Received: February 25, 2025; Accepted: June 24, 2025; Published: July 1, 2025.

DOIL. 10.30473/coam.2025.73893.1293
Summer-Autumn (2025) Volume 10, Issue 2, (103-133)

Research Article

Open
.. . . Access
Control and Optimization in

Applied Mathematics - COAM

Network Data Envelopment Analysis and Uncertainty in Decision-
Making: A Three-Stage Model Based on Liu’s Uncertainty Theory

Jafar Pourmahmoud DX, Ahad Abbasi , Alireza Ghafari-Hadigheh

Department of Applied Math-
Shahid
Madani University, Tabriz, Iran.

ematics, Azarbaijan

B>< Correspondence:
Jafar Pourmahmoud
E-mail:

]30Lll‘Iﬂllh]ﬂ()le‘/(l azaruniv.ac.ir

How to Cite

Pourmahmoud, J., Abbasi,
A., Ghafari - Hadigheh, A.R.
(2025). “Network data envelop-
ment analysis and uncertainty in
decision-making: A three-stage
model based on Liu’s uncer-
tainty theory”, Control and
Optimization in Applied Math-
ematics, 10(2): 103-133, doi:
10.30473/coam.2025.73893.1293.

Abstract. Data Envelopment Analysis (DEA) is a well-established
methodology for assessing the efficiency of decision-making units.
In complex systems comprising multiple interconnected subsections,
Network DEA provides a structured framework for efficiency eval-
uation. However, traditional DEA models rely on the assumption of
deterministic data, which inadequately reflects the inherent uncertainty
present in real-world scenarios. Traditional uncertainty-handling
methods, such as fuzzy logic, stochastic models, and interval-based
techniques, often fail when there is limited historical data and when
expert opinions significantly influence the dataset. To address these
limitations, this study introduces an uncertain network DEA model
based on Liu’s uncertainty theory, facilitating a more accurate assess-
ment of efficiency under conditions of data imprecision. The proposed
model is designed for three interconnected subsections and is further
extended into a generalized multi-stage framework, allowing it to
adapt to increasingly complex systems. Its effectiveness and practical
applicability are demonstrated through two numerical case studies in the
banking industry, highlighting its capacity to support decision-making
under uncertainty. The findings emphasize the model’s potential to
enhance efficiency evaluation methods, particularly in environments
characterized by limited and uncertain data.
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1 Introduction

Continuous performance evaluation is essential for organizational growth and development. Data En-
velopment Analysis (DEA) has emerged as a powerful methodology for assessing the relative efficiency
of homogeneous decision-making units (DMUs) that transform multiple inputs into multiple outputs.
While traditional DEA models provide valuable insights into DMUSs’ efficiency, they fail to address
critical questions in complex organizational structures where DMUs consist of interconnected subunits.
In such network structures, outputs from one subunit often serve as inputs to others, creating a need for
more sophisticated evaluation frameworks.

Traditional DEA approaches face two significant limitations when applied to network structures:
(1) inability to identify which specific subunit contributes to inefficiency, and (2) difficulty in compar-
ing performance across subunits. Network DEA (NDEA) was developed to address these limitations by
modeling the internal structure of DMUs. However, existing NDEA models typically assume determin-
istic data, which rarely reflects real-world conditions where data uncertainty is prevalent.

Uncertainty in performance evaluation is applied in various forms, such as:
* Interval data (when only bounds are known)

 Fuzzy data (when values are inaccurate and vague)

+ Probabilistic data (when historical distributions exist)

+ Uncertain data (when expert opinion is primary)

While approaches exist for each uncertainty type (e.g., stochastic DEA for probabilistic data, fuzzy
DEA for fuzzy data), they often require substantial historical data or make restrictive assumptions. The
analysis of DEA and network DEA problems typically involves two key constraints: restricted sample
sizes and model dependence on data characteristics. Stochastic modeling remains feasible only when
sufficient empirical observations exist, which is inappropriate for data-scarce situations requiring expert
input. Conversely, while fuzzy set theory offers an alternative for uncertain environments, its application
can sometimes generate inconsistent and contradictory solutions that compromise analytical validity.

Liu’s uncertainty theory [26] provides a mathematical framework for such scenarios, serving as a
practical alternative when probability distributions are unknown or data is limited. While uncertainty
theory has been successfully implemented in basic two-stage DEA models [11, 24, 33], its application re-
mains limited for real-world systems that typically feature more complex, multi-stage network structures.
Current literature reveals a significant research gap in extending these uncertainty-based approaches to
generalized network configurations. This study makes three key contributions:

i. We develop a novel three-stage NDEA model based on Liu’s uncertainty theory, specifically de-
signed for cases where expert opinion supplements limited data.

ii. We extend the model to generalized p-stage network structures, significantly expanding its appli-
cability.

iii. We validate the framework through two banking sector case studies, demonstrating its practical

utility.
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The remainder of this paper is organized as follows: Section 2 reviews relevant literature on non-
deterministic NDEA. Section 3 presents our three-stage uncertain NDEA model. Section 4 generalizes
the approach to p-stage structures. Section 5 applies the model to banking sector problems. Section 6
concludes with key findings and implications.

2 Literature Review

DEA is a widely used non-parametric approach for evaluating the efficiency of DMUs initially developed
by Charnes, Cooper, and Rhodes called CCR model (1978). The CCR model, built upon the constant
returns to scale (CRS) assumption, is used as the core structure for deriving other DEA models. Due
to its unique characteristics and strength, DEA has seen widespread adoption across various disciplines,
including management science, applied mathematics, industrial engineering, and economics. A com-
prehensive review by Mergoni et al. [27] examines DEA’s development over the past five decades.
Traditional DEA models treat DMUs as “black boxes”, ignoring their internal structures. In contrast,
Network DEA combines optimization methods with network modeling to incorporate internal relation-
ships, thereby improving the accuracy of efficiency analysis by better reflecting real-world operations.
The foundational work of Fére et al. [9] introduced network-based concepts to DEA. This concept has
been studied by many researchers, the most comprehensive one compiled by Kao [21].

The advanced formulations offer deeper structural insights and greater analytical precision, allowing
for more accurate efficiency assessments [4, 51]. Network DEA offers several distinct advantages when
assessing the efficiency of DMUSs with internal network structures. It accurately replicates the internal
structure of complex systems, enabling simultaneous evaluation of both overall system efficiency and in-
dividual sub-process performance. This approach provides decomposable efficiency measures, reducing
the number of unreal efficient DMUs and generating more accurate efficiency estimates. Network DEA
facilitates optimal resource allocation across network components and examination of interdependencies
between sub-processes [2, 17].

Both traditional DEA and NDEA approaches demonstrate significant sensitivity to data variations.
While these methodologies traditionally assume deterministic inputs and outputs, real-world applications
frequently encounter imprecise or uncertain data. To address this limitation, researchers have developed
sophisticated extensions incorporating non-deterministic frameworks to strengthen efficiency analysis
under uncertainty. The literature identifies different approaches for managing data uncertainty.

Stochastic DEA applies probability theory to account for random variations. There are three distinct
methodological interpretations in this concept:

* Modeling deviations from efficiency frontiers as random variables
* Accounting for random noise in measurements
+ Treating the production possibility set (PPS) as random PPS [29].

