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1 Introduction

Hyperparameter optimization (HPO) is an essential element in improving the loss and general-
ization capacity of deep-learning models. Simple approaches like grid search [2] and random
search [3] are utilized for their simplicity in deployment, but in the context of high-dimensional
parameter spaces, these approaches can be detrimental in efficiency. More advanced methods
are available, including Bayesian optimization and multi-task Gaussian Processes [12], which
use surrogate models to help direct a user’s search for optimal configurations while tuning hy-
perparameters [ 10]. However, they are also plagued with high computational cost due to their
cubic complexity and require substantial tuning of the surrogate model, thereby making them

impractical in time-sensitive or resource-constrained scenarios.

Recent research has shown hybrid and adaptive strategies to solve these issues. For exam-
ple, Bayesian Optimization and HyperBand (BOHB) integrates Bayesian Optimization (BO)
with the early-stopping techniques from HyperBand for scalability. There are also gradient-
based methods [9, 13] and evolutionary algorithms [14, 18], which all utilize heuristic-based
sampling mechanisms for better performance. However, a considerable drawback of these tech-
niques is that they can introduce random variability and require extensive meta-parameter tun-
ing, which can lead to reproducibility issues and unnecessary complexities in implementation|

across different problems.

Despite these developments, interpolation-based techniques—widely successful in numer-
ical optimization and engineering applications—remain largely underexplored in the context of
deep learning HPO. Polynomial and spline interpolation methods provide deterministic error]
bounds, scalable computational complexity, and high sample efficiency. Yet, their potential for

guiding hyperparameter search in'machine learning has received limited attention.

In this paper, we introduce Interpolation-Based Optimization (IBO), a novel framework for
hyperparameter/tuning that constructs piecewise cubic-spline interpolants over sparsely sam-
pled hyperparameter-performance pairs. IBO is deterministic, gradient-free, and does not rely|
on probabilistic modeling. By focusing the search on promising regions of the hyperparameter

space with minimal overhead, IBO offers a practical alternative to existing techniques.

Empirical results on benchmark datasets demonstrate that IBO achieves classification accu-
racy comparable to BO, while significantly reducing training time and the number of iterations
required for convergence. On the MNIST dataset, IBO achieved 98.0% accuracy with only 12
optimization steps, reducing computational time by 39% compared to BO. The observed per-
formance dropout in higher dimensions, like ResNet-18 on CIFAR-10, is not unexpected since
interpolation grids become sparse in higher-count dimensions. Therefore, the experimental re-
sults suggest that IBO is especially applicable to low- and moderate-dimensional HPO tasks|

where reproducibility and efficiency matter.
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The remainder of this paper is organized as follows. Section 2 reviews related work and sit-
uates IBO within the broader landscape of hyperparameter optimization. Section 3 introduces
the mathematical framework and algorithmic structure of IBO. Section 4 presents theoretical
results, including error bounds and convergence guarantees. Section 5 reports empirical eval-
uations and comparative performance metrics, and Section 6 concludes with a discussion of

limitations and directions for future research.

2 Related Work

Hyperparameter optimization (HPO) has evolved from exhaustive, uninformed search strate-
gies to more intelligent, adaptive, and efficient approaches [11]. There are established baselines
like grid search and random search that are simple to implement. However, they are relatively|
inefficient computationally, as they can issue a large number of evaluations and do not perform|

well in high-dimensional search spaces.

The BO advanced these methods by utilizing Gaussian Processes to model the objective
function and guide exploration through acquisition functions. This improves efficiency by bal-
ancing exploration and exploitation. /Although BO is effective, it has cubic complexity in the
number of samples and depends heavily on the quality of the surrogate model and hyperparam-

eter tuning. This restricts its scalability in time-critical or resource-constrained settings.

To address these limitations, a variety of hybrid-and heuristic methods have been proposed.
The BOHB combines the BO with HyperBand by incorporating early stopping within a prob-
abilistic framework, enabling efficiency in large-scale experiments. Gradient-based methods
[13] differentiate the validation loss with respect to hyperparameters, offering fast convergence
[4] but requiring differentiable models. Evolutionary algorithms, such as Genetic Algorithms
and Particle Swarm Optimization [14, 18], introduce population-based search and stochastic
heuristics. While these improve exploration, they also increase computational demands and
result variability.

