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Abstract. The orthogonal polynomials approximation method is
widely regarded as a highly effective and versatile technique for
solving optimal control problems in nonlinear systems. This powerful
approach has found extensive applications in both theoretical research
and practical engineering, demonstrating its capability to address
complex dynamical behaviors. In this paper, we thoroughly investigate
the optimal control problem of the Van der Pol oscillator, a classic
nonlinear system with broad scientific and engineering relevance. The
proposed solution follows two distinct and systematic steps. First, the
state and control functions are approximated by linear combinations
of shifted Chelyshkov polynomials, whose coefficients are treated
as unknown parameters to be determined. Second, the resulting
transformed problem is formulated as a nonlinear optimization problem
and efficiently solved using advanced numerical optimization tools
implemented in Matlab. To demonstrate the accuracy and robustness of
the proposed approach, we present and analyze numerical results across
several representative scenarios.
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1 Introduction

TheVan der Pol oscillator is a non-conservative system characterized by nonlinear damping and is widely
studied in the context of dynamical systems. The Dutch electrical engineer Balthazar Van der Pol (1889–
1959) introduced this model, which is governed by the second-order nonlinear differential equation:

ẍ(t)− µ(1− x2(t))ẋ(t) + x(t) = 0, (1)

where µ is a scalar parameter representing the strength of the damping.
This equation serves as a fundamental model for oscillatory processes in electronics, biology, so-

ciology, physics, and economics [10]. In this study, we focus on an optimal control formulation of the
Van der Pol oscillator given by:

Min J =
1

2

∫ T

0

(
x2 + ẋ2 + u2

)
dt, (2)

s.t.

ẍ(t)− ϵµ(1− x2(t))ẋ(t) + µ2x(t) = u(t), (3)

x(0) = x0, ẋ(0) = ẋ0, (4)

x(T ) = 0, ẋ(T ) = 0, (5)

where constraint (3) represents the controlled Van der Pol oscillator with a perturbation parameter ϵ, and
x(t) and u(t) denote the state and control variables, respectively.

Various numerical methods have been developed for solving such optimal control problems, includ-
ing Pontryagin’s maximum principle [11], Bellman’s dynamic programming [2], piecewise polynomial
parameterization techniques [12, 13, 14], the Chebyshev approach [16], and other computational strate-
gies.

In this paper, we propose a direct numerical method based on orthogonal polynomial series expan-
sions. Specifically, the state variable x(t) and the control function u(t) are approximated by Chelyshkov
polynomial series with undetermined coefficients. By leveraging the orthogonality of Chelyshkov poly-
nomials, the original optimal control problem is converted into a finite-dimensional nonlinear optimiza-
tion problem. Solving this optimization problem yields accurate approximations of the state and control
trajectories.

While our method emphasizes polynomial-based representations, it is worth noting that Adaptive
Dynamic Programming (ADP) has recently emerged as a powerful alternative for tackling nonlinear op-
timal control problems. ADPmethods—such as neural network-based approaches and policy iteration—
enable adaptive control in high-dimensional or uncertain environments without requiring explicit system
models. For further information on ADP applications, we refer the reader to [3, 4, 5, 17].

Although the present work focuses on the Van der Pol oscillator, optimal control theory has demon-
strated effectiveness in diverse domains such as epidemic modeling [7], cholera transmission [9], and
COVID-19 intervention strategies [8]. These applications highlight the broad potential of optimal con-
trol methods in addressing real-world challenges. Integrating the techniques developed here with those
used in public health optimization may be a promising direction for future research.

In summary, this paper demonstrates the efficacy of a new class of orthogonal polynomials, Chelyshkov
polynomials, in addressing a benchmark of nonlinear optimal control problems. The proposed approach
provides a flexible and computationally efficient alternative to traditional methods.
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2 The Chelyshkov Algorithm

2.1 Chelyshkov Polynomials and Properties

The Chelyshkov polynomials, introduced by Chelyshkov in [6], are a class of orthogonal polynomials
defined by the following formula:

PN,n(x) =

N−n∑
i=0

(−1)i
(
N − n
i

)(
N + n+ i+ 1

N − n

)
xn+i, n = 0, 1, . . . , N. (6)

These polynomials are orthogonal on the interval [0, 1] with respect to the weight function ω(x) = 1,
and satisfy the following orthogonality condition:

∫ 1

0

PN,n(x)PN,m(x) dx =


1

n+m+ 1
, if n = m,

0, if n ̸= m.
(7)

The behavior of Chelyshkov polynomials for N = 4 and n = 0, 1, . . . , 4 is illustrated in Figure 1.