Stochastic modeling frameworks can only be properly employed when the dataset contains a sta-
tistically significant number of observations. Interval DEA was originally proposed by Cooper et al.
[5]. It computes efficiency bounds (optimistic and pessimistic) using interval data and enables DMU
classification based on efficiency ranges [6, 18].
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Fuzzy DEA effectively handles linguistic ambiguity and vagueness. This method incorporates
Zadeh’s fuzzy set theory [49]. A Comprehensive review of Fuzzy DEA is available in the study of
Hatami-Marbini et al. [14] and Emrouznejad et al. [8]. However, fuzzy DEA models present notable
limitations such as potential for unbounded optimal values and computational complexity with high so-
lution costs [13, 43]. Some fuzzy DEA models can only be formulated as linear optimization problems
when restricted to trapezoidal fuzzy number representations [14]. These challenges highlight the need
for careful model selection based on the specific nature of uncertainty in each application context.

Uncertainty theory provides a mathematical framework for quantifying expert opinions when sta-
tistical data is unavailable or unreliable. This axiomatic approach proves particularly valuable in (1)
forecasting during emergencies such as war or pandemic, (2) analyzing scenarios with scarce historical
data, (3) modeling qualitative concepts with linguistic ambiguity, and (4) analyzing dynamic systems
subject to continuous-time noise .In such cases, uncertainty theory systematically considers domain ex-
perts’ opinions [26]. Recently, many studies have applied uncertainty theory to present an applicable
efficiency analysis. Lio and Liu [24] developed an innovative CCR model that treats inputs and outputs
as uncertain variables, deriving an equivalent deterministic formulation through expected value calcu-
lations. In another study, a new model was suggested to achieve the highest degree of belief that the
evaluated DMU is efficient [11]. The field has observed further expansion as additional scholars have
successfully adapted traditional DEA methodologies to incorporate uncertainty principles [11, 34, 46].

We divide this section to focus on various aspects of DEA, with a particular emphasis on the method-
ological approaches employed to address the inherent uncertainty associated with efficiency assessment.

2.1 Network DEA

Network DEA combines optimization techniques and network modeling to consider internal structural
connections during efficiency assessments. This method increases the realism of DEA models by more
precisely simulating the operational mechanisms present in real-world systems [21]. The incorporation
of network-based ideas into DEA by Fire et al. [9] broadened traditional methodologies, extending
established frameworks like two-stage and hybrid DEA models.

These expanded formulations offer greater structural detail and analytical oversight, permitting mod-
elers to enhance efficiency evaluations [4, 42, 47]. Such network-based modeling methods enable the
systematic evaluation of individual components by monitoring efficiency at the sub-component level.
They aid in pinpointing underperforming units that obstruct overall system effectiveness, while concur-
rently emphasizing optimized entities that boost operational performance [2, 17].

Network DEA models fall into two primary categories: static and dynamic. Static DEA depends on
predefined elements and relationships that stay unchanged over time, providing a simplified structure
for efficiency analysis. Conversely, dynamic DEA adopts a more realistic method by indexing elements
across different time periods, permitting the assessment of efficiency changes over time.

Apart from these classifications, some network DEA models include uncertainty in relationships and
values. For example, stochastic network DEA incorporates probability theory to improve the reliability
of efficiency assessments in complex real-world situations [39, 50]. However, when probability the-
ory is insufficient due to unreliable or inadequate data, alternative nondeterministic approaches—such
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as fuzzy theory and uncertainty theory—are used to create refined versions of efficiency measurement
frameworks [11, 16]. These techniques allow a more adaptable and robust assessment of efficiency
under uncertain conditions. The growing availability of big data, alongside progress in computational
technologies, has created new opportunities for improving network DEA models by capturing more
complex relationships within intricate systems. These technological enhancements have considerably
widened the applicability of network DEA, enabling more accurate and dynamic efficiency evaluations.
Increased computational power now supports real-time efficiency tracking, further extending the rele-
vance of network DEA to sectors like healthcare and finance, where continuous performance monitoring
is crucial. Moving forward, future advancements are anticipated to integrate machine learning techniques
to refine efficiency assessments and yield deeper insights into system dynamics, ultimately enhancing

decision-making and operational performance [37].

2.2 Non-Determinstic Methods

Stochastic DEA (SDEA) was developed to handle uncertainties in financial activities by integrating
random noise into the DEA structure. This technique delivers a more practical evaluation of efficiency in
unstable settings, like those in banking [29]. Although SDEA was initially presented by Charnes et al.[3],
the inclusion of stochastic components to DEA is credited to Banker’s research [30]. The dependability
and usefulness of SDEA models were shown in multiple investigations by Korostelev et al. [22], and
Simar [40], which prepared the way for incorporating distribution functions, stochastic processes, and
bootstrapping methods. Nonetheless, SDEA is vulnerable to sample size and demands strict assumptions
about the distributions of noise and inefficiency, which might not always apply in actual situations [41].
Limited datasets can cause skewed efficiency estimates, emphasizing the necessity for models that more

effectively manage uncertainty in banking information [10].

Fuzzy DEA (FDEA) is a further expansion of conventional DEA, created to manage vagueness in
input-output information through fuzzy set theory [48]. It has been especially beneficial in cases where
financial information is inexact, such as risk appraisals or qualitative analyses [1]. However, FDEA
brings subjectivity into the examination via the choice of membership functions, which can introduce
human prejudice [ 12]. Furthermore, resolving fuzzy DEA models can be complicated, especially when
used on extensive datasets typically present in financial industries [23]. To assess revenue efficiency in
fuzzy network data envelopment analysis by converting a fuzzy efficiency model into an exact linear

programming issue employing linear ranking functions and triangular fuzzy numbers [38].

To address the constraints of SDEA and FDEA, investigators have suggested expert-based models
such as uncertainty theory, established by Liu [26]. Uncertainty theory does not depend on probability
distributions, rendering it more flexible to settings with extremely uncertain information, like emerging
markets in the banking industry [19, 26]. By integrating expert opinions into the DEA structure, this
approach supplies a sturdy option for efficiency measurement in ambiguous settings [28]. Uncertainty
theory has proven its utility and significance in representing real-world issues where information is
scarce, untrustworthy, or mainly qualitative and grounded in human assessment [25]. However, the
precision of these models is highly reliant on the trustworthiness of expert contributions, which can
differ in application. Consequently, it is vital to seize the most critical features of the problem and
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utilize the interdependencies among DMU s to attain outcomes that more accurately represent real-world
situations.

Table 1 displays instances of research performed in diverse areas connected to imprecise informa-
tion. The included studies tackle the difficulties linked to three-stage and generalized network structures
in ambiguous data settings. In this paper, we intend to suggest a model within an uncertainty-based struc-
ture that efficiently tackles these difficulties, delivering an organized and thorough solution to enhance

efficiency assessment under data inaccuracy.

Table 1: Some studies of FDEA, SDEA,GDEA and UDEA.

