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1 Introduction

In the mid-20th century, few anticipated that the emerging control theory would play such a
pivotal role across various scientific and industrial fields. Resource constraints prompted the
integration of optimization techniques with control theory, leading to the development of Op-
timal Control Problems (OCPs), which remain among the most extensively explored interdis-
ciplinary topics. The ever-increasing advancements in computing power combined with the
invention of novel computational algorithms, often intertwined with various branches of math-
ematics, have driven researchers to develop innovative, efficient, resilient, algorithms. These
advancements have facilitated the discovery of approximate solutions to complex OCPs.

Traditionally classified into direct and indirect methods, solutions to OCPs have increas-
ingly relied on evolutionary algorithms, particularly as a form of direct methods. Despite their
limitations for large-scale problems, evolutionary algorithms have demonstrated their capa-
bility to provide suitable solutions, even for highly nonlinear problems, making them widely
applicable for tackling OCPs.

An ant colony optimization (ACO) framework is introduced in [3] to optimize control trajec-
tories, leveraging ACO’s strength in effectively exploring complex solution spaces. The study
demonstrates the algorithm’s effectiveness in handling nonlinear dynamics and constrained op-
timization problems.

In [6], innovative numerical approaches are proposed to utilize evolutionary computations
for solving OCPs, emphasizing the efficient optimization of control trajectories. By address-
ing computational challenges and validating results on test problems, the study highlights the
robustness of evolutionary methods as valuable tools for complex optimal control problems.

The application of evolutionary algorithms to multi-robot interaction in OCPs is explored
in [13], where the authors focus on enhancing collaborative dynamics among mobile robots
through optimized control strategies. Similarly, in [17], evolutionary algorithms are employed
to estimate control input ranges, demonstrating their utility in designing feasible and adaptable
control systems, with detailed analyses on performance and precision. More recently, [11]
applies numerical methods to convert nonlinear OCPs into quadratic forms, simplifying the
solution process.

A common approach to tackle OCPs involves transforming them into Quasi-Assignment
Problem (QAP). In [10], a Tabu Search matheuristic is proposed for solving the Generalized
QAP, integrating Tabu Search with mathematical programming techniques to enhance solution
quality and convergence speed. A Genetic Algorithm (GA) tailored to the Generalized QAP is
introduced in [7]. Authors employ genetic operators to address its combinatorial complexity
effectively, obtaining competitive results. When generally discussing QAP, successful heuristic
methods for such problems, can inspire successful combined methods.
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The relationship between OCPs and the QAPs is further explored in [8], where a GA frame-
work is proposed. This highlights the adaptability of GAs in navigating nonlinear, constrained
solution spaces, underscoring their versatility in broader optimization challenges.

For a comprehensive survey of algorithms addressing the Generalized Assignment Problem
(GAP), one can refer to [5]. This work categorizes and critically evaluates exact and heuristic
methods, offering valuable insights into their computational efficiency and practical applicabil-
ity, serving as a foundational reference for researchers exploring solution techniques for GAP
and related combinatorial optimization problems.

Recently, hybrid methods combining various optimization strategies have gained traction
for tackling nonlinear optimal control problems. In [19], a parallel hybrid variable neighbor-
hood descent algorithm is proposed, leveraging variable neighborhood search and parallel pro-
cessing to improve exploration and convergence. This method dynamically adapts neighbor-
hood structures to address nonlinearity, demonstrating effectiveness across multiple benchmark
problems. Additionally, [18] introduces a hub-location-based approach, modeling the optimal
control problem as a network design task and identifying critical “hubs” to simplify computa-
tion while preserving solution quality. This structured yet flexible mechanism is particularly
advantageous for high-dimensional decision spaces.

This paper focuses on OCPs modeled as QAPs. It employs evolutionary methods, such
as GA and Particle Swarm Optimization (PSO), to generate a community of feasible solutions
for the QAP. Subsequently, the problem is transformed into a P -Median Problem (PMP), and
clustering techniques are applied to refine the solution set toward higher efficiency. The best so-
lution is then chosen among these clusters. IncorporatingK-means clustering, which is widely
used in heuristic approaches for network distribution problems such as PMP, Vehicle routing
Problem (VRP) offers notable advantages (see e.g., [1, 9]). Unlike approaches requiring large
initial solution sets, this method uses metaheuristics to generate a limited number of initial so-
lutions and iteratively improves them with optimization techniques like PSO and GA, enabling
high-quality results in relatively short time.

