h∑
g=1

ϵZg0

]
= 1,

due to the specific structure of vi absorbing the additive ε terms and by simplifying the given
expressions

E

[
m∑
i=1

1

m

]
= 1.

Remaining input-output constraints:
For each p ∈ {2, . . . , P}, the expected value of the left-hand side (LHS) of the p-th constraint
becomes:

E

[
s(p)∑

r=s(p−1)+1

ϵY
(p)
rj +

h(p)∑
g=h(p−1)+1

ϵZ
(p)
gj

−
( m(p)∑

i=m(p−1)+1

1−
∑h

g=1 ϵ(Zg0)

mXi0
X

(p)
ij +

h(p−1)∑
g=h(p−2)+1

ϵZ
(p−1)
gj

)]
≤ 0.

Since ur = wg = ε and vi < 1, each term involving outputs or intermediate outputs is small
and the sum of weighted outputs is strictly less than the weighted inputs, making all inequalities
satisfied. This logic can be extended for any p ∈ {2, . . . , P}, since in each constraint group the
weights remain the same, and the positivity and small magnitude of ε ensures feasibility. Thus,
all constraints are satisfied under these weight assignments, and we conclude that the model
has at least one feasible solution.
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