Figure 1: Chelyshkov polynomials for N = 4 and n = 0, 1, 2, 3, 4.

Remark 1. To apply Chelyshkov polynomials on the interval [0, T ], we define the shifted Chelyshkov
polynomials by substituting x = t

T into Equation (6).
Let f ∈ L2[0, T ] and define the space A = span{PN,0, PN,1, . . . , PN,N}, where {PN,n}Nn=0 are

the shifted Chelyshkov polynomials of degree at most N . Since A is a finite-dimensional subspace of
L2[0, T ], the function f has a unique best approximation h⋆ ∈ A such that

∥f − h⋆∥2 ≤ ∥f − h∥2, h ∈ A.

Therefore, there exist unique coefficients δ0, δ1, . . . , δN such that

f(t) ≈ h⋆(t) =
N∑
n=0

δnPN,n(t),

where the coefficients δn can be approximated by

δn =

∫ T

0

f(t)PN,n(t) dt, n = 0, 1, . . . , N.
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Lemma 1. Suppose that the function f : [0, T ]→ R is (N + 1) times continuously differentiable, i.e.,
f ∈ CN+1[0, T ], and let A = span{PN,0, PN,1, . . . , PN,N}. Define

M = max
t∈[0,T ]

|f (N+1)(t)|.

If h⋆ is the best approximation to f from A, then the following error bound holds:

∥f − h⋆∥2 ≤
M

(N + 1)!

√
T 2N+3

2N + 3
.

Proof. See [1].

2.2 Algorithm

To obtain an approximate solution of the controlled Van der Pol oscillator optimal control problem, the
Chelyshkov series of orderm is used for the state and control variables as follows:

xm(t) =

m∑
i=0

ηiPm,i(t), (8)

um(t) =

m∑
i=0

λiPm,i(t), (9)

where η = (η0, η1, . . . , ηm) and λ = (λ0, λ1, . . . , λm) are the unknown coefficients.
Since xm(t) is a polynomial in terms of the Chelyshkov series, its first and second derivatives can

be calculated as follows:

ẋm(t) =

m∑
i=0

ηiṖm,i(t), (10)

ẍm(t) =

m∑
i=0

ηiP̈m,i(t). (11)

Substituting Equations (8)–(11) into the optimal control problem (2)-(5) yields:

Min Jm =
1

2

∫ T

0

(
x2m(t) + ẋ2m(t) + u2m(t)

)
dt, (12)

subject to the dynamic constraint:

ẍm(t)− ϵµ(1− x2m(t))ẋm(t) + µ2xm(t) = um(t), (13)

and boundary conditions:

xm(0) = x0, (14)

ẋm(0) = ẋ0, (15)

xm(T ) = 0, (16)

ẋm(T ) = 0. (17)



Dehghan/ COAM, 10 (2), Summer-Autumn (2025) 299

To compute Jm using optimization tools in Matlab, it is necessary to express the performance index
and all constraints solely in terms of the coefficients η and λ. For this purpose, we multiply both sides
of (13) by Pm,i(t) for i = 0, 1, . . . ,m and employ the orthogonality property to obtain:

Fi(η, λ) =

∫ T

0

Pm,i(t)
(
ẍm(t)− ϵµ(1− x2m(t))ẋm(t) + µ2xm(t)− um(t)

)
dt = 0, (18)

for i = 0, 1, . . . ,m.
The functions Fi are linear in λ but nonlinear in η. Consequently, the optimal control problem is

reduced to the following constrained nonlinear programming problem:

Min Jm(η, λ) (19)

s.t. Fi(η, λ) = 0, i = 0, 1, . . . ,m, (20)
m∑
i=0

ηiPm,i(0) = x0, (21)

m∑
i=0

ηiṖm,i(0) = ẋ0, (22)

m∑
i=0

ηiPm,i(T ) = 0, (23)

m∑
i=0

ηiṖm,i(T ) = 0. (24)

Finally, by solving this constrained nonlinear programming problem and substituting the obtained values
of η and λ into Equations (8) and (9), approximate solutions for x(t) and u(t) are obtained.

The interior-point method is employed to solve this nonlinear optimization problem. For implemen-
tation, Matlab’s fmincon function is used. This function is a gradient-based optimization method that
requires both the objective and constraint functions to be continuous and differentiable.

