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1 Introduction

In the mid-20th century, few anticipated that the emerging control theory would play such a pivotal role
across various scientific and industrial fields. Resource constraints prompted the integration of optimiza-
tion techniques with control theory, leading to the development of Optimal Control Problems (OCPs),
which remain among the most extensively explored interdisciplinary topics. The ever-increasing ad-
vancements in computing power combined with the invention of novel computational algorithms, often
intertwined with various branches of mathematics, have driven researchers to develop innovative, effi-
cient, resilient, algorithms. These advancements have facilitated the discovery of approximate solutions
to complex OCPs.

Traditionally classified into direct and indirect methods, solutions to OCPs have increasingly relied
on evolutionary algorithms, particularly as a form of direct methods. Despite their limitations for large-
scale problems, evolutionary algorithms have demonstrated their capability to provide suitable solutions,
even for highly nonlinear problems, making them widely applicable for tackling OCPs.

An ant colony optimization (ACO) framework is introduced in [3] to optimize control trajectories,
leveraging ACO’s strength in effectively exploring complex solution spaces. The study demonstrates
the algorithm’s effectiveness in handling nonlinear dynamics and constrained optimization problems.

In [6], innovative numerical approaches are proposed to utilize evolutionary computations for solv-
ing OCPs, emphasizing the efficient optimization of control trajectories. By addressing computational
challenges and validating results on test problems, the study highlights the robustness of evolutionary
methods as valuable tools for complex optimal control problems.

The application of evolutionary algorithms to multi-robot interaction in OCPs is explored in [13],
where the authors focus on enhancing collaborative dynamics among mobile robots through optimized
control strategies. Similarly, in [17], evolutionary algorithms are employed to estimate control input
ranges, demonstrating their utility in designing feasible and adaptable control systems, with detailed
analyses on performance and precision. More recently, [11] applies numerical methods to convert non-
linear OCPs into quadratic forms, simplifying the solution process.

A common approach to tackle OCPs involves transforming them into Quasi-Assignment Problem
(QAP). In [10], a Tabu Search matheuristic is proposed for solving the Generalized QAP, integrating
Tabu Search with mathematical programming techniques to enhance solution quality and convergence
speed. A Genetic Algorithm (GA) tailored to the Generalized QAP is introduced in [7]. Authors em-
ploy genetic operators to address its combinatorial complexity effectively, obtaining competitive results.
When generally discussing QAP, successful heuristic methods for such problems, can inspire successful
combined methods.

The relationship between OCPs and the QAPs is further explored in [8], where a GA framework is
proposed. This highlights the adaptability of GAs in navigating nonlinear, constrained solution spaces,
underscoring their versatility in broader optimization challenges.

For a comprehensive survey of algorithms addressing the Generalized Assignment Problem (GAP),
one can refer to [5]. This work categorizes and critically evaluates exact and heuristic methods, offering
valuable insights into their computational efficiency and practical applicability, serving as a foundational
reference for researchers exploring solution techniques for GAP and related combinatorial optimization
problems.
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Recently, hybrid methods combining various optimization strategies have gained traction for tack-
ling nonlinear optimal control problems. In [19], a parallel hybrid variable neighborhood descent algo-
rithm is proposed, leveraging variable neighborhood search and parallel processing to improve explo-
ration and convergence. This method dynamically adapts neighborhood structures to address nonlinear-
ity, demonstrating effectiveness across multiple benchmark problems. Additionally, [18] introduces a
hub-location-based approach, modeling the optimal control problem as a network design task and iden-
tifying critical “hubs” to simplify computation while preserving solution quality. This structured yet
flexible mechanism is particularly advantageous for high-dimensional decision spaces.

This paper focuses on OCPs modeled as QAPs. It employs evolutionary methods, such as GA and
Particle Swarm Optimization (PSO), to generate a community of feasible solutions for the QAP. Sub-
sequently, the problem is transformed into a P -Median Problem (PMP), and clustering techniques are
applied to refine the solution set toward higher efficiency. The best solution is then chosen among these
clusters. Incorporating K-means clustering, which is widely used in heuristic approaches for network
distribution problems such as PMP, Vehicle routing Problem (VRP) offers notable advantages (see e.g.,
[1, 9]). Unlike approaches requiring large initial solution sets, this method uses metaheuristics to gener-
ate a limited number of initial solutions and iteratively improves them with optimization techniques like
PSO and GA, enabling high-quality results in relatively short time.

