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Abstract. The orthogonal polynomials approximation method is
widely regarded as a highly effective and versatile technique for
solving optimal control problems in nonlinear systems. This powerful
approach has found extensive applications in both theoretical research
and practical engineering, demonstrating its capability to address
complex dynamical behaviors. In this paper, we thoroughly investigate
the optimal control problem of the Van der Pol oscillator, a classic
nonlinear system with broad scientific and engineering relevance. The
proposed solution follows two distinct and systematic steps. First, the
state and control functions are approximated by linear combinations
of shifted Chelyshkov polynomials, whose coefficients are treated
as unknown parameters to be determined. Second, the resulting
transformed problem is formulated as a nonlinear optimization problem
and efficiently solved using advanced numerical optimization tools
implemented in Matlab. To demonstrate the accuracy and robustness
of the proposed approach, we present and analyze numerical results
across several representative scenarios.
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1 Introduction

The Van der Pol oscillator is a non-conservative system characterized by nonlinear damping
and is widely studied in the context of dynamical systems. The Dutch electrical engineer Balt-
hazar Van der Pol (1889–1959) introduced this model, which is governed by the second-order
nonlinear differential equation:

ẍ(t)− µ(1− x2(t))ẋ(t) + x(t) = 0, (1)

where µ is a scalar parameter representing the strength of the damping.
This equation serves as a fundamental model for oscillatory processes in electronics, bi-

ology, sociology, physics, and economics [10]. In this study, we focus on an optimal control
formulation of the Van der Pol oscillator given by:

Minimize J =
1

2

∫ T

0

(
x2 + ẋ2 + u2

)
dt, (2)

subject to

ẍ(t)− ϵµ(1− x2(t))ẋ(t) + µ2x(t) = u(t), (3)

x(0) = x0, ẋ(0) = ẋ0, (4)

x(T ) = 0, ẋ(T ) = 0, (5)

where constraint (3) represents the controlled Van der Pol oscillator with a perturbation param-
eter ϵ, and x(t) and u(t) denote the state and control variables, respectively.

Various numerical methods have been developed for solving such optimal control prob-
lems, including Pontryagin’s maximum principle [11], Bellman’s dynamic programming [2],
piecewise polynomial parameterization techniques [12, 13, 14], the Chebyshev approach [16],
and other computational strategies.

In this paper, we propose a direct numerical method based on orthogonal polynomial series
expansions. Specifically, the state variable x(t) and the control function u(t) are approximated
by Chelyshkov polynomial series with undetermined coefficients. By leveraging the orthog-
onality of Chelyshkov polynomials, the original optimal control problem is converted into a
finite-dimensional nonlinear optimization problem. Solving this optimization problem yields
accurate approximations of the state and control trajectories.

While our method emphasizes polynomial-based representations, it is worth noting that
Adaptive Dynamic Programming (ADP) has recently emerged as a powerful alternative for
tackling nonlinear optimal control problems. ADP methods—such as neural network-based
approaches and policy iteration—enable adaptive control in high-dimensional or uncertain en-
vironments without requiring explicit system models. For further information on ADP appli-
cations, we refer the reader to [3, 4, 5, 17].
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Although the present work focuses on the Van der Pol oscillator, optimal control theory has
demonstrated effectiveness in diverse domains such as epidemic modeling [7], cholera trans-
mission [9], and COVID-19 intervention strategies [8]. These applications highlight the broad
potential of optimal control methods in addressing real-world challenges. Integrating the tech-
niques developed here with those used in public health optimization may be a promising direc-
tion for future research.

In summary, this paper demonstrates the efficacy of a new class of orthogonal polynomi-
als, Chelyshkov polynomials, in addressing a benchmark of nonlinear optimal control prob-
lems. The proposed approach provides a flexible and computationally efficient alternative to
traditional methods.