The remainder of this paper is organized as follows: Section 2 defines the optimal con-
trol problem and details the discretization process that converts it into an assignment problem.
Section 3 elaborates on the proposed algorithms, with two subsections dedicated to the details
of the two algorithms. Section 4 presents the numerical implementations and results. Finally,
Section 5 concludes the paper.

2 Notations and Preliminaries

The optimal control problem, in its general form, is defined as follows:
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Minimize I(x(T ), u(T )) =

∫ T

0
f0(t, x(t), u(t)) dt (1)

subject to ẋ = f(t, x(t), u(t)), (2)

x(0) = x0, (3)

x(T ) = xT , (4)

where T is a known time horizon, x(·) : [0, T ] → Rn and u(·) : [0, T ] → Rm are state and
control vectors. Additionally, f0 : R1+n+m → R and f : R1+n+m → Rn are continuous
functions. The objective of this problem is to find an admissible pair (x, u) of state and control
functions, minimizing objective functional (1), while satisfying (2) and initial conditions (3)-
(4).

The OCP defined in (1)-(4), find applications across a wide range of scientific and indus-
trial fields, offering powerful tools to optimize processes and systems governed by dynamic
behavior. See [15] and [14] for two recent applications in robotics and aerospace engineering,
respectively.

One of the most common approaches through OCP defined in (1)-(4), is to discretize it. To
this end, the time interval [0, T ] is partitioned to n sub-intervals [ti−1, ti], i = 1, . . . , n, where
t0 = 0. Since we tend to detect an approximate optimal control for problem (1)-(3), we focus
on finding an optimal piece-wise control function u(·) for the problem. Therefore, the range of
feasible values [umin, umax] for control vector u is discretized to the set {u0, . . . , um}, where
u0 = umin and um = umax. Simply, one value from {u0, . . . , um} will be assigned to a sub-
interval [ti−1, ti], i = 1, . . . , n, in the final solution. First, we consider the space of time and
control as piecewise constant segments, see Figure 1. Finding the best value from {u0, . . . , um}
to be assigned to each interval [ti−1, ti], i = 1, . . . , n is a quasi-assignment problem. Note that
there are nm piece-wise constant functions that must be checked in this assignment. The aim
of this paper is to provide a method to apply evolutionary techniques for detecting the best
approximate piece-wise constant control function. Assume that u(t) =

∑n
k=1 ukζ[tk−1,tk](t)

is a piece-wise constant function, then a numerical method as Euler method or Rung-Kutta,
is applicable to find the trajectory corresponding u(t) from (2) with initial condition x(0) =

x0. Thus, (x̂, û) is called an approximate solution to (1)-(4), if it satisfies (2) and (3), and
∥ x̂(T )− xT ∥≤ ε, for a given ε > 0.

The main idea to convert the OCP to a QAP, is to assign a constant ui ∈ {u0, . . . , um}
to any interval [ti−1, ti], i = 1, 2, . . . , n. Initially, these constants could be selected randomly
with u0 = umin and um = umax. This paper suggests two evolutionary-based algorithms to
improve this initial assignment, till a stopping rule holds. In other word, after discretizing the
OCP, the problem is converted to a QAP in which a term is added to the objective function as
the penalty for violating constraint (4). In more details, the multiplier of the term ∥ x̂(T )−xT ∥
is added to the original objective function (1). Finally, the problem (1)-(4) is converted to the
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Figure 1: A discrete form of control space, [8].

following problem:

Minimize I(x̂, û) =

n∑
i=0

f0(ti, x̂(ti), û(ti)) +M ∥ x̂(T )− xT ∥ (5)

subject to x̂(ti+1) = x̂(ti) + g(ti, x̂(ti), û(ti)), i = 0, . . . , n− 1, (6)

x̂(0) = x0, (7)

where,M is a large enough integer positive number. In order to provide an evolutionary-based
approach for the problem (5)-(7), it suffices to focus on the 2-dimensional space of time and
control, since state vectors are obtained by (6).