The remainder of this paper is organized as follows: Section 2 defines the optimal control problem
and details the discretization process that converts it into an assignment problem. Section 3 elaborates
on the proposed algorithms, with two subsections dedicated to the details of the two algorithms. Section
4 presents the numerical implementations and results. Finally, Section 5 concludes the paper.

2 Notations and Preliminaries

The optimal control problem, in its general form, is defined as follows:

Min I(x(T ), u(T )) =

∫ T

0

f0(t, x(t), u(t)) dt (1)

s.t. ẋ = f(t, x(t), u(t)), (2)

x(0) = x0, (3)

x(T ) = xT , (4)

where T is a known time horizon, x(·) : [0, T ] → Rn and u(·) : [0, T ] → Rm are state and control
vectors. Additionally, f0 : R1+n+m → R and f : R1+n+m → Rn are continuous functions. The
objective of this problem is to find an admissible pair (x, u) of state and control functions, minimizing
objective functional (1), while satisfying (2) and initial conditions (3)-(4).

The OCP defined in (1)-(4), find applications across a wide range of scientific and industrial fields,
offering powerful tools to optimize processes and systems governed by dynamic behavior. See [15] and
[14] for two recent applications in robotics and aerospace engineering, respectively.

One of the most common approaches through OCP defined in (1)-(4), is to discretize it. To this end,
the time interval [0, T ] is partitioned to n sub-intervals [ti−1, ti], i = 1, . . . , n, where t0 = 0. Since we
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tend to detect an approximate optimal control for problem (1)-(3), we focus on finding an optimal piece-
wise control function u(·) for the problem. Therefore, the range of feasible values [umin, umax] for
control vector u is discretized to the set {u0, . . . , um}, where u0 = umin and um = umax. Simply, one
value from {u0, . . . , um} will be assigned to a sub-interval [ti−1, ti], i = 1, . . . , n, in the final solution.
First, we consider the space of time and control as piecewise constant segments, see Figure 1. Finding
the best value from {u0, . . . , um} to be assigned to each interval [ti−1, ti], i = 1, . . . , n is a quasi-
assignment problem. Note that there are nm piece-wise constant functions that must be checked in this
assignment. The aim of this paper is to provide a method to apply evolutionary techniques for detecting
the best approximate piece-wise constant control function. Assume that u(t) =

∑n
k=1 ukζ[tk−1,tk](t) is

a piece-wise constant function, then a numerical method as Euler method or Rung-Kutta, is applicable
to find the trajectory corresponding u(t) from (2) with initial condition x(0) = x0. Thus, (x̂, û) is called
an approximate solution to (1)-(4), if it satisfies (2) and (3), and ∥ x̂(T )− xT ∥≤ ε, for a given ε > 0.

Figure 1: A discrete form of control space, [8].

Themain idea to convert the OCP to a QAP, is to assign a constant ui ∈ {u0, . . . , um} to any interval
[ti−1, ti], i = 1, 2, . . . , n. Initially, these constants could be selected randomly with u0 = umin and
um = umax. This paper suggests two evolutionary-based algorithms to improve this initial assignment,
till a stopping rule holds. In other word, after discretizing the OCP, the problem is converted to a QAP
in which a term is added to the objective function as the penalty for violating constraint (4). In more
details, the multiplier of the term ∥ x̂(T )− xT ∥ is added to the original objective function (1). Finally,
the problem (1)-(4) is converted to the following problem:

Min I(x̂, û) =

n∑
i=0

f0(ti, x̂(ti), û(ti)) +M ∥ x̂(T )− xT ∥ (5)

s.t. x̂(ti+1) = x̂(ti) + g(ti, x̂(ti), û(ti)), i = 0, . . . , n− 1, (6)

x̂(0) = x0, (7)

where,M is a large enough integer positive number. In order to provide an evolutionary-based approach
for the problem (5)-(7), it suffices to focus on the 2-dimensional space of time and control, since state
vectors are obtained by (6).
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3 The Proposed Algorithm