Author(s) Main contributions(FDEA) Studied problem
Puri J, Yadav SP [36] fuzzy DEA model with
undesirable fuzzy outputs banking sector in India
Pourbabagol et al. [31] Fuzzy DEA network based on supply chain performance

possibility and necessity measures

Pourmahmoud, Jafar, and Naser Bafekr [32] | cost efficiency with fuzzy DEA models -

Author(s) Main contributions(SDEA) Studied problem
Olesen and Petersen [29] Stochastic data envelopment analysis A review
Author(s) Main contributions(GDEA) Studied problem
Wang et al. [45] Efficiency with DEA and Grey theory estate companies
Pourmahmoud et al. [35] DEA with three-parameter
interval grey number Health System
Author(s) Main contributions(UDEA) Studied problem
Ghaffari-Hadigheh and Lio [11] NDEA in uncertain environment -
Pourmahmoud and Bagheri [33] uncertain model for

a basic two-stage system -

2.3 DEA in Banking System

Financial systems have utilized efficiency assessment models like DEA more broadly than many other
industries. Banks depend significantly on optimizing overall and subdivided processes within their sys-
tems, employing various measures to evaluate current efficiency. By recognizing the most efficient
units, banks can emulate their behavior and practices, strategize for other units, merge them, or intro-
duce new inputs or outputs to their task networks. DEA models, encompassing two-stage and three-
stage frameworks, have been extensively used in the banking sector to evaluate and boost operational
efficiency. These models break down banking activities into interlinked sub-processes, enabling a more
detailed performance analysis. For example, a two-stage DEA model can separate banking operations
into deposit-taking and loan disbursement stages, allowing banks to pinpoint inefficiencies within each
phase and execute necessary improvements [15]. Likewise, three-stage DEA models include an addi-
tional intermediate stage, offering a more thorough evaluation of the operational structure and improving
strategic decision-making [7, 20, 51]. The use of network DEA models aids banks in optimizing resource
allocation, lowering operational costs, and enhancing service delivery by detecting bottlenecks and im-
proving process efficiency [44]. As the banking industry grows more complex, combining network DEA
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models with advanced data analytics techniques further increases their applicability and effectiveness in
performance appraisal.

Progressing DEA methodology demands continuous enhancement in uncertainty-handling tech-
niques, particularly in complex network environments where data imprecision is common. As a network-
based system, banks depend intensely on optimizing both overall and subdivided processes using various
efficiency measures. Nevertheless, in some countries, such as Iran, where inflation is extremely volatile,
customer performance can be impacted by temporary fluctuations. Thus, when addressing this specific
input, it is essential to recognize that the data is not exact and carries an inherent level of uncertainty. In
these instances, the knowledge and viewpoints of experts can be highly beneficial. In this research, we
adopt a three-stage network structure to assess the loan allocation process, specifically in cases where
expert opinions are pivotal. Moreover, in the second practical illustration, we propose a fresh perspec-
tive on the branch merger issue by analyzing all possible merger outcomes, with experts specifying the
input data for each case. Based on the suggested model, we determine the best merger strategy and offer
it as a data-driven suggestion for bank managers and policymakers.

3 Uncertainty Theory

The content in this section is based on reference [26]. For a detailed discussion and complete proofs of
the theorems, please consult the original source.

Let I' be a nonempty set and L be a o-algebra over I'. Each element A € L is called an event. A set
function M : £ — [0, 1] that satisfies the following axioms is known as an uncertain measure:

(Normality Axiom):
M{I'} = 1. (1)
(Duality Axiom):
M{A} + M{A°} =1, Ae L. )
(Subadditivity Axiom):
M{[J A} <D M{AY, 3)
i=1 i=1

for any countable sequence of events A; C L.

The triplet (T, £, M) is called an uncertainty space.

The Product Axiom, which differentiates uncertainty theory from probability theory, is formulated
as follows:

(Product Axiom): Let (TI'k, Lr, My) be uncertainty spaces for k = 1,2,.... Then, the product

uncertain measure M on the product o-algebra £1 x Lo X ... X L,, satisfies:

M{J] Ae} = A Me{As}. )

k=1 k=1

where /\ denotes the infimum.
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Definition 1. An uncertain variable is introduced to facilitate the quantitative modeling of phenomena
within uncertainty theory. It is a measurable function from an uncertainty space (I, £, M) to the set of
real numbers. Specifically, for any Borel set B, the set

{¢eB}={yel'|¢&() € B},
is an event.
The uncertainty distribution of an uncertain variable £ is defined as:
P(z) =M{¢ <z}, zeR (5)

Furthermore, a set of uncertain variables &1, &o, .. ., &, are said to be independent if, for any Borel
sets By, Bs, ..., By, the following holds:

n n
M{ﬂ(fieBi)}:/\M{gieBi}. (6)
i=1 i=1

In the literature on uncertainty theory, various types of uncertain variables are explored. One of the
simplest among them is the linear uncertain variable. Building on the previously introduced definitions,
we now present several commonly used uncertainty distributions.

The most widely applied is the linear uncertainty distribution, defined as follows:

0, r < a,
P(x) = ¢ =2, a<z<b, (7
1, z >b.

where a and b are real numbers with a < b.

The second most commonly used distribution is the zigzag uncertainty distribution, defined as fol-

lows:
0, z < a,
el a<x<hb,
®(x) = § 20" ®)
5(c—b) * b<zx<eg,
1, T > c.

where a, b, and ¢ are real numbers with a < b < c.

Another commonly used distribution is the normal uncertainty distribution, expressed as follows:

O(x) = <1+exp (77(\e/§—03:))>17 z >0,

where e and o are real parameters with o > 0.

Definition 2. Let £ be an uncertain variable with regular uncertainty distribution ®(z). Then the inverse

function @1 () is called the inverse uncertainty distribution of &.
The inverse distributions corresponding to the three distributions above are as follows, respectively:

dHa) = (1 —a)a+ ab,
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(1 —2a)a+ 2ab, a < 0.5,
(2-20)b+ (2a—1)c, a > 0.5,

¢‘1(a)=e+031n( - >,

™ 11—«

O(2)" (o) =

for arbitrary Borel sets By, Ba, . .., By,. An uncertain distribution ®(x) is considered regular if it is a
continuous and strictly increasing function with respect to z, satisfying 0 < ®(z) < 1, and

mgrzloo O(z) =0, wgrfoo O(z) =1. ©)
Let&y,. .., &, be independent uncertain variables with regular uncertainty distributions @4, . .., ®,,,

respectively. Suppose that the function f (1, o, . . ., &, ) is strictly increasing with respect to £1, €a, . . ., {m,
and strictly decreasing with respect to &,, 41, {m-2, - - -, En- Then, f itselfis an uncertain variable whose
uncertainty distribution can be derived accordingly.

U(z) = sup < min D;(x;) A min (1 — @(xz))) . (10)

F(@1,@2,0mn) =2 \1SISM m+1<i<n

Theorem 1. If the function f(&q,...,&,) is strictly increasing with respect to &1, . .., &, and strictly
decreasing with respect to &, 41, - - ., &n, then f is an uncertain variable whose inverse uncertainty dis-
tribution is given by:

)= f (@7 (a),..., 2, (), @, (1 —a),..., 0, (1 — ). (11)
The expected value of an uncertain variable £ is defined as:
+oo 0
g = [ wmie>rar- [ mie<non
0 —o00

provided that at least one of these integrals is finite.

Theorem 2. Given an uncertain variable £ with uncertainty distribution ®(z), its expected value is
calculated as follows:

Bl = [ 0o [ " by,

— 00
Assuming at least one of these integrals converges, the expected value of an uncertain variable with a

regular uncertainty distribution ®(z), can also be expressed as:

Corollary 1. According to Theorem 2:

* The expected value of a zigzag uncertain variable £ ~ Z(a, b, c¢) is:
a+2b+c
Blg = LS
¢ The expected value of a linear uncertain variable £ ~ L(e, f) is:

Bl =31

Furthermore, if £ and 7 are independent uncertain variables with finite expected values, then for any real

numbers a and b: the expected value of the linear combination aé + by is given by:

Ela& + bn] = aE[¢] + bEn)]. (12)
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4 The Three-Stage Network DEA Model

We employed a three-stage framework to depict the scenario. Following this choice, the uncertain DEA
framework is formulated; in this structure, as the variables incorporate an uncertain character, we utilize

their expectation to transform the issue into a solvable form.

4.1 The Problem at Focus

In this section, we outline an actual process employed by Iran’s banking system for extending loans to
individuals, startups, and enterprises according to their business proposals, job generation capacity, and
intended services or products. Our objective is to appraise the complete accreditation procedure using
an uncertainty theory-based model to gauge the banking system’s efficiency.