3 The Proposed Algorithm

This section explains two proposed algorithms, each of them is a hybrid of an evolutionary
algorithm and a clustering method in order to find an approximate solution for OCP described
by (1)-(4). To be more precise, each proposed method provides a solution for QAP described
by (5)-(7). The main idea of both algorithms is to apply clustering techniques, here K-means
method, to find the best solution among all available feasible solutions, based on a given ob-
jective function. Any control vector satisfying (6) and (7) is considered as a feasible solution.
From here onward, by solution, we mean a feasible control vector, satisfying (6) and (7) along
with its associated state vector.

First of all, we explain the general framework of the K-means clustering algorithm. In a
general clustering problem, a set of data points with their property matrix is given. The goal is
to cluster data points into K clusters, such that each point belongs to its most similar median,
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serving as a prototype of the cluster. K-means is one of the most applied clustering methods,
[12]. The general scheme of theK-means algorithm is as follows:

Algorithm 1 GenericK-means algorithm
Input: A set of data points, an integerK: number of clusters.
Output: K clusters of data points, each with a median point.
1. Randomly selectK data points as initial medians.
2. Repeat until medians do not change:

• Construct a property matrix D, where each element Dij is the distance or dissimilarity
between data point i and median j.

• Assign each data point to the cluster associated with the closest (or most similar) median
based on D.

• Update each median by selecting the most suitable point within each cluster.

In order to apply K-means for OCP, all feasible solutions (data points) along with their
properties are needed. Here, a data point is any assignment ζ : {t0, . . . , tn} −→ {u0, . . . , um},
which is a control vector [u(t0), . . . u(tn)]. It’s property will be discussed later. Initially, there
is no control vector at hand as the solution of OCP. So, we start with the part of the set of all
feasible solutions and improve it step by step. Therefore a pool of various control vectors is also
needed in median updating step. Therefore the challenge of applying clustering methods for
OCP lies in not having enough feasible solutions for (1) creating initial population of feasible
solutions, and (2) median updating step.

Evolutionary algorithms are leveraged to address this challenge. To be more precise, some
initial feasible control vectors are randomly generated, i.e. in order to form the initial medians,
we randomly select values from {u0, . . . , um} for any interval [ti−1, ti], for i = 1, . . . , n, for
predetermined number of times. Then, evolutionary techniques are applied to generate new
solutions out of initial ones. Now, a population of solutions are at hand for clustering. In any
iteration of the clustering algorithm, medians should be updated. Here, since the K-means do
not start with the whole feasible solutions, median updating step changes to median improving
step. Evolutionary techniques are again utilized to improve the current medians. Finally, The
best median is selected as the final solution of the algorithm. It might be questioned that why we
do not randomly generate all solutions of the whole initial population, and instead, a smaller
number of solutions are generated as initial medians and an evolutionary technique is then
applied to generate the whole population for clustering. To address this question, it should
be noted that the quality of solutions would not be guaranteed in that case. In other words,
there will be no control on randomly generated population of solutions, while evolutionarily
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generated solutions promotes diversity, as well as the probability of generating high quality
solutions out of random ones. Indeed, from the perspective of generating new solution method,
evolutionary algorithms might be classified into two main groups:

1. Evolutionary algorithms which utilize totally random methods in order to generate new
solutions. GA is one of the most outstanding algorithms in this group, which has shown
good results in various optimization problems.

2. Evolutionary algorithms which have a customized rule to generate new solutions and
improve them toward a special direction to find better solutions. Particle Swarm Opti-
mization (PSO) algorithm is one of the most successful methods in this group.

START 1. Generate K initial random solutions as medians 2. Create the community of solutions out of medians

3. Apply K-means to cluster the community

4. Update the final mediansDoes the stopping rule hold?5. Choose the best median as the final solution

END

YES

NO

Figure 2: Schematic representation of the proposed algorithm

Figure 2 shows the general process of two proposed algorithms. Initial solutions are gen-
erated randomly at the first step as initial medians. These medians are the basis of generating
the whole population of solutions at the second step. The third step is the clustering step which
is accomplished by theK-means clustering method. The forth step improve the last set of me-
dians. Finally, after predetermined number of iterations the algorithm chooses the best median
as the final solution.