This section explains two proposed algorithms, each of them is a hybrid of an evolutionary algorithm
and a clustering method in order to find an approximate solution for OCP described by (1)-(4). To be
more precise, each proposed method provides a solution for QAP described by (5)-(7). The main idea of
both algorithms is to apply clustering techniques, hereK-means method, to find the best solution among
all available feasible solutions, based on a given objective function. Any control vector satisfying (6)
and (7) is considered as a feasible solution. From here onward, by solution, we mean a feasible control
vector, satisfying (6) and (7) along with its associated state vector.

First of all, we explain the general framework of the K-means clustering algorithm. In a general
clustering problem, a set of data points with their property matrix is given. The goal is to cluster data
points into K clusters, such that each point belongs to its most similar median, serving as a prototype
of the cluster. K-means is one of the most applied clustering methods, [12]. The general scheme of the
K-means algorithm is as follows:

Algorithm 7 GenericK-means algorithm
Input: A set of data points, an integerK: number of clusters.
Output: K clusters of data points, each with a median point.
1. Randomly selectK data points as initial medians.
2. Repeat until medians do not change:

• Construct a property matrix D, where each element Dij is the distance or dissimilarity
between data point i and median j.

• Assign each data point to the cluster associated with the closest (or most similar) median
based on D.

• Update each median by selecting the most suitable point within each cluster.

In order to apply K-means for OCP, all feasible solutions (data points) along with their properties
are needed. Here, a data point is any assignment ζ : {t0, . . . , tn} −→ {u0, . . . , um}, which is a control
vector [u(t0), . . . u(tn)]. It’s property will be discussed later. Initially, there is no control vector at hand
as the solution of OCP. So, we start with the part of the set of all feasible solutions and improve it step
by step. Therefore a pool of various control vectors is also needed in median updating step. Therefore
the challenge of applying clustering methods for OCP lies in not having enough feasible solutions for
(1) creating initial population of feasible solutions, and (2) median updating step.

Evolutionary algorithms are leveraged to address this challenge. To be more precise, some initial
feasible control vectors are randomly generated, i.e. in order to form the initial medians, we randomly
select values from {u0, . . . , um} for any interval [ti−1, ti], for i = 1, . . . , n, for predetermined number
of times. Then, evolutionary techniques are applied to generate new solutions out of initial ones. Now,
a population of solutions are at hand for clustering. In any iteration of the clustering algorithm, medi-
ans should be updated. Here, since the K-means do not start with the whole feasible solutions, median
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updating step changes to median improving step. Evolutionary techniques are again utilized to improve
the current medians. Finally, The best median is selected as the final solution of the algorithm. It might
be questioned that why we do not randomly generate all solutions of the whole initial population, and
instead, a smaller number of solutions are generated as initial medians and an evolutionary technique is
then applied to generate the whole population for clustering. To address this question, it should be noted
that the quality of solutions would not be guaranteed in that case. In other words, there will be no control
on randomly generated population of solutions, while evolutionarily generated solutions promotes di-
versity, as well as the probability of generating high quality solutions out of random ones. Indeed, from
the perspective of generating new solution method, evolutionary algorithms might be classified into two
main groups:

1. Evolutionary algorithms which utilize totally randommethods in order to generate new solutions.
GA is one of the most outstanding algorithms in this group, which has shown good results in
various optimization problems.

2. Evolutionary algorithms which have a customized rule to generate new solutions and improve
them toward a special direction to find better solutions. Particle Swarm Optimization (PSO)
algorithm is one of the most successful methods in this group.

START 1. Generate K initial random solutions as medians 2. Create the community of solutions out of medians

3. Apply K-means to cluster the community

4. Update the final mediansDoes the stopping rule hold?5. Choose the best median as the final solution

END

YES

NO

Figure 2: Schematic representation of the proposed algorithm

Figure 2 shows the general process of two proposed algorithms. Initial solutions are generated ran-
domly at the first step as initial medians. These medians are the basis of generating the whole population
of solutions at the second step. The third step is the clustering step which is accomplished by the K-
means clustering method. The forth step improve the last set of medians. Finally, after predetermined
number of iterations the algorithm chooses the best median as the final solution.