The framework contains three phases, mirroring the real-world process, with a total of n DMUs
participating in judging each applicant’s suitability. The procedure commences when an organization
conducts a preliminary interview with the applicant to assess the knowledge-oriented character of their
business proposal and its capacity to produce employment prospects. Subsequently, in the second phase,
the central bank and its partner organizations appraise the proposal’s macroeconomic and microeconomic
contributions. This analysis seeks to establish the comprehensive effect of the suggested enterprise on
both national and regional economies. Ultimately, in the third phase, one or more branches of private or
public banks evaluate the loan applicant’s repayment capacity. This stage is critical for safeguarding the
banking system’s financial soundness. Through applying this model, we acquire valuable perspectives
on the accreditation process’s efficiency. The model’s outcomes validate whether the banking system is

successfully executing its function in granting loans to qualified applicants.

4.1.1 Why is there a need to use Liu Uncertainty Theory?

In this context, the banking system possesses minimal, if any, information regarding a business plan
before it undergoes evaluation through multiple stages and DMUs. Even when lenders obtain the plan,
inadequate time prevents comprehensive scrutiny of details or collection of supplementary relevant data.
Consequently, only specific indicators can be connected to historical precedents and comparable cases.
Additionally, the actual data employed, processed, and depended upon for decisions are the viewpoints
of experts engaged across various DMUs at different stages.

Given these constraints, the banking system encounters substantial difficulty in acquiring thorough
knowledge about a business proposal. The informational deficit remains until the plan is formally sub-
mitted and appraised by successive stages and DMUs. Regrettably, lenders frequently face time limita-
tions and cannot deeply inspect the plan’s complexities or assemble additional information. As a result,
lenders must depend on restricted signals tied to prior occurrences and similar circumstances. Further-
more, final decisions rest on the judgments of specialists participating in distinct DMUs throughout
multiple phases.

Under these conditions, the accessible data is inadequate to effectively employ probability theory
as a verification mechanism. Thus, substitute methodologies like Bayesian or Fuzzy theory require ex-
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amination. Bayesian theory entails considerable computational expenses and difficulties in establishing
appropriate prior probabilities, since deriving suitable values from human validators’ beliefs lacks clar-
ity. Conversely, Fuzzy theory, as emphasized by Liu, exhibits constraints related to its theoretical basis
and axiom selection. Moreover, selecting an apt membership function is chiefly problem-specific and
lacks a defined methodology for initiating the process or achieving the intended membership function.

Considering these factors, the present data insufficiency clearly necessitates exploring alternative
validation approaches. While Bayesian and fuzzy theories offer potential remedies, each method intro-
duces unique challenges and intricacies requiring careful assessment.

4.2 The Proposed Model

Consider the following three-stage network structure as shown in Figure 1. The deterministic model of
this structure, based on Kao’s framework [21], is formulated as follows when the data is deterministic.

X2 X3

al >l 1 _I 4 I:zj L ‘-'_3 l::Yg

Y, 2

Figure 1: Structure of the three-stage system.

s h
max Y, u. Yoo+ Y. weZgo
r=1 g=1

m h
s.t. Z v; X0 + Z nggO =1,
i— g=1

1) h< > m® 1
Sl + - wX) <o,

() 2 h(2 13

Zr s 41 Ur 7(3) + Zg (D41 U)gZ 2) (13)

m® 2 A
- ( D imm( 1 UiXi(j) + Zg h(®+1 wQZéJ)) =0,

3) 3)

s (3) m! 3) h® 2)
Zr:s@ﬂ urY, ;" — (Zi:m<2)+1 viX;" + Zg:h(l)—‘rl Wy Z ) <0,
Vjy Uy, Wy 2 €.

. X(k) k=1,...,3,j = 1,...,n, i = 1,...,m"*) are the exogenous inputs. Specially,

1 )
X Z-(O)’s are the first stage inputs, X (0) are the second stage’s exogenous inputs and X (0) are the
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third exogenous inputs of the target DMU. We also assume the all the variables are independent
throughout the study.

. Z;;.), k=1,2, j=1,....n, g=h* D41 ... K areintermediate products at each stage.
. Yr(f), k=1,...,3,j=1,---,n,r=1,...,5% are final outputs of the model at each stage.

* v, Up, Wy > € are positive weights that are needed to be optimally chosen.

Consider the following sketch of the three-stage model where all the variables are considered to be
in an uncertain environment with information provided out of it through the opinions of some experts.
In this model, following assumptions are considered. We also note that all the uncertain variable are
positive. Therefore, based on our assumptions and the flowchart of the model, we present the uncertain
DEA model through the following optimization problem

[ s h
maxF Z UrYro + Z WgZ g0
r=1 g=1

[ m h
s.t.E ZviXiO + ngzgo =1,
Li=1 g=1

(D Jaeh) m®
(1) (1) (1)
DTS SURTE SLEC B
r=1 g=1 =1

s(2) h(2)
El Y wyP+ > wz? (14)
Lr=s(1)+1 g=hM+1
m® [Xe)
(2) (1)
_( dowX Y nggj) =0,
i=m) +1 g=h( 41
s® m® B2
Bl Y wyP- (Y e+ ¥ owzl)| <o
r=s(®+1 i=m)+1 g=hM 41

Vs Upy Wy 2 €.

After interviewing various experts across different stages and DMUSs, and taking into account each uncer-
tain variable, we represent their beliefs through uncertain distributions. We assume that each uncertain
distribution is regular and has a well-defined inverse. Consequently, the uncertain inverse distributions
of the model’s variables are represented as follows:

wi;1<k>_>xi§f>, k=1,....3, j=1,....n,i=1,...,m®,
¢;j1(k)—>Yr(f),k:l,...,S,j:l,...,n,T:L sk,
T, 2" k=12, j=1,.. 0 g=0* D 41, "),

Theorem 3. Suppose for any DM Uj, inputs, intermediate and output variables are uncertain then equiv-
alent crisp appearance of model (14) is model (15).
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max fol > Ut Ha )—i—zg 1ngg0( ))da

s.t. fol S vty (a )+Zg 1w9FgO( ))da— L,

s

Tl i o M a) + 0 w0 V) — o wwij““(l—a))daso,

1 s(2) —1(2 h —1(2
Jo | Sro g urdry (@) + g 1wy (@) s)

m® 1(2 1(1
_<El m+1 Uﬂﬂ” )(1 a) + Zg h<0>+1 wqrgﬂ 2 )(1 - a>>>da =0

3

1 —1(3
fo (Zr=3(2>+1 ur¢7»j ( )(a)

m®
—(zz e vt (L= ) + 20w TP (1 — a>>>da <0,
Vi, Ur, Wq > €.