Meta-learning and neural architecture search (NAS) frameworks have further expanded the
HPO landscape. Meta-learning approaches [7] leverage prior optimization experience across
tasks to accelerate tuning, while controller-based NAS methods such as reinforcement learn-
ing automate model design [5]. Though powerful, these techniques often require significant

computational resources, making them impractical for low-resource environments.
Despite the breadth of HPO techniques, interpolation-based methods have received limited
attention in machine learning literature. In contrast, interpolation is a well-established tool in|

numerical optimization, where polynomial and spline interpolants are used to construct accu-

rate surrogate models with deterministic error bounds and moderate computational complexityl
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[6]. Their advantages have also been demonstrated in applications. For example, [1] used in-
terpolation to reduce costs in meteorological modeling, while [19] applied similar methods to
neural control and CNN tuning, respectively.

Additional theoretical support is provided by sparse grid interpolation [2, 17], which of-
fer scalable solutions under structure-aware sampling. In fields like control theory and signal
processing, recent studies [8, 15, 16] show that interpolation frameworks can perform robustly
even in noisy or partially observable settings. Compared to hardware-dependent acceleration|
or deep probabilistic models, interpolation provides a lightweight, algorithm-centric approach
that is both interpretable and computationally efficient.

Building on this foundation, the present work introduces the IBO as a deterministic alterna-
tive to probabilistic and stochastic HPO strategies. IBO combines.theoretical guarantees with
practical performance, addressing a key gap in the optimization landscape by adapting interpo-
lation techniques for modern deep learning workflowss.

3 Methodology

This section presents the IBO framework for hyperparameter tuning. IBO builds a surro-
gate model using interpolation /techniques and minimizes it to efficiently search for high-
performing hyperparameter configurations. The method is particularly well suited for low- to
moderate-dimensional problems, where deterministic behavior and computational efficiency
are desired. The components of the methodology are organized as follows: interpolation mod-

eling, surrogate-based optimization, robustness to noise, and the full algorithmic workflow.

3.1 Interpolation Model

The IBO starts by constructing an interpolated approximation of the model’s performance over|
the hyperparameter space. Let X» C R? be the domain of the d-dimensional hyperparameter
vector and let f : X — R be the evaluation metric (e.g., accuracy or loss) for a given configu-
ration.

Given evaluated points (z;, f;), where z; € X and f; = f(z;), the IBO fits a surrogate
function f (x) using piecewise polynomial interpolation. For low dimensions (e.g., d < 5),
the IBO fits cubic splines; for moderate dimensions, tensor-product splines provide an efficient
balance between expressiveness and efficacy.

The surrogate function is defined as:

fle) = wy- 05(@)
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where ¢; () are basis functions (e.g., spline kernels), and w; are the corresponding coefficients
fitted to the data. This interpolated model captures the underlying structure of the performance

landscape with minimal evaluation overhead.

3.2 Optimization of the Surrogate

Once the interpolated model f (x) is constructed, IBO searches forthe predicted optimal con-

figuration by minimizing this surrogate:

* 7
" = argmin f(z).
gmin f(z)
This step avoids repeated evaluations of the original function and significantly reduces compu-
tational cost. To improve numerical stability, IBO employs a local trust region that limits the

search domain when the interpolant’s variance is high or poorly conditioned.

The process continues iteratively, refining the interpolant and updating the candidate so-
lution. Here, 2’ represents a candidate configuration identified by minimizing the surrogate
function f(z). It approximates the true minimizer 2* of the original objective f(z), and is
iteratively refined. Termination occurs when the change ‘in predicted performance satisfies a

convergence criterion, such as:
|/ (a") — min(f;)| <,

with ¢ typically set to 0.01.

3.3 Robustness to Noise and Outliers

In practical tuning scenarios, model evaluations are often noisy or unstable due to randomness in
training or non-deterministic computations. IBO addresses this by applying smoothing splines
with regularization, which penalizes excessive curvature and overfitting in the surrogate.

IBO reverts to exploratory sampling if the variance of the residuals exceeds a noise threshold
(e.g., 20) for potential interpolations. Additionally, the original dataset is pre-filtered to remove
outlier points (as defined by local neighborhoods) to avoid skewing the response surface early|

in the optimization.

This added layer of noise smoothing and pre-filtering gives IBO robustness against unreli-

able evaluations, particularly during the initial optimization stages
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3.4 1IBO Algorithm Workflow

The full IBO procedure can be summarized as follows:

Inputs:
* Hyperparameter domain X',
e Maximum number of iterations 7,

» Convergence threshold ¢.

Outputs:

» Optimal hyperparameter configuration x*.

Step 1: Initialization
+ Sample m initial configurations{x;, 2, . .., &y, } uniformly from X,

* Evaluate f; = f(x;) for each sampled point.

Step 2: Iterative Optimization (for ¢ =1 to 1)
1. Fit the interpolated surrogate f(z) to thé current dataset {(z;, f;)},
2. Identify next candidate: 2/ =arg min f(z),
3. If | f(2') < min(f;)| < & terminate, else:
* Evaluate f = f(2/),
« Update dataset: add (2/, /).
Step 3: Output
* Return * = argmin f;.