Based on the two mentioned challenges in applying clustering methods for OCP, two hybrid algo-
rithms are proposed in this paper. The first algorithm addresses on the challenge of not having enough
solutions at hand as initial population for clustering, through crossover operations of GA. In this algo-
rithm, the initial random medians are treated as parents to generate offspring. This is done in the second
step of Figure 2. K-means algorithm is then applied to cluster the whole solutions at hand. Mutation
techniques are applied to address the second challenge and to possibly improve the final medians, if pos-
sible, at step 4. Finally, after repeating the process for the determined number of times, the best median
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is selected as the final solution. The reason for applying GA for generating solutions is the high diversity
that it provides, due to its random methods.

The second algorithm focuses just on the challenge of not having enough solutions for improving
medians in step 4, through PSO. The initial randommedians are moving toward some directions applying
PSO in the second step of Figure 2 and new solutions are generated. The clustering step is the same as
the first method. Median updating in the forth step is implemented by PSO. This algorithm moves
former medians toward it’s own built directions. The reason that we apply PSO is that it enables us to
generate medians with the memory of the previous generation, which provides high quality solutions.
Both algorithms are elaborated in the following two subsections.

3.1 Genetic Optimal Control Clustering Algorithm (GenOptClust)

GenOptClust algorithm is applied on the QAP described in (5)-(7). Table 1 shows the parameters of the
algorithm.

Table 1: Notations.

Notation Description
n No. of divisions of interval [0, T ], which is {t0 = 0, . . . , tn = T},
m No. of divisions of the range of feasible values for u, which is {u0 = umin, . . . , um = umax},
K No. of clusters inK-means algorithm,
Uk = (uk0, . . . , u

k
n), is the median of cluster k, in which u(t) = uki , for t ∈ [ti, ti+1) i = 0, . . . , n− 1,

IT No. of iterations of the whole algorithm,
N Size of the whole population including medians and their offspring,
f(u) The value of the objective function for control vector u in (5).

Moreover, assume that xT = x(T ) and x0 = x(t0). As it has been mentioned before, a pool of
solutions is needed initially in order to apply the K-means algorithm for clustering it. First, K initial
medians are generated randomly. In more details, any initial median is generated by n+1 times random
choices of feasible values {u0, . . . , um}. So, Uk = (uk0 , . . . , u

k
n) is the median of cluster k, for k =

1, . . . ,K . It is clear that uki ∈ {u0, . . . um}. Figure 3 depicts a schematic solution.

Figure 3: A schematic solution of control vector for QAP.
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The state vector of each control vector is then calculated by recursive formulations (6) and its value
of the objective function is obtained by (5), which is also called penalty. The next step is to form the
whole population based on four crossover operations, usingK initial medians as parents as follows:
For any Uk = (uk0 , . . . , u

k
n) and Uk+1 = (uk+1

0 , . . . , uk+1
n ), for k = 1, . . . ,K − 1, four following

crossover operations are implemented:

1. 1-point crossover: The values to the right of a random position are swapped between parents
and offspring of fk1 and of fk2 are generated:

of fk1 = (uk0 , . . . , u
k
L, u

k+1
L+1, . . . , u

k+1
n ),

of fk2 = (uk+1
0 , . . . , uk+1

L , ukL+1, . . . , u
k
n),

where L is a random number from {0, . . . ,K − 1}.

2. 2-point crossover: The values between two random positions are swapped between parents and
offspring offk3 and offk4 are generated:

of fk3 = (uk0 , . . . , u
k
L−1, u

k+1
L , . . . , uk+1

H , ukH+1, . . . , u
k
n),

of fk2 = (uk+1
0 , . . . , uk+1

L−1, u
k
L, . . . , u

k
H , u

k+1
H+1, . . . , u

k+1
n ),

where L andH are random numbers from {1, . . . ,K− 1} and {L+1, . . . ,K− 1}, respectively.