Proof. Considering the following relationships:

s h
FO = Z Uy Yo + Z WgZg0-
r=1 g=1

FY is increasing in relation to Yo, Z,0 then as stated in Theorem 1 the inverse uncertainty distribution
of FU is:

s h
= Z urdyg (@) + Z ngg_Ol(a)
r=1 g=1

and according to Theorem 2

1/ s h
E(F°> :/0 (Zurqﬁrol(a)+ngrgol(a>>d(0‘)’

for the third constraint of model (14) considering

s(2) h(2) m2 ¢S]

Z uTm + Z wgZ —( Z v; X 2)+ Z ng(l)

r=s(1) 41 g=hM®) 41 i=m) 41 g=h()4+1

F? =

F3 is increasing in relation to Yr(j ), Zy; (2) and decreasing related to X 2(32 ), Z, (1) then as stated in Theorem

1 the inverse uncertainty distribution of F3is:

s(2 h(2
3\ — —1(2 —1 2
(FS) 1_ Z Ur¢ ( ) Z wg ( ) )
r=s(1) 41 g=hMD) 41

m® jaed
—( Z 1111/)_1(2) Z wgl’ _1(1 1—a)>.

i=mD) 41 g=h(® 41
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According to Theorem 2

1 2 xe)
() [ 2w X wre
0 \pmsg1 g=h(M 41

m? j3S)
- < S v P -a)+ Y wr - a)) )da.

i=m1) 41 g=h() 41

Do the same for other conditions. Therefore, using the results of Theorems 1 and 2 the claim is proved.
O

Theorem 4. Considering the optimization problem (14), there is at least one feasible solution.

Proof. Since all the uncertain variables are positive, their expected values are also positive. Now we
choose the weights of exogenous variables, v; as following

1- 22:1 e(Zg0)

v, =
’ mXio

(16)
We also assume that

Wy = Uy = €. (17)

We place the assumed solution in the model constraints:

[ m h h
1-— _.€(Z

B| 3 e, S ez -1,

Li=1 0 g=1

rs® R m h

1—3 g —16(Zg0)
(1) (1) =1 €(Zg0) (1)

EIPILTERS ST pEa > LB Y

=1 g=1 i—1 m-io

SN o) e h e

1—3 -1 €(Zg0)
(2) (2) g=1 9 (2) (1)

B| S o S oo (8 BEale, Sy

Lr=s(+1 g=h®) 41 i=m1) 41 g=h() 41

<0,

rs® m® h h®@

1=2 -1 €(Zgo)
(3) g=1 9 (3) (2)

5 e (X Rl 5o

Lr=s(2)4+1 i=m(2)+1 g=hM 41

Vi, Ur, Wq > €.

Since all data values are strictly positive, the proof is finalized by simplifying the given expressions,
ensuring logical consistency and correctness. With these choices for v;, wg, u, all the constrained are
satisfied and we prove that there is at least one feasible solution. O

Theorem 5. The optimization problem (14) has an optimal solution.

h

> wyZgo
g=1

Proof. Based on the first constraint, both F| viXZ-O] and F are finite. Therefore,

=1
using the sum constraints two, three and four we have
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E

s h m
ZUTYT]' + ngZgj - Z’UZX”‘| S 0,
r=1 g=1 i=1
s h m
ZUTYT]‘ —+ ngZgj S ZUiXij'
r=1 g=1 i=1

It is resulted that the objective function of the model (14) is finite, therefore, using the previous theorem,

E

it has an optimal solution. O

4.3 The Model with Linear and Zigzag Uncertain Variables

For the sake of illustration, assume that inputs are all have uncertain linear distribution L(e, f), inter-
mediates and outputs have uncertain zigzag distribution Z(a, b, ¢).

Since all the uncertain variables in the model are independent, the expectation operator can be moved
inside the summation symbols. According to Corollary 1 model (14) is given as

] h
ro+2b, - ago+2bg0+c
Uy (aro+ 4o+c 0) + Z wg( 90 4g0 50)

M

max
r=1 g=1
m h
(eio+fio) (ago+2bgot+cgo)
S.t. Z vyt - 0) 4 Z Wy = 1,

=1 g=1

Zs(l) (@rj+2bri+cr)) Jrzh(l) (agj+2bg5+cg;) Zm(l) eigtfig)
r=1Ur 1 g=1Wg 1 i=1 Vi U
(2) (ar; ) A (2) ] ) )
s arj+2brjtcry) h (ag;+2bg;+cgs) _

Doy Ur T S ) o Wyt (18)

(2) (eij+Fij) jXeY) (ag;j+2bgi+cq;)
m € a C.
(Ei:m“)H Uit T ) o) g Wyt ) =0,

s® (arj+2brj+cr))
Zr:5(2>+1 Uy 1

(3) (eij . (2) ) ) )
_ m  (€ij +fiz) h (agj+2bgi+cgj)
(Zi:m(2>+1 V; 3 + Zg:h(l)-‘,—l Wy 1 <0,

Uiy Up, Wy 2> €.

Therefore, in the original uncertain optimization model, each uncertain variable can be replaced by its
expected value, resulting in the deterministic equivalent shown above. This transformation preserves
the structure of the optimization while removing the uncertainty, making it solvable by standard mathe-
matical programming methods.

5 Generalizing to a P-Stage Model

In real-world applications, problems often exhibit a higher degree of internal structural complexity. Con-
sequently, accurately modeling such multifaceted issues typically requires the implementation of a gen-
eralized P-stage network. In this section, we extend the proposed model to the general network case.
For a system with p stages, as illustrated in Figure 2, we have the following Model 19.



118 Network Data Envelopment Analysis and Uncertainty .../ COAM, 10 (2), Summer-Autumn (2025)
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Figure 2: Structure of the p-stage system.
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r=1 g=1
m h
st. FE Z v; X0 + Z ’u}ngo =1,
i=1 g=1

&)
E ZT lurY(l —|—ZZ 1 Wy ;;) ZZ 1 UZX( )] <0,
p

Bl

@ (2) | 5 M
m
- ( D imm 41 v X+ Zg:h(mH weZy; )

) (2) h(2) (2)
s 41 u’FYrj + Zg:h(1)+1 nggj

<0

)

(k) (k) h(F) (k)
S
E| Y et U Yo Do 41 Wo Ly,

k) R(k=1)

SP

Uiy Up, Wy 2 €.
Similarly, we define the distributions of the uncertain variables as follow

Pty x ™ k=1,....p, j=1,....n,i=1,....,m®,

1] 1] )
gi);jl(k) YT(Jk), k=1,....p,j=1,....n,r=1,...,s%),

| (AN 1C) k=1,....p—1,j5=1,....n,g=h* 1 41,

97 937

Based on the above discussion, we present the following theorems:

Theorem 6. Consider Model (19). Then the following representation holds

ROD][ geh®Da1,.. p®  g=h®=D+1,  pE-D r=s® D41,

s®

( k k—1
_<Z£m<k-l>+1 uiXy ka4 e Zy, ))] =0 R=2ered

mP (3) h(P=1) (p—1)
E ZT s(P—1)41 UrY,] (Z¢:m<p71>+1 Uin’j + Zg:h(P*Z)-i-l nggj <0,

Rk,

(19)



Pourmahmoud, et al./ COAM, 10 (2), Summer-Autumn (2025) 119

1 s h
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fo r=1U 11)( )"‘Zh Lwgly (1)(0‘)_27 1 vit; 1(1)( —a)da <0,

—1(k) (a) 1(k)

h(F)
fO r= s(k 14 UrPprj +Zg h(k=1) 41 wgrgg
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Uivuf‘ng Z €.

Proof. The proof follows similarly to that of Theorem 3, with the argument being repeated for each
k=4,...,p. See Appendix A for more details. O

Theorem 7. Consider optimization problem (19). Then there exists at least one feasible solution.

Proof. Given the positivity of all uncertain variables, their expected values are strictly positive. Adopt-
ing weighting coefficients similar to Theorem 4 and following the same proof methodology guarantees
constraint satisfaction. See Appendix A. O

Theorem 8. The optimization problem (19) admits an optimal solution.