This algorithmic framework allows IBO to efficiently locate strong hyperparameter con-
figurations with fewer evaluations than traditional methods such as grid search or Bayesian

optimization. Its deterministic behavior, along with robustness to noise and interpolation eftfi-

ciency, makes it ideal for tuning tasks under resource constraints
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4 Theoretical Analysis

In this section, we provide the theoretical foundation for the IBO method, including its con-
vergence behavior, interpolation accuracy, computational complexity, and scalability. These
results justify IBO’s performance in practical hyperparameter tuning tasks.

4.1 Convergence Behavior

Let 2* be the true minimizer of f(z) and £* the minimizer of its surrogate model f (x). Under
smoothness assumptions and adequate domain coverage, IBO.¢an‘approximate the true solution|
to a desired level of accuracy.

Theorem 1. Suppose that f is Lipschitz continuous, and that f (x) is.aspline or polynomial in-
terpolant constructed over a compact domain X C R? with maximum spacing h in the sampling
grid and interpolation order k. Then:

f(&%) — f(a*)| < C - 1", (1)

where C' is a constant depending on the smoothness of ,f and the interpolation scheme. This
inequality shows that the error between the interpolated solution £* and the true solution z*
decreases as the sampling becomes denser (h,— 0). In practice, convergence is often achieved

after only a few iterations in low-dimensional settings.

4.2 Approximation Error

The accuracy of the surrogate model f (2) depends on the smoothness of f and the distribution

of sample points. In'the uniyariate case, cubic spline interpolation satisfies the bound:

If(z) — f(z)| < K - b, 2)

where h is the distance between nodes and K is a constant. For multivariate functions, tensor-
product splines extend this fourth-order accuracy, assuming f is smooth in all variables. This al-
lows IBO to construct accurate surrogates with relatively few evaluations, especially on smooth

landscapes.

4.3 Computational Complexity

IBO’s total cost consists of two parts: fitting the interpolant and minimizing the surrogate

maodel




8 Optimizing Deep Learning Hyperparameters ...

+ Interpolation step: Constructing the interpolant from n data points typically requires
solving a system of equations with O(n?) complexity. However, for structured data (e.g.,

on regular grids), fast methods can reduce this to O(n) or O(n logn).

* Surrogate optimization: Once f (z) is built, finding its minimum is inexpensive and

can be achieved via local search or trust-region methods.

Thus, IBO is generally faster than Bayesian Optimization (BO), which incurs overhead from|
modeling uncertainty and internal hyperparameter tuning.

4.4 Scalability and Limitations

IBO is efficient but suffers from the curse of dimensionality. The number of required nodes

for accurate interpolation grows exponentially with dimensionality d, making dense sampling

infeasible in high dimensions.
IBO is best applied to:

* Low- to medium-dimensional problems (d.< 20),
» Expensive-to-evaluate functions with limited budgets,
* Smooth, deterministic objective functions.

In higher dimensions, performance drops dueto lower sampling density and loss of fidelity.

To address this, future extensions of IBO may incorporate:
» Random embeddings or dimensionality reduction,
» Adaptive node placement strategies,
» Hybrid methods combining IBO with stochastic or evolutionary algorithms.

Despite this limitation, IBO remains a competitive and lightweight tool for hyperparameter

tuning, especially in deep learning tasks involving a modest number of tunable parameters.
5 Experiments
This section presents a comprehensive evaluation of the proposed Interpolation-Based Opti-

mization (IBO) framework on real-world deep learning hyperparameter tuning tasks. The ex-

periments compare IBO to several baseline methods in terms of validation performance, com-

putational efficiency, and robustness across different scenarios
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5.1 Experimental Setup

'We conducted experiments on two standard image classification datasets:

* MNIST: A dataset of grayscale handwritten digits with 60,000 training and 10,000 test
images across 10 classes.

* CIFAR-10: A colored image dataset containing 60,000 samples of 10 object categories,
with 50,000 training and 10,000 test images.

For MNIST, we trained a basic convolutional neural network (CNN) with two convolutional
and two fully connected layers. For CIFAR-10, we used a ResNet-18 architecture with standard
settings.

The following hyperparameters were tuned for each experiment:
* Learning rate € [107°,1071],

« Batch size € {32, 64,128, 256},

* Dropout rate € [0.0,0.5],

* Optimizer € {SGD, Adam, RMSProp}.

Each method was allocated a fixed budget of 20 hyperparameter function evaluations. One
function evaluation corresponds to training aneural network using a specific hyperparameter
configuration for 10 epochs. To ensure fairness, all methods were run with identical evaluation|

budgets and random seed initialization.