Based on the two mentioned challenges in applying clustering methods for OCP, two hybrid
algorithms are proposed in this paper. The first algorithm addresses on the challenge of not hav-
ing enough solutions at hand as initial population for clustering, through crossover operations
of GA. In this algorithm, the initial randommedians are treated as parents to generate offspring.
This is done in the second step of Figure 2. K-means algorithm is then applied to cluster the
whole solutions at hand. Mutation techniques are applied to address the second challenge and
to possibly improve the final medians, if possible, at step 4. Finally, after repeating the process
for the determined number of times, the best median is selected as the final solution. The reason
for applying GA for generating solutions is the high diversity that it provides, due to its random
methods.
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The second algorithm focuses just on the challenge of not having enough solutions for im-
proving medians in step 4, through PSO. The initial random medians are moving toward some
directions applying PSO in the second step of Figure 2 and new solutions are generated. The
clustering step is the same as the first method. Median updating in the forth step is implemented
by PSO. This algorithmmoves former medians toward it’s own built directions. The reason that
we apply PSO is that it enables us to generate medians with the memory of the previous gen-
eration, which provides high quality solutions. Both algorithms are elaborated in the following
two subsections.

3.1 Genetic Optimal Control Clustering Algorithm (GenOptClust)

GenOptClust algorithm is applied on the QAP described in (5)-(7). Table 1 shows the parame-
ters of the algorithm.

Table 1: Notations.

Notation Description
n No. of divisions of interval [0, T ], which is {t0 = 0, . . . , tn = T},
m No. of divisions of the range of feasible values for u, which is {u0 = umin, . . . , um = umax},
K No. of clusters inK-means algorithm,
Uk = (uk0, . . . , u

k
n), is the median of cluster k, in which u(t) = uki , for t ∈ [ti, ti+1) i = 0, . . . , n− 1,

IT No. of iterations of the whole algorithm,
N Size of the whole population including medians and their offspring,
f(u) The value of the objective function for control vector u in (5).

Moreover, assume that xT = x(T ) and x0 = x(t0). As it has been mentioned before, a
pool of solutions is needed initially in order to apply the K-means algorithm for clustering it.
First,K initial medians are generated randomly. In more details, any initial median is generated
by n+ 1 times random choices of feasible values {u0, . . . , um}. So, Uk = (uk0, . . . , u

k
n) is the

median of cluster k, for k = 1, . . . ,K . It is clear that uki ∈ {u0, . . . um}. Figure 3 depicts a
schematic solution.

The state vector of each control vector is then calculated by recursive formulations (6) and
its value of the objective function is obtained by (5), which is also called penalty. The next step
is to form the whole population based on four crossover operations, usingK initial medians as
parents as follows:
For any Uk = (uk0, . . . , u

k
n) and Uk+1 = (uk+1

0 , . . . , uk+1
n ), for k = 1, . . . ,K − 1, four

following crossover operations are implemented:

1. 1-point crossover: The values to the right of a random position are swapped between
parents and offspring of fk

1 and of fk
2 are generated:
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Figure 3: A schematic solution of control vector for QAP.

of fk
1 = (uk0, . . . , u

k
L, u

k+1
L+1, . . . , u

k+1
n ),

of fk
2 = (uk+1

0 , . . . , uk+1
L , ukL+1, . . . , u

k
n),

where L is a random number from {0, . . . ,K − 1}.

2. 2-point crossover: The values between two random positions are swapped between par-
ents and offspring offk

3 and offk
4 are generated:

of fk
3 = (uk0, . . . , u

k
L−1, u

k+1
L , . . . , uk+1

H , ukH+1, . . . , u
k
n),

of fk
2 = (uk+1

0 , . . . , uk+1
L−1, u

k
L, . . . , u

k
H , uk+1

H+1, . . . , u
k+1
n ),

where L and H are random numbers from {1, . . . ,K − 1} and {L + 1, . . . ,K − 1},
respectively.