Proof. Observe that the objective function of model (19) is identical to that of model (14). Since model
(14) possesses an optimal solution, this property consequently extends to model (19). For complete
technical details of this proof, we refer the reader to Appendix A. O

6 Numerical Implementation

Example 1. In this example, we analyze 10 loan applications submitted by companies and business
owners seeking financial support from a private bank in Iran. Our analysis focused on four branches
of this bank. Among these applicants, some possess strong financial backgrounds, while others were
perceived as untrustworthy due to financial instability or previous loan repayment issues. Several ap-
plicants had previously applied for loans but were rejected. The primary challenge is to evaluate the
capability of each branch to accurately identify suitable candidates for loan approval.
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However, the input data provided to these branches fluctuates significantly and is highly influenced
by expert opinions. Each branch received diverse input sets characterized by different statistical distribu-
tions, contributed by five financial experts offering distinct perspectives on the key variables representing
customer financial conditions. Consequently, each branch is assessed using five separate data groups,
enabling us to evaluate their ability to analyze customer financial credentials across various scenarios.
For instance, some data sets prioritize customer income and estimated business revenue, while others
emphasize loan history and geographical location. This approach ensures a broad spectrum of input
variables and distributions, providing comprehensive information for accurate financial assessment.

Each branch, analyzed through these five data groups, represents a set of decision-making units
(DMUs). Based on these assumptions, the relevant variables are defined as follows:

Initial inputs X;;:

+ Applicant’s average monthly turnover (income history),

* Declared initial capital or shares by the applicant,

* Business plan score (based on preliminary expert review),

+ Number of jobs proposed to be created,

+ Applicant’s personal financial reliability (e.g., credit history or reputation),

+ Industry experience and professional background relevant to the proposed business

+ Knowledge-based project score,

* Innovation index,

* Local economic contribution score,

+ Alignment with the national economic goals,

* Projected employment impact,

* Loan repayment risk index,

* Market readiness and commercialization potential.
Final output Y;;:

* Overall loan approval score,

+ Estimated probability of repayment,

* Anticipated loan return (profitability for the bank),

+ Risk-adjusted strength of loan recommendation,

* Applicant’s financial leverage and debt-to-income ratio.
Distribution Modeling:

i. For inputs (linear distribution): v;;'*™ () = 0.05a;; + 0.95b;;,

ii. For intermediate outputs (linear distribution): qb;jl(k)(a) = 0.05¢,; + 0.95d,;
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iii. For final outputs (normal distribution):

—1(k) - U\/g 0.95
Ly (@) = egj + <7r In (005 )

where (a, b), (¢,d) and (e, o) are parameters provided in the accompanying tables.

Example Variable Explanation:

For instance, setting o = 0.95, the scaled value for the “Number of jobs to be created” variable represents
the estimated maximum number of jobs that a customer might generate if granted the loan.

Table 2: Exogenous inputs.

DMU ¥~ 1 (Inputs)

1 [(5.25,9.5), (5.25, 7.5), (7.25, 9.5), (7, 9), (8.5, 9.5)]
2 | [2:5,7.0), (5.0, 6.5), (8.5, 10.5), (7.0, 9.0), (6.5, 8.0)]
3 [(4.5,8.5), (6.5, 9.0), (7.5, 9.5), (7.5, 9.5), (6.0, 8.0)]
4 [(4.0,7.5), (5.5, 7.0), (8.0, 9.0), (7.0, 8.5), (6.5, 8.0)]
5 [(6.0, 8.5), (7.0, 9.0), (7.0, 9.0), (7.5, 8.5), (6.0, 8.0)]
6 [(4.0, 8.0), (5.0, 6.0), (8.0, 9.5), (7.5, 9.0), (7.0, 9.0)]
7 [(5.5,7.5), (6.0, 8.0), (8.5, 10.0), (7.5, 9.0), (7.5, 9.5)]
8 | [(3.5,8.0),(55,6.5),(8.5,9.5),(7.5,9.0), (6.5, 8.5)]
9 [(2.5, 8.5), (6.5, 8.0), (7.5, 9.0), (6.0, 8.5), (7.0, 9.5)]
10 | [(5.0,8.0), (5.5,7.5), (8.0, 9.5), (7.5, 9.0), (7.5, 9.0)]
11 [(6.0, 8.5), (7.5, 8.5), (7.5, 9.0), (7.5, 8.5), (6.5, 8.0)]
12 | [(5.0,7.5),(6.5,7.5), (8.0, 9.5), (7.5, 9.0), (7.5, 9.0)]
13 [(3.0,7.5), (4.5, 6.0), (7.5, 8.5), (6.5, 8.0), (7.0, 8.5)]
14 | [(6.0,8.5),(7.0,9.0), (8.0, 9.5), (7.5, 9.0), (6.5, 8.0)]
15 [(4.5, 8.0), (5.5, 6.5), (8.0, 9.0), (7.5, 8.5), (6.5, 8.5)]
16 | [(5.0,8.0),(5.5,7.5), (8.5,9.0), (7.5, 8.5), (7.0, 9.0)]
17 [(4.0,7.0), (5.0, 6.0), (8.5, 9.5), (6.5, 8.0), (7.5, 9.0)]
18 | [(5.0,8.5), (6.0, 8.5), (7.5, 9.0), (7.0, 8.5), (6.5, 8.5)]
19 [(3.5,7.5), (5.5, 6.5),(8.0,9.0), (6.5, 8.0), (7.0, 8.5)]
20 | [(4.0,8.5), (6.5, 8.0), (8.5,9.5), (7.0, 9.0), (6.5, 8.5)]
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Table 3: Intermediate products.

DMU #~ ! (Intermediate Outputs)
1 [(15.0, 26.5), (18.0, 21.5), (11.5, 16.0), (14, 17), (11, 13.5), (12.5, 14.5)]
2 [(13.0, 22.5), (19.0, 24.5), (14.5, 17.0), (10.0, 12.5), (16.0, 18.5)]
3 [(14.0,25.5), (18.5, 21.0), (12.5, 15.0), (10.0, 13.5), (16.5, 19.5)]
4 [(13.5, 22.5), (20.0, 23.0), (11.5, 13.5), (11.5, 14.5), (16.0, 17.5)]
5 [(14.5,25.0), (19.5, 21.0), (12.5, 14.0), (12.5, 15.0), (16.5, 18.0)]
6 [(15.5, 24.5), (17.5, 19.5), (12.0, 13.0), (10.0, 12.5), (16.5, 18.5)]
7 [(14.5, 23.5), (18.0, 21.5), (12.5, 14.5), (12.5, 14.0), (16.0, 17.0)]
8 [(12.5, 23.0), (19.0, 21.0), (11.5, 13.0), (10.0, 12.5), (17.0, 18.5)]
9 [(13.5,22.5), (18.0,21.0), (11.5, 13.0), (11.0, 12.5), (16.5, 18.5)]
10 [(15.0, 24.0), (20.0, 22.5), (12.0, 14.5), (12.0, 14.0), (17.0, 19.0)]
11 [(14.5, 24.5), (18.5,20.5), (12.5, 13.5), (10.5, 12.5), (16.5, 17.5)]
12 [(14.0, 24.0), (19.0, 21.5), (11.5, 12.5), (11.0, 13.0), (16.5, 18.0)]
13 [(13.5, 23.5), (18.5, 20.5), (12.0, 14.5), (10.5, 12.5), (16.0, 18.5)]
14 [(14.5, 24.5), (18.5, 20.5), (12.5, 14.0), (11.5, 13.0), (16.5, 18.5)]
15 [(14.0, 23.5), (19.5,21.0), (11.5, 13.5), (10.0, 11.5), (16.5, 17.5)]
16 [(14.5, 23.0), (19.5, 22.0), (11.5, 13.5), (10.0, 12.0), (16.0, 18.5)]
17 [(13.0, 22.5), (20.0, 22.0), (12.0, 14.0), (11.0, 13.0), (17.0, 19.0)]
18 [(14.5, 24.5), (19.5, 22.0), (12.0, 13.0), (10.5, 12.5), (17.0, 18.5)]
19 [(12.5, 22.5), (18.5,21.5), (12.5, 14.0), (10.0, 12.5), (17.0, 19.0)]
20 [(13.0,23.5), (19.0, 21.5), (12.0, 13.5), (10.5, 12.5), (17.0, 18.0)]

Results and Insights

The analysis indicates that DMUs 11, 13, and 14 are efficient within this network. Their high efficiency
scores suggest that these branches have successfully evaluated applicants despite data uncertainties and
have demonstrated effective loan allocation or rejection decisions. Conversely, units 9, 8, and 16 exhibit
the lowest efficiency scores, indicating subpar performance in customer evaluation and loan decision-
making. This inefficiency has led to potential misallocations, such as granting loans to ineligible ap-
plicants or denying credit to worthy candidates. These branches should revisit their evaluation criteria,
weightings, and data quality to enhance decision accuracy.