3 Numerical Results

The results for Chelyshkov approximations of different ordersm with

T = 2, ϵ = 0.15, µ = 1, x(0) = 0.5, ẋ(0) = −0.5,

are reported as follows.
In Table 1, the Chelyshkov solutions and Jm for m = 4, 5, 7, 8 are presented. It can be seen that

as the value ofm increases, the value of Jm decreases. In particular, the Chelyshkov approximation of
orderm = 7 compared to that ofm = 8 yields a difference of |J8 − J7| ≈ 7.99× 10−12.

Approximated state and control variables for different cases ofm are shown in Figures 2 and 3. To
test the accuracy of this approximate method, additional values for the parameters T , µ, ϵ, x0, and ẋ0
have also been used.
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The Chebyshev method, another direct method proposed in [15], is used for comparison. In this
method, x(t) and u(t) are approximated as follows:

xm(t) =
1

2
η0T0(t) +

m∑
n=1

ηnTn(t), (25)

um(t) =
1

2
λ0T0(t) +

m∑
n=1

λnTn(t), (26)

where {T0, T1, . . . , Tm} are Chebyshev polynomials. Similar to the Chelyshkov approximation, the con-
sidered nonlinear optimal control problem becomes a nonlinear optimization problem by using Equations
(25) and (26). The results obtained by the Chebyshev method are shown in Table 2.

Table 1: The chelyshkov approximations of various orders for the Van der Pol oscillator.

m = 4 m = 5 m = 7 m = 8

η0 0.100000 0.083333 0.062500 0.055555
η1 0.250000 0.221429 0.175595 0.158333
η2 0.257044 0.275324 0.253311 0.236294
η3 0.137327 0.220513 0.276080 0.274710
η4 0.030283 0.106145 0.237504 0.264888
η5 0.022861 0.154460 0.210147
η6 0.066420 0.129559
η7 0.013601 0.054012
η8 0.010907

λ0 0.125982 0.099747 0.074809 0.066496
λ1 0.384209 0.313761 0.230393 0.203668
λ2 0.602810 0.531102 0.395342 0.348713
λ3 0.677035 0.669809 0.551474 0.493038
λ4 0.406494 0.634328 0.659629 0.613646
λ5 0.387107 0.676416 0.679288
λ6 0.575041 0.662218
λ7 0.351367 0.548488
λ8 0.338226

Jm 0.358230043954352 0.358092136163495 0.358092104096317 0.358092104088319

A comparison of Tables 3 and 4 shows that the solution obtained by the Chelyshkov method is
comparable to that obtained by the Chebyshev method. For illustration, we can express the state variable
and the control function in terms of Chelyshkov and Chebyshev polynomials based on the results of
Tables 1 and 2. For example, form = 4:

1. x(t) and u(t) using Chelyshkov approximation from Table 1:

x4(t) = 0.1P40 + 0.25P41 + 0.257044P42

+ 0.137327P43 + 0.030283P44,
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Table 2: The chebyshev approximations of various orders for the Van der Pol oscillator.

m = 4 m = 7 m = 10

η0 0.358501 0.35849949 0.3584995225
η1 -0.250000 -0.24950648 -0.2495064561
η2 0.073500 0.07349670 0.0734966309
η3 0.000000 -0.00074168 -0.0007416369
η4 -0.002750 -0.00274427 -0.0027442061
η5 0.00024910 0,0002490091
η6 -0.00000218 -0.0000021572
η7 -0.00000094 -0.0000009428
η8 -0.0000000367
η9 0.0000000266
η10 0.0000000078

λ0 0.836200 0.83620247 0.8362001016
λ1 -0.282980 -0.27069736 -0.2706901511
λ2 -0.063034 -0.06290773 -0.0629103261
λ3 0.004951 0.02388213 0.0238903519
λ4 -0.002983 -0.00360335 -0.0036078890
λ5 -0.00001130 0.0000008078
λ6 0.00006481 0.0000615566
λ7 -0.00001349 -0.0000057747
η8 0.0000021472
η9 0.0000006810
η10 -0.0000000936

Jm 0.358233 0.35809209 0.3580921041

u4(t) = 0.125982P40 + 0.384209P41 + 0.602810P42

+ 0.677035P43 + 0.406494P44.