3. Uniform crossover: The values of three random positions are swapped between parents
and offspring of fk

5 and of fk
6 are generated.

4. Max-Min crossover: Offspring offk
7 and offk

8 are maximum and minimum of their
parents, respectively.

The last crossover operation is especially done in order to extract more smooth offspring out of
their parents, since of fk

7 is the upper part and of fk
8 is the lower part of their parents.

Suppose thatN is the size of thewhole population of solutions at hand, includingK medians
as parents and generated offspring. The third step of the algorithm in Figure 2 is to cluster
them applying K-means algorithm. Let D be the distance/property matrix, where Dik is the
difference between the penalty of kth median and ith solution, for k = 1, . . . ,K and i =

1, . . . , N . Forming property matrix in this form, put the control vector (solutions) with the
closest penalty to each other, in the same cluster.

The stop criteria of the K-means algorithm is that the medians remain un-changed in two
subsequent steps. The final medians are improved in step 4 of Figure 2, after meeting this
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condition. The median Uk = (uk0, . . . , u
k
n) is improved, based on 4 mutation methods as the

following:

1. Choose the maximum element of Uk and a neighbour of it, with the maximum difference
with it. Change both elements to their average. This is done to put down the high jump
in vector Uk and convert it to a smoother vector.

Uk = (0, 0.1, 0.4, 0.3, 0, 0.2, 0.8, 0.4) =⇒ Impk = (0, 0.1, 0.4, 0.3, 0, 0.5, 0.5, 0.4),

then median Uk is replaced by Impk, if it has a lower penalty.

2. Exchange the values of two randomly selected elements of Uk. This is done to beget
diversity in medians. Replace it, if it has a lower penalty.

3. Randomly choose two elements of Uk. Reduce the first one by ∆ and increase the sec-
ond one by the same value, where ∆ is the random number out of feasible values of
u. If it causes the elements to exceed the allowable range, change them to the mini-
mum/maximum value. Replace it, if it has a lower penalty.

4. Exchange the value of the before and after value of a random position of vector Uk.
Replace it, if it has a lower penalty.

The algorithm is repeated with the improved medians. The whole procedure is repeated IT

times. Finally, the median with the lowest penalty is chosen as the final approximate solution.
GenOptClust algorithm is explained in Algorithm 2.

3.2 Particle Swarm Optimal Clustering (PSOptClust) Algorithm

The PSOptClust algorithm is elaborated in this subsection. Indeed, the algorithm is imple-
mented on (5)-(7). The parameters are the same as in Table 1. This algorithm also starts with
K initial random solutions. The relative state vectors and penalties are obtained by (6), and
(5), respectively. Now, in order to create the population of solutions out of initial medians
U1, . . . , UK , GA techniques are no more applied, instead we simply multiply four randomly
chosen positions of any vector Uk by a random number in [0, 1]. Four new solutions are ex-
tracted out of any median. Now, the generated population is clustered by the K-means algo-
rithm, based on the previously mentioned property matrix D, as before. The PSO method is
applied in step 4 of Algorithm 2, in order to improve medians. For any k = 1, . . . ,K , suppose
that Uk is the median of cluster k in the current iteration of the algorithm and Uk

best is the best
median of kth cluster up to the current iteration. Ubest also shows the best median all over the
clusters, up to the current iteration. In the pth iteration of the algorithm, the direction V k

p for
moving the median of the kth cluster toward it, is calculated as the following:
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Algorithm 2 Genetic Optimal Control Clustering (GenOptClust)

Input: K (number of clusters), IT (number of iterations)
GenerateK initial medians (Uk) randomly for k = 1, . . . ,K

Repeat for each of the IT iterations:
For all Uk and Uk+1, k = 1, . . . ,K − 1 :
Generate 8 offspring using the 4 specified methods

End For
LetM be the set of all medians and their offspring, with size N
Compute the relative state vector for each u ∈M

Calculate the penalty f(u) for each u ∈M using equation (5)
Compute the distance matrix D, where Dik = |I(U i, xi)− I(Uk, xk)|, for i = 1, . . . , N ,

k = 1, . . . ,K

Cluster the solutions inM based on matrix D, applyingK-means
For each final median Uk, k = 1, . . . ,K :
Improve it if possible using the 4 mutation methods