Importantly, the integrated uncertainty theory, combined with our proposed model, effectively cap-
tures the optimal performance of these DMUs given their inputs and network structure. This approach
underscores the potential of uncertainty theory as a viable alternative to probability-based methods in
DEA, especially when data is scarce, unreliable, or primarily based on expert judgment.
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Table 4: Final outputs.
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[(3.30, 0.75), (3.5, 0.5), (4, 0.85), (3.5, 0.9)]
[(3.50, 0.90), (3.50, 0.85), (6.40, 0.95), (6.80, 0.88)]
[(3.40, 0.80), (5.90, 0.90), (6.80, 0.95), (7.90, 0.85)]
[(3.60, 0.70), (6.20, 0.85), (7.00, 0.95), (7.10, 0.80)]
[(3.30, 0.85), (5.70, 0.90), (6.90, 0.95), (7.30, 0.90)]
[(3.40, 0.80), (5.80, 0.85), (7.00, 0.90), (7.20, 0.75)]
[(3.30, 0.85), (5.90, 0.95), (7.10, 0.85), (7.40, 0.80)]
[(3.60, 0.80), (6.20, 0.90), (7.10, 0.85), (7.30, 0.90)]
[(3.50, 0.90), (5.90, 0.85), (6.80, 0.95), (7.20, 0.90)]
[(3.50, 0.85), (6.30, 0.90), (7.00, 0.95), (7.60, 0.80)]
[(3.40, 0.85), (5.80, 0.90), (7.00, 0.90), (7.30, 0.90)]
[(3.60, 0.80), (5.90, 0.90), (7.10, 0.95), (7.40, 0.85)]
[(3.40, 0.85), (5.80, 0.85), (7.10, 0.90), (7.30, 0.80)]
[(3.40, 0.80), (5.90, 0.85), (7.10, 0.90), (7.50, 0.80)]
[(3.50, 0.90), (5.80, 0.90), (7.00, 0.95), (7.30, 0.90)]
[(3.50, 0.85), (6.10, 0.85), (7.20, 0.95), (7.60, 0.90)]
[(3.60, 0.90), (5.90, 0.90), (7.20, 0.95), (7.30, 0.85)]
[(3.40, 0.85), (5.80, 0.90), (7.00, 0.90), (7.20, 0.85)]
[(3.40, 0.90), (5.70, 0.85), (7.00, 0.95), (7.30, 0.90)]
[(3.50, 0.85), (5.90, 0.90), (7.00, 0.90), (7.40, 0.80)]

Table S: Efficiency results for DMUs.

DMU | Efficiency | DMU | Efficiency
1 0.6591 11 1.0000
2 0.4088 12 0.7769
3 0.7242 13 1.0000
4 0.7223 14 1.0000
5 0.7362 15 0.9447
6 0.5421 16 0.4900
7 0.6991 17 0.7473
8 0.4894 18 0.8080
9 0.4279 19 0.8529
10 0.8480 20 0.7016
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Example 2. Consider a bank operating in a city with six branches. The management realizes that the
system is underperforming, as evidenced by a decline in customer numbers and banking activities. To
address this, they propose merging the six branches into three. To determine the most efficient com-
bination, we propose a new approach to this task, examining all possible merger scenarios (choosing
three out of six). Experts identify relevant data and important indicators for each scenario. Applying the
proposed model, we analyze the results to determine the most efficient option for bank managers.

To solve this problem, we employ a three-stage uncertain DEA model with the following consider-

ations:
* x1: Operational costs
* x5 Non-operational costs
* y;: Income from banking facilities
* yo: Income from service fees
* y3: Non-performing facilities
+ 2;: Personnel exchanged between branches
* 2z5: Money transferred between branches

We assume that all these variables are uncertain in nature because their values are derived through multi-
ple layers of filtering and assessment processes. As a result, the reported figures may not fully represent
their true origins or underlying causes. This inherent uncertainty stems from the complexity and vari-
ability in data collection, processing, and interpretation. To address this, we rely on expert opinions to
construct appropriate distributions for each variable, ensuring a more realistic and reliable depiction of
the underlying uncertainty.

The variables in our three-stage uncertain DEA model are defined with the following distribution
functions:

 For inputs (1 and z-):

¥ (@) = 0.05a;; + 0.95b;;,

+ For intermediate outputs (z; and z9):

'™ (@) = 0.05¢,; + 0.95d,.,

+ For final outputs (y1, y2, y3):

Sk, V3, (0.95
ng (a) = egj + <7{' In <OO5 .

The most efficient combination is C15, with an efficiency score of 0.642. This combination corre-

sponds to the following branches:
» Branch 1: Represents strong performance in operational costs and intermediate outputs.

* Branch 3: Provides high final output, including income from banking facilities and service fees.
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Table 6: Inputs (1, z2). Table 7: Intermediate outputs (21, 22).
Combination aij blj az; sz Combination C1j d1j C2; dzj

Cl1 10 15 5 8 Cl 3 5 2 4

C2 12 18 6 9 C2 4 6 3 5

C3 14 | 20 7 10 C3 5 7 4 6

C4 11 16 5 9 C4 3 6 2 5

C5 13 17 6 8 C5 4 7 3 6

Co6 9 14 4 7 Co6 3 5 2 4

C7 10 16 5 8 Cc7 4 6 3 5

C8 12 17 6 10 C8 5 8 4 6

C9 11 18 5 9 C9 3 7 2 5

C10 13 19 7 11 C10 4 9 3 6

Cl1 10 15 4 7 Cl1 3 5 2 4

Cl12 12 17 6 9 Cl12 4 6 3 5

C13 11 16 5 8 C13 3 7 2 5

Cl4 10 14 5 8 Cl4 4 8 3 6

Cl15 6 10 3 5 Cl15 2 4 1 3

Cl6 14 | 20 7 10 Clé6 5 7 4 6

C17 13 19 6 8 Cl17 4 8 3 6

Cl18 12 18 5 9 Cl18 3 6 2 5

C19 11 15 4 7 C19 5 7 4 6

C20 10 16 5 9 C20 4 6 3 5

Table 8: Final outputs (y1, y2, y3). Table 9: Rankings and efficiency.
Combination | e1; | o015 | e2; | 025 | e3; | 03; Rank | Combination | Efficiency