2. x(t) and u(t) using Chebyshev approximation from Table 2:

x4(t) =
0.358501

2
T0(t)− 0.250000T1(t) + 0.073500T2(t)

+ 0.000000T3(t)− 0.002750T4(t),

u4(t) =
0.836200

2
T0(t)− 0.282980T1(t)− 0.063034T2(t)

+ 0.004951T3(t)− 0.002983T4(t).
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Figure 2: Approximation of state and control functions withm = 4, 5.

Figure 3: Approximation of state and control functions withm = 7, 8.

Table 3: Comparison of numerical results of two methods for state variable x(t).

t (Chelyshkov)m=4 (Chebyshev)m=4 (Chelyshkov)m=7 (Chebyshev)m=7

0.0 0.500000000000000 0.500000500000000 0.500000000000000 0.500000935000000
0.2 0.402148204004908 0.402149300000000 0.401736625218565 0.401736927602880
0.4 0.310986916361192 0.310989300000000 0.310012515446059 0.310012511025600
0.6 0.229473555137834 0.229477300000000 0.228359055029722 0.228358693286080
0.8 0.159720561812682 0.159725300000000 0.159001447881122 0.159000898683840
1.0 0.102995401272441 0.103000500000000 0.103011417094712 0.103010955000000
1.2 0.059720561812682 0.059725300000000 0.060463993745922 0.060463749522880
1.4 0.029473555137834 0.029477300000000 0.030594724540929 0.030594612216000
1.6 0.010986916361192 0.010989300000000 0.011953627990215 0.011953484345280
1.8 0.002148204004908 0.002149300000000 0.002552228778045 0.002551930882240
2.0 -0.000000000000000 0.000000500000000 0.000000000000000 -0.000000945000000

4 Conclusion

This paper presented a direct numerical scheme for the optimal control of the Van der Pol oscillator
based on finite Chelyshkov-polynomial series. By projecting the state and control trajectories onto an
orthogonal Chelyshkov basis, the original two-point boundary-value problemwas converted into a finite-
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Table 4: Comparison of numerical results of two methods for control function u(t).

t (Chelyshkov)m=4 (Chebyshev)m=4 (Chelyshkov)m=7 (Chebyshev)m=7

0.0 0.629911775601662 0.630112000000000 0.598477916757448 0.598508475000000
0.2 0.631061153337303 0.631092497600000 0.628435169155285 0.628429840955200
0.4 0.612724427083472 0.612686921600000 0.623592047590547 0.623587303570880
0.6 0.579099578387002 0.579053185600000 0.592026634055332 0.592030365860160
0.8 0.533459609145372 0.533432825600000 0.541150872688548 0.541157711200960
1.0 0.478152541606711 0.478151000000000 0.477337840989421 0.477340805000000
1.2 0.414601418369792 0.414616489600000 0.405758958519094 0.405756197284800
1.4 0.343304302384040 0.343321697600000 0.330374092994909 0.330369958876480
1.6 0.263834276949525 0.263842649600000 0.254017523681979 0.254017683796160
1.8 0.174839445716966 0.174838993600000 0.178522721986642 0.178523490557760
2.0 0.074042932687728 0.074054000000000 0.104828909156403 0.104801455000000

dimensional nonlinear program that can be solved efficiently with standard interior-point solvers. The
numerical experiments confirm three key findings.

• First, the Chelyshkov expansion yields highly accurate state and control approximations: for
instance, raising the polynomial order fromm = 7 tom = 8 changed the objective value by only
8× 10−12.

• Second, when benchmarked against a Chebyshev-based collocation scheme, the proposedmethod
achieves comparable—or slightly superior—accuracy with fewer basis functions and lower com-
putational cost (Tables 3–4).

• Third, the procedure naturally enforces both standard and multipoint boundary conditions, giving
it a structural simplicity that is often lacking in indirect approaches such as Pontryagin’sMaximum
Principle or dynamic programming.

Owing to these advantages, the Chelyshkov framework is well suited to a broad class of nonlinear
optimal-control problems. Future research will focus on

• extending the algorithm to high-dimensional systems that arise in epidemiology, power-system
dynamics, and robotic motion planning;

• incorporating parameter uncertainty and measurement noise through robust or stochastic formu-
lations; and

• combining Chelyshkov collocation with adaptive-dynamic-programming ideas to cope with par-
tially unknown system models.

Taken together, the results demonstrate that Chelyshkov polynomials constitute a flexible, accurate, and
computationally attractive alternative to more traditional polynomial bases in nonlinear optimal control.
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