End For
End Repeat
Select the vector among U1, . . . , UK with the lowest penalty as the final solution

V k
p = wV k

p−1 + cr1(U
k
best − Uk) + cr2(Ubest − Uk). (8)

V k
0 is set to zero. The values w, cr1 and cr2 are parameters of the algorithm, which will be

discussed in numerical result section. cr1 shows the importance of the best median of cluster
k, while cr2 is influencing on the importance of best median by now. Finally, medians Uk are
improved by:

Uk ←− Uk + V k
p , k = 1, . . . ,K

The procedure stops after IT iterations. PSOptClust algorithm is explained in Algorithm 3.

4 Numerical Results

Two proposed algorithms, GenOptClust and PSOptClust, are implemented in this section, and
their performance is benchmarked against comparable methods reported in the literature. Seven
distinct optimal control examples are solved using MATLAB R2020. All experiments run on
an Intel Core M-5Y71 CPU@ 1.20–1.40 GHz with 8 GB RAM. All Each example is solved by
two proposed algorithms for clustering countsK ∈ {50, 100, 200}, and time-interval partitions
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Algorithm 3 Particle Swarm Optimal Control Clustering (PSOptClust)

Input: K (number of clusters), IT (number of iterations), w, cr1, cr2 (algorithm parameters)
GenerateK initial medians (Uk) randomly for k = 1, . . . ,K

Repeat for each of the IT iterations:
For all Uk and Uk+1, k = 1, . . . ,K − 1 :
Generate 4 offspring with the specified method

End For
Calculate the relative state vector for each u ∈M

Calculate f(u) for each u ∈M and Dik for each i = 1, . . . , N , k = 1, . . . ,K

Cluster solutions inM according to matrix D, applyingK-means from Algorithm 2
For each final median Uk, k = 1, . . . ,K :
Uk ← Uk + V k

p , where V k
p is obtained by (8)

End For
End Repeat
Choose the vector among U1, . . . , UK with the lowest penalty as the final approximate
solution

h ∈ {10, 30}. After 30 runs per algorithm, the parameter settings cr1 = 0.2 and cr2 = 0.8

yielded the best performance. These values are fixed in PSOptClust. All remaining examples
were solved with both GenOptClust and PSOptClust across the specified ranges ofK and N .

Example 1. Consider the following OCP:

J = Minimize
1

2

∫ 1

0
(3x(t)2 + u(t)2)dt

subject to

u(t) = ẋ(t) + x(t),

x(0) = 0, x(1) = 2.

The best found value by [16] is J = 6.0830. GenOptClust resulted in the best performance
for h = 10, K = 200, and the final value is J∗ = 5.8919. Moreover, GenOptClust algorithm
achieved a final state vector of x̄T = 2.0002 at time T = 1 within 16.1 seconds.

Example 2. Consider the following OCP:

J = Minimize

∫ 1

0
u(t)2dt

subject to

u(t) = ẋ(t)− x2(t) sin(x(t)),
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x(0) = 0, x(1) = 0.5.

The best found value by [16] is J = 0.2274. GenOptClust resulted in the best performance
for h = 10, K = 200, and the final value is J∗ = 0.197. Moreover, GenOptClust algorithm
achieved a final state vector of x̄T = 0.500007 at time T = 1 within 10.02 seconds.

Example 3. Consider the following OCP:

J = Minimize

∫ 1

0
u(t)2dt

subject to

ẋ(t) =
1

2
x2(t) sin(x(t)) + u(t),

x(0) = 0, x(1) = 0.5.

The best found value by [4] is J = 0.2103. PSOptClust resulted in the best performance for
h = 10,K = 100. The final value is J∗ = 0.2227. Moreover, PSOptClust algorithm achieved
a final state vector of x̄T = 0.4994 at time T = 1 within 6.18 seconds.

Example 4. Consider the following OCP:

J = Minimize

∫ 1

0
(x(t)− et)2 + (u(t)− t)2dt

subject to

ẋ(t) = (2tx(t)− 2u(t)et + 1)et,

x(0) = 1, x(1) = e.