Cl 20 | 0.5 | 30 | 0.8 | 15 | 0.6 1 Cl15 0.642
C2 18 0.6 28 0.7 16 0.5 2 C10 0.631
C3 22 0.4 32 0.6 17 0.5 3 C8 0.615
C4 19 | 0529 | 0.8 | 15| 0.7 4 Cl6 0.600
C5 21 | 06 | 31 | 0.7 | 18 | 0.5 5 Cs5 0.592
Cc6 20 | 05| 30 | 0.7 | 16 | 0.6 6 C20 0.580
C7 19 | 06 | 29 | 08 | 15 | 0.5 7 C9 0.575
C8 23 0.5 33 0.6 18 0.5 8 Cl18 0.568
C9 21 0.6 31 0.7 17 0.6 9 C12 0.560
C10 22 1 04 | 34 | 06| 19 | 05 10 Cc7 0.554
Cl11 20 | 05130 | 07 | 15| 0.6 11 C4 0.543
C12 19 | 06 | 29 | 08| 16 | 0.5 12 C2 0.537
C13 21 | 05| 31 | 06 | 17 | 0.6 13 Cl13 0.530
Cl4 20 0.6 30 0.8 15 0.5 14 C3 0.520
Cl15 35 0.4 40 0.6 30 0.5 15 C6 0.515
Clé6 22 1 05| 32 |07 | 18 | 06 16 Cl 0.502
C17 23 1 04 | 33 | 06| 19 | 05 17 C17 0.495
C18 21 | 05| 31 |07 | 16 | 0.6 18 C19 0.482
C19 20 | 0.6 | 30 | 0.8 | 15 | 0.5 19 Cl1 0.470
C20 22 0.4 32 0.7 18 0.5 20 Cl4 0.455

» Branch 5: Balances low operational costs with significant intermediate and final output contribu-

tions.

These branches together maximize efficiency while minimizing redundancy, making C15 the optimal
choice.
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7 Conclusion

This research proposes a systematic approach to evaluating efficiency in complex decision-making envi-
ronments, especially where data uncertainty poses significant challenge. Traditional DEA models often
encounter limitations when dealing with uncertain data due to their dependence on deterministic inputs,
reducing their effectiveness in practical scenarios characterized by limited or expert-derived informa-
tion. To address this gap, this study integrates Liu’s uncertainty theory into a three-stage network DEA
framework, enhancing the accuracy of efficiency evaluations when historical data is sparse. The valida-
tion through two case studies in the banking sector highlights the practical utility of the proposed model.
Results demonstrate that uncertainty-aware DEA provides more reliable efficiency assessments for ac-
tivities such as loan distribution and branch consolidation. By effectively capturing uncertainties driven
by expert judgement, the model proves particularly beneficial for applications like financial risk anal-
ysis, credit evaluation, and strategic resource distribution. Looking forward, several potential avenues
could further expand and refine this framework:

* Integration with machine learning: Merging this uncertainty-based DEA with predictive analytics
can bolster efficiency forecasts .

* Dynamic uncertainty modeling: Future research could examine how uncertainties evolve over

time, enabling real-time decision-making in dynamic markets.

» Extending this approach to sectors such as healthcare, energy, and supply chain management,

areas where expert-driven uncertainty significantly influences efficiency assessments.

By advancing the measurement of efficiency under uncertain conditions, this study contributes to a more
adaptable and resilient decision-making process, ensuring organizations to better navigate uncertainty

with increased confidence.

Appendix. Detailed Proof of Theorems 6 and 7

Proof of Theorem 6

We consider an uncertain optimization model in which both the objective function and constraints in-
volve uncertain variables with known uncertainty distributions. To derive the deterministic equivalent
formulation, we employ inverse uncertainty distributions and expected value operators established in
uncertainty theory. Our analysis specifically relies on the following fundamental results:

* Theorem 1 (Inverse Distribution Transformation),
* Theorem 2 (Expected Value of Regular Uncertain Variables)

from Section 3.
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Step 1: Objective Function

The objective function in the uncertain model is expressed as:

s h
Z UrPro + Z nggO] .
r=1 g=1

Applying linearity of expectation and Theorem 2, we obtain:

max F

Elprol = / prd(a) doy,

Consequently, the objective simplifies to:

1 s h
max/ (Z urprg () + Z ng‘;Ol (a)) da.
0 \r=t g=1

Step 2: Constraints

Similarly, the first constraint becomes:

E

m h
> vitio+ Y nggO] =1,

i=1 g=1

which translates into:
1/ m h
/ (Z vt (@) + Z u)gl";o1 (a)) da = 1.
0 \i=1 g=1

For the k-th piecewise constraint, where £ = 1,.. . p, the structure involves differences between
weighted uncertain outputs and inputs. Utilizing Theorem 1, and noting the monotonicity properties, the
inverse distributions involved are:

. w;jl(k)(a) and Fg_jl(k) (o) for increasing functions,

. w&l(k)(l — «) for decreasing functions.

Accordingly, the constraints are formulated as follows:

e Fork =1:
1 [s(1) » h(1) " m(1) "
/O urpr D) + 3w T V) = > v V(1 - a) | da <0,
r=1 g=1 =1

e Fork=2,...,p—1:

1 s Rk
—1(k —1(k
[ wa®@r § uno)-

r=s(k—1)41 g=h(k=1 41

k)

m! —1(k A —1(k—1
(Zi:m(k,wﬂ Vi ( )(1 — @) + D p-2 1 Wel'y; ( )(1 — a)) da < 0.



128 Network Data Envelopment Analysis and Uncertainty .../ COAM, 10 (2), Summer-Autumn (2025)

Finally, for k = p:

1 s(P)
/ S w6 P (a)-
0

r=s(P—1) 41
m®) p(P—1)
( Z Uﬂ/)i;l(p)(l —a)+ Z ngg_jl(p_l)(l - a)) da <0
i=m(P—1) 41 g=h(P=2) 41

Step 3: Non-Negativity Constraints

The decision variables are constrained to be non-negative:

Ui,urawgzev Vi, T, g.

Proof of Theorem 7

Since all the uncertain variables in the model are assumed to be positive, their expected values, computed
via their inverse uncertainty distributions, are also strictly positive. This positivity ensures that, for the
input-oriented DEA model under uncertainty, it is possible to construct a feasible solution explicitly by
selecting the weights accordingly.
Define the input weights v; as:
1= 22:1 €Zgo

Ui—m—)(io, l::l,...,’l’n7

where ¢ > 0 is a sufficiently small scalar, and Z,o and X, are the expected values of the respective
uncertain variables associated with the decision-making unit (DMU) under evaluation.
In addition, set the output and intermediate output weights uniformly as:

With these choices, we verify the satisfaction of the model constraints:
Normalization (input) constraint: The input constraint (normalization condition) is satisfied because:

E -1,

m h h
1-— _ GZO
> 12 Z) )XZ-0+§ T
g=1

X mX,»O
i=1

due to the specific structure of v; absorbing the additive £ terms and by simplifying the given expressions

1
Ll

E

Remaining input-output constraints:
Foreachp € {2,..., P}, the expected value of the left-hand side (LHS) of the p-th constraint becomes:
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s(P) h(P)
Bl > P+ 3 ey
r=sP=141 g=h®-1 41

m® h R(P—1)

1—27 E(Z 0)
g=1 g (p) (p—1)

(XSmRS X e <o

i=mP-1 41 ¢ g=h(r—2)41

Since u, = wy = € and v; < 1, each term involving outputs or intermediate outputs is small and the
sum of weighted outputs is strictly less than the weighted inputs, making all inequalities satisfied. This
logic can be extended for any p € {2,..., P}, since in each constraint group the weights remain the
same, and the positivity and small magnitude of € ensures feasibility. Thus, all constraints are satisfied
under these weight assignments, and we conclude that the model has at least one feasible solution.
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