Table 1: Summary of hyperparameter search spaces.

Model Tuned Parameters Dim. Search Ranges
CNN (MNIST) /Learning rate, dropout 2 [0.001-0.1], [0.1-0.5]
ResNet-18 Learning rate, momentum, batch size 3 [0.0001-0.01], [0.8-0.99], {32, 64, 128}

5.2 Baseline Methods

'We compared IBO against the following widely used hyperparameter optimization algorithms:

* Random Search (RS): Uniformly samples configurations from the search space.

* Bayesian Optimization (BO): Models the objective function using a Gaussian Process.
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* Grid Search: Exhaustive configuration evaluation (only used when feasible).

All baseline methods were implemented using open-source libraries such as scikit-optimize

ray [tune], and hyperopt, and run on the same hardware under identical budgets.

5.3 Evaluation Metrics

'We assessed each method using the following criteria:

* Best validation accuracy achieved within the given evaluation budget,

Final test accuracy after retraining on the best-found configuration,

Wall-clock tuning time (in seconds),
* Total number of function evaluations (fixed at 20).

Each experiment was repeated five times using different random seeds. For every metric, results
are reported as the mean + standard deviation.

5.4 Results and Discussion

Table 2: Hyperparameter tuning results on MNIST (20 evaluations).

Method Val. Accuracy (%) Test Accuracy (%) Tuning Time (s)
IBO 98.3 4+ 0.2 98.1+0.3 85
Bayesian Opt. 98.5+0.1 98.3£0.2 210
Random'Search 97.84+0.4 97.54+0.3 80
Hyperband 97.9+£0.3 97.6 +£0.2 95

Table 3: Hyperparameter tuning results on CIFAR-10 (ResNet-18, 20 evaluations).

Method Val. Accuracy (%) Test Accuracy (%) Tuning Time (s)
IBO 84.2+0.5 83.9+0.6 400
Bayesian Opt. 85.6 £0.4 85.2£0.5 950
Random Search 83.7£0.7 83.2+0.8 370

Hyperband 84.1+0.6 83.6 +£ 0.6 410

P
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On MNIST, IBO demonstrated strong performance, achieving a validation accuracy of]
98.3% while requiring significantly fewer evaluations than BO. As shown in Figure 1, IBO
converged within 15 evaluations and outperformed other methods in early-stage accuracy. Ta-
ble 2 confirms IBO’s low computational cost.

For CIFAR-10, although BO achieved the highest accuracy (85.6%), IBO reached 84.2%
with less than half the tuning time. As seen in Figure 2 and Table 3, IBO strikes a strong balance
between speed and accuracy
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We observed that IBO performs best in low-dimensional settings (e.g., MNIST). On high-
dimensional tasks like ResNet-18 tuning, its accuracy degrades slightly—likely due to the curse
of dimensionality. In such settings, interpolation-based models lose fidelity and a fixed budget

becomes less effective.

5.5 Runtime Environment

All experiments were conducted on the same platform:
* Intel Core i7 CPU @ 3.6GHz, 32GB RAM,
» NVIDIA RTX 3080 GPU (10GB VRAM),
* Python 3.10, PyTorch 2.0, CUDA 11.8.

IBO was implemented using NumPy and SciPy interpolation tools. All experiments ran in clean|
environments to ensure fair runtime comparisons.

Recent methods like Hyperband and Successive Halving achieve efficiency by adaptive re-
source allocation. IBO takes a deterministic interpolationapproach, offering smoother conver-
gence and lower variance in small spaces. A deeper empirical comparison remains a direction|

for future work.

6 Conclusion

This paper introduced an Interpolation-Based Optimization (IBO) framework for hyperparam-
eter tuning in deep learning: [BO constructs deterministic surrogate models using interpolation,
offering efficient and accurate performance estimation with fewer evaluations compared to tra-
ditional search or probabilistic methods. Experiments on MNIST and CIFAR-10 demonstrated
that IBO achieves competitive validation and test accuracies relative to Bayesian Optimiza-
tion and Hyperband, while substantially reducing tuning time. These results underscore IBO’s
practical advantages in computationally constrained settings where fast and reproducible tun-
ing is essential. Theoretically, we established convergence guarantees, derived error bounds for]
the interpolated surrogate, and analyzed IBO’s runtime complexity—confirming its strength in
low- to moderate-dimensional problems. However, performance degradation was observed in|
high-dimensional spaces due to sparse sampling and reduced surrogate fidelity (i.e., surrogate
false positives and false negatives). Future work will explore adaptive sampling strategies, ran-

dom embeddings, and hybrid optimization techniques to extend IBO’s applicability to complex,

noisy, or multi-objective optimization tasks
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