The optimal value for this problem is achieved by x∗(t) = et and u∗(t) = t and J∗ = 0.The
best found value by [4] is J = 0.00011. PSOptClust resulted in the best performance for
h = 10,K = 100. The final value is J∗ = 0.1148. Moreover, PSOptClust algorithm achieved
a final state vector of x̄T = 2.17189 at time T = 1 within 8.03 seconds.

Example 5. Consider the following OCP:

J = Minimize

∫ 1

0
(tx(t)− u(t)et)2dt

subject to

ẋ(t) = (tx(t)− 2u(t)et + 1)et,

x(0) = 1, x(1) = e.

The optimal value for this problem is achieved by x∗(t)et and u∗(t) = t and J∗ = 0. The best
found value by [4] is J = 0.0012. GenOptClust resulted in the best performance for h = 10,
K = 100. The final value is J∗ = 0.0542. Moreover, GenOptClust algorithm achieved a final
state vector of x̄T = 2.71848 at time T = 1 within 2.18 seconds.
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Example 6. Consider the following OCP:

J = Minimize

∫ 1

0
(x(t)− t)2 + (u(t)− t)2dt

subject to

ẋ = x2 − u2 + 1,

x(0) = 0, x(1) = 1.

The optimal value for this problem is achieved by x∗(t) = u∗(t) = t and J∗ = 0. GenOptClust
resulted in the best performance for h = 10, K = 200. The final value is J∗ = 0.0252.
Moreover, GenOptClust algorithm achieved a final state vector of x̄T = 1.00002 at time T = 1

within 8.25 seconds.

Example 7. Consider the following OCP:

J = Minimize

∫ π

0
(x(t)− sin(t))2 + (u(t)− t)2dt

subject to

ẋ = x2 + cos(u(t))− sin2(u(t)),

x(0) = 0, x(π) = 0.

The optimal value for this problem is achieved by x∗(t) = sin(t) and u∗(t) = t and J∗ = 0.
GenOptClust resulted in the best performance for h = 10, K = 100. The final value is J∗ =

0.2615. Moreover, GenOptClust algorithm achieved a final state vector of x̄T = −0.0025 at
time T = 1 within 2.42 seconds.

Table 2 summarizes the results of all seven examples mentioned earlier. Highlighted blocks
show the best solution achieved among two algorithms in six different cases. It can be seen that
the proposed algorithms managed to improve the best found solution in the first three examples.

Figures 4 and 5 show the diagram of optimal trajectory of control vector by two proposed
algrithms. It can be seen that proposed algorithms succeeded in achieving better values than the
best values found so far, moreover genetic algorithm performs better compare to PSO. These
better values are highlighted in Table 1. Also h = 10 is performing better than h = 30, and
K = 50 never success to surpass other choices for K. Figure 4 compares the performance of
two proposed algorithms by different parameters with best found values. In some examples,
there is a significant difference between the optimal control trajectories derived from the GA-
based and PSO-based methods. However, in others, this difference is negligible. Overall, it
can be said that the general trend of the optimal control trajectory in both methods is somewhat
similar.
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Figure 4: Approximate optimal controls by two proposed algorithms in Example 1.

Figure 5: Approximate optimal controls by two proposed algorithms in Examples 2-7.

Figure 6 presents a bar chart comparing the solution values obtained by the two proposed
algorithms with the best-known solutions for each example. As evident from the chart, the
GenOptClust algorithm has generally performed better than PSOptClust.
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Figure 6: Comparison of Best Value, GenOptClust, and PSOptClust.

5 Conclusion

ّIn this paper, we presented two methods based on metaheuristics, Genetic and PSO algorithms,
each of which was used to generate and improve solutions for the optimal control problem.
Additionally, we employed the K-means clustering algorithm to categorize the solutions and
identify better ones. Finally, we implemented our algorithms on a set of optimal control prob-
lems. In this implementation, we utilized three different values for the number of clusters and
two different values for the time interval subdivisions. Ultimately, in 3 out of the 7 examples,
we achieved better solutions than those found in the literature. Among these, the Genetic-based
algorithm with a number of clusters K = 100 and time interval subdivisions h = 10 outper-
formed the PSO-based algorithm.
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