3. Uniform crossover: The values of three random positions are swapped between parents and
offspring of fk5 and of fk6 are generated.

4. Max-Min crossover: Offspring offk7 and offk8 are maximum and minimum of their parents,
respectively.

The last crossover operation is especially done in order to extract more smooth offspring out of their
parents, since of fk7 is the upper part and of fk8 is the lower part of their parents.

Suppose that N is the size of the whole population of solutions at hand, including K medians as
parents and generated offspring. The third step of the algorithm in Figure 2 is to cluster them applying
K-means algorithm. Let D be the distance/property matrix, where Dik is the difference between the
penalty of kth median and ith solution, for k = 1, . . . ,K and i = 1, . . . , N . Forming property matrix
in this form, put the control vector (solutions) with the closest penalty to each other, in the same cluster.

The stop criteria of theK-means algorithm is that the medians remain un-changed in two subsequent
steps. The final medians are improved in step 4 of Figure 2, after meeting this condition. The median
Uk = (uk0 , . . . , u

k
n) is improved, based on 4 mutation methods as the following:

1. Choose the maximum element of Uk and a neighbour of it, with the maximum difference with it.
Change both elements to their average. This is done to put down the high jump in vector Uk and
convert it to a smoother vector.

Uk = (0, 0.1, 0.4, 0.3, 0, 0.2, 0.8, 0.4) =⇒ Impk = (0, 0.1, 0.4, 0.3, 0, 0.5, 0.5, 0.4),

then median Uk is replaced by Impk, if it has a lower penalty.

2. Exchange the values of two randomly selected elements of Uk. This is done to beget diversity in
medians. Replace it, if it has a lower penalty.
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3. Randomly choose two elements of Uk. Reduce the first one by ∆ and increase the second one
by the same value, where ∆ is the random number out of feasible values of u. If it causes the
elements to exceed the allowable range, change them to the minimum/maximum value. Replace
it, if it has a lower penalty.

4. Exchange the value of the before and after value of a random position of vector Uk. Replace it,
if it has a lower penalty.

The algorithm is repeated with the improved medians. The whole procedure is repeated IT times. Fi-
nally, the median with the lowest penalty is chosen as the final approximate solution. GenOptClust
algorithm is explained in Algorithm 8.

Algorithm 8 Genetic Optimal Control Clustering (GenOptClust)

Input: K (number of clusters), IT (number of iterations)
GenerateK initial medians (Uk) randomly for k = 1, . . . ,K

Repeat for each of the IT iterations:
For all Uk and Uk+1, k = 1, . . . ,K − 1 :
Generate 8 offspring using the 4 specified methods

End For
LetM be the set of all medians and their offspring, with size N
Compute the relative state vector for each u ∈M
Calculate the penalty f(u) for each u ∈M using equation (5)
Compute the distance matrix D, where Dik = |I(U i, xi)− I(Uk, xk)|, for i = 1, . . . , N ,

k = 1, . . . ,K

Cluster the solutions inM based on matrix D, applyingK-means
For each final median Uk, k = 1, . . . ,K :
Improve it if possible using the 4 mutation methods

End For
End Repeat
Select the vector among U1, . . . , UK with the lowest penalty as the final solution

3.2 Particle Swarm Optimal Clustering (PSOptClust) Algorithm

The PSOptClust algorithm is elaborated in this subsection. Indeed, the algorithm is implemented on
(5)-(7). The parameters are the same as in Table 1. This algorithm also starts with K initial random
solutions. The relative state vectors and penalties are obtained by (6), and (5), respectively. Now, in
order to create the population of solutions out of initial medians U1, . . . , UK , GA techniques are no
more applied, instead we simply multiply four randomly chosen positions of any vector Uk by a random
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number in [0, 1]. Four new solutions are extracted out of any median. Now, the generated population is
clustered by the K-means algorithm, based on the previously mentioned property matrix D, as before.
The PSOmethod is applied in step 4 of Algorithm 2, in order to improvemedians. For any k = 1, . . . ,K ,
suppose that Uk is the median of cluster k in the current iteration of the algorithm and Ukbest is the best
median of kth cluster up to the current iteration. Ubest also shows the best median all over the clusters,
up to the current iteration. In the pth iteration of the algorithm, the direction V kp for moving the median
of the kth cluster toward it, is calculated as the following:

V kp = wV kp−1 + cr1(U
k
best − U

k) + cr2(Ubest − U
k). (8)

V k0 is set to zero. The values w, cr1 and cr2 are parameters of the algorithm, which will be discussed
in numerical result section. cr1 shows the importance of the best median of cluster k, while cr2 is
influencing on the importance of best median by now. Finally, medians Uk are improved by:

Uk ←− Uk + V kp , k = 1, . . . ,K

The procedure stops after IT iterations. PSOptClust algorithm is explained in Algorithm 9.

Algorithm 9 Particle Swarm Optimal Control Clustering (PSOptClust)

Input: K (number of clusters), IT (number of iterations), w, cr1, cr2 (algorithm parameters)
GenerateK initial medians (Uk) randomly for k = 1, . . . ,K

Repeat for each of the IT iterations:
For all Uk and Uk+1, k = 1, . . . ,K − 1 :
Generate 4 offspring with the specified method

End For
Calculate the relative state vector for each u ∈M
Calculate f(u) for each u ∈M and Dik for each i = 1, . . . , N , k = 1, . . . ,K

Cluster solutions inM according to matrix D, applyingK-means from Algorithm 8
For each final median Uk, k = 1, . . . ,K :
Uk ← Uk + V k

p , where V k
p is obtained by (8)

End For
End Repeat
Choose the vector among U1, . . . , UK with the lowest penalty as the final approximate
solution

4 Numerical Results

Two proposed algorithms, GenOptClust and PSOptClust, are implemented in this section, and their per-
formance is benchmarked against comparable methods reported in the literature. Seven distinct optimal
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control examples are solved using MATLAB R2020. All experiments run on an Intel Core M-5Y71
CPU @ 1.20–1.40 GHz with 8 GB RAM. All Each example is solved by two proposed algorithms for
clustering counts K ∈ {50, 100, 200}, and time-interval partitions h ∈ {10, 30}. After 30 runs per
algorithm, the parameter settings cr1 = 0.2 and cr2 = 0.8 yielded the best performance. These values
are fixed in PSOptClust. All remaining examples were solved with both GenOptClust and PSOptClust
across the specified ranges ofK and N .

Example 1. Consider the following OCP:

J =Min
1

2

∫ 1

0

(3x(t)2 + u(t)2)dt

s.t.

u(t) = ẋ(t) + x(t),

x(0) = 0, x(1) = 2.

The best found value by [16] is J = 6.0830. GenOptClust resulted in the best performance for h = 10,
K = 200, and the final value is J∗ = 5.8919. Moreover, GenOptClust algorithm achieved a final state
vector of x̄T = 2.0002 at time T = 1 within 16.1 seconds.

Example 2. Consider the following OCP:

J =Min

∫ 1

0

u(t)2dt

s.t.

u(t) = ẋ(t)− x2(t) sin(x(t)),

x(0) = 0, x(1) = 0.5.

The best found value by [16] is J = 0.2274. GenOptClust resulted in the best performance for h = 10,
K = 200, and the final value is J∗ = 0.197. Moreover, GenOptClust algorithm achieved a final state
vector of x̄T = 0.500007 at time T = 1 within 10.02 seconds.

Example 3. Consider the following OCP:

J =Min

∫ 1

0

u(t)2dt

s.t.

ẋ(t) =
1

2
x2(t) sin(x(t)) + u(t),

x(0) = 0, x(1) = 0.5.

The best found value by [4] is J = 0.2103. PSOptClust resulted in the best performance for h = 10,
K = 100. The final value is J∗ = 0.2227. Moreover, PSOptClust algorithm achieved a final state
vector of x̄T = 0.4994 at time T = 1 within 6.18 seconds.

Example 4. Consider the following OCP:

J =Min

∫ 1

0

(x(t)− et)2 + (u(t)− t)2dt
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s.t.

ẋ(t) = (2tx(t)− 2u(t)et + 1)et,

x(0) = 1, x(1) = e.

The optimal value for this problem is achieved by x∗(t) = et and u∗(t) = t and J∗ = 0.The best found
value by [4] is J = 0.00011. PSOptClust resulted in the best performance for h = 10, K = 100. The
final value is J∗ = 0.1148. Moreover, PSOptClust algorithm achieved a final state vector of x̄T =

2.17189 at time T = 1 within 8.03 seconds.

Example 5. Consider the following OCP:

J =Min

∫ 1

0

(tx(t)− u(t)et)2dt

s.t.

ẋ(t) = (tx(t)− 2u(t)et + 1)et,

x(0) = 1, x(1) = e.

The optimal value for this problem is achieved by x∗(t)et and u∗(t) = t and J∗ = 0. The best found
value by [4] is J = 0.0012. GenOptClust resulted in the best performance for h = 10, K = 100.
The final value is J∗ = 0.0542. Moreover, GenOptClust algorithm achieved a final state vector of
x̄T = 2.71848 at time T = 1 within 2.18 seconds.

Example 6. Consider the following OCP:

J =Min

∫ 1

0

(x(t)− t)2 + (u(t)− t)2dt

s.t.

ẋ = x2 − u2 + 1,

x(0) = 0, x(1) = 1.

The optimal value for this problem is achieved by x∗(t) = u∗(t) = t and J∗ = 0. GenOptClust resulted
in the best performance for h = 10,K = 200. The final value is J∗ = 0.0252. Moreover, GenOptClust
algorithm achieved a final state vector of x̄T = 1.00002 at time T = 1 within 8.25 seconds.

Example 7. Consider the following OCP:

J =Min

∫ π

0

(x(t)− sin(t))2 + (u(t)− t)2dt

s.t.

ẋ = x2 + cos(u(t))− sin2(u(t)),

x(0) = 0, x(π) = 0.

The optimal value for this problem is achieved by x∗(t) = sin(t) and u∗(t) = t and J∗ = 0. GenOpt-
Clust resulted in the best performance for h = 10,K = 100. The final value is J∗ = 0.2615. Moreover,
GenOptClust algorithm achieved a final state vector of x̄T = −0.0025 at time T = 1 within 2.42 sec-
onds.
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Table 2 summarizes the results of all seven examples mentioned earlier. Highlighted blocks show
the best solution achieved among two algorithms in six different cases. It can be seen that the proposed
algorithms managed to improve the best found solution in the first three examples.

Figures 4 and 5 show the diagram of optimal trajectory of control vector by two proposed algrithms.
It can be seen that proposed algorithms succeeded in achieving better values than the best values found
so far, moreover genetic algorithm performs better compare to PSO. These better values are highlighted
in Table 1. Also h = 10 is performing better than h = 30, and K = 50 never success to surpass other
choices forK. Figure 4 compares the performance of two proposed algorithms by different parameters
with best found values. In some examples, there is a significant difference between the optimal control
trajectories derived from the GA-based and PSO-based methods. However, in others, this difference is
negligible. Overall, it can be said that the general trend of the optimal control trajectory in both methods
is somewhat similar.

Figure 4: Approximate optimal controls by two proposed algorithms in Example 1.

Figure 6 presents a bar chart comparing the solution values obtained by the two proposed algorithms
with the best-known solutions for each example. As evident from the chart, the GenOptClust algorithm
has generally performed better than PSOptClust.

5 Conclusion

ّIn this paper, we presented two methods based on metaheuristics, Genetic and PSO algorithms, each
of which was used to generate and improve solutions for the optimal control problem. Additionally,
we employed the K-means clustering algorithm to categorize the solutions and identify better ones.
Finally, we implemented our algorithms on a set of optimal control problems. In this implementation,
we utilized three different values for the number of clusters and two different values for the time interval
subdivisions. Ultimately, in 3 out of the 7 examples, we achieved better solutions than those found in
the literature. Among these, the Genetic-based algorithm with a number of clusters K = 100 and time
interval subdivisions h = 10 outperformed the PSO-based algorithm.
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Figure 5: Approximate optimal controls by two proposed algorithms in Examples 2-7.

Figure 6: Comparison of Best Value, GenOptClust, and PSOptClust.
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