2 The Chelyshkov Algorithm

2.1 Chelyshkov Polynomials and Properties

The Chelyshkov polynomials, introduced by Chelyshkov in [6], are a class of orthogonal poly-
nomials defined by the following formula:

PN,n(x) =
N−n∑
i=0

(−1)i
(
N − n

i

)(
N + n+ i+ 1

N − n

)
xn+i, n = 0, 1, . . . , N. (6)

These polynomials are orthogonal on the interval [0, 1] with respect to the weight function
ω(x) = 1, and satisfy the following orthogonality condition:

∫ 1

0
PN,n(x)PN,m(x) dx =


1

n+m+ 1
, if n = m,

0, if n ̸= m.
(7)

The behavior of Chelyshkov polynomials for N = 4 and n = 0, 1, . . . , 4 is illustrated in
Figure 1.

Remark 1. To apply Chelyshkov polynomials on the interval [0, T ], we define the shifted
Chelyshkov polynomials by substituting x = t

T into Equation (6).
Let f ∈ L2[0, T ] and define the spaceA = span{PN,0, PN,1, . . . , PN,N}, where {PN,n}Nn=0

are the shifted Chelyshkov polynomials of degree at most N . Since A is a finite-dimensional
subspace of L2[0, T ], the function f has a unique best approximation h⋆ ∈ A such that

∥f − h⋆∥2 ≤ ∥f − h∥2, h ∈ A.

Therefore, there exist unique coefficients δ0, δ1, . . . , δN such that
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Figure 1: Chelyshkov polynomials for N = 4 and n = 0, 1, 2, 3, 4.

f(t) ≈ h⋆(t) =

N∑
n=0

δnPN,n(t),

where the coefficients δn can be approximated by

δn =

∫ T

0
f(t)PN,n(t) dt, n = 0, 1, . . . , N.

Lemma 1. Suppose that the function f : [0, T ] → R is (N + 1) times continuously differen-
tiable, i.e., f ∈ CN+1[0, T ], and let A = span{PN,0, PN,1, . . . , PN,N}. Define

M = max
t∈[0,T ]

|f (N+1)(t)|.

If h⋆ is the best approximation to f from A, then the following error bound holds:

∥f − h⋆∥2 ≤
M

(N + 1)!

√
T 2N+3

2N + 3
.

Proof. See [1].

2.2 Algorithm

To obtain an approximate solution of the controlled Van der Pol oscillator optimal control prob-
lem, the Chelyshkov series of orderm is used for the state and control variables as follows:

xm(t) =

m∑
i=0

ηiPm,i(t), (8)

um(t) =

m∑
i=0

λiPm,i(t), (9)

where η = (η0, η1, . . . , ηm) and λ = (λ0, λ1, . . . , λm) are the unknown coefficients.
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Since xm(t) is a polynomial in terms of the Chelyshkov series, its first and second deriva-
tives can be calculated as follows:

ẋm(t) =

m∑
i=0

ηiṖm,i(t), (10)

ẍm(t) =

m∑
i=0

ηiP̈m,i(t). (11)

Substituting Equations (8)–(11) into the optimal control problem (2)-(5) yields:

Minimize Jm =
1

2

∫ T

0

(
x2m(t) + ẋ2m(t) + u2m(t)

)
dt, (12)

subject to the dynamic constraint:

ẍm(t)− ϵµ(1− x2m(t))ẋm(t) + µ2xm(t) = um(t), (13)

and boundary conditions:

xm(0) = x0, (14)

ẋm(0) = ẋ0, (15)

xm(T ) = 0, (16)

ẋm(T ) = 0. (17)

To compute Jm using optimization tools in Matlab, it is necessary to express the perfor-
mance index and all constraints solely in terms of the coefficients η and λ. For this purpose,
we multiply both sides of (13) by Pm,i(t) for i = 0, 1, . . . ,m and employ the orthogonality
property to obtain:

Fi(η, λ) =

∫ T

0
Pm,i(t)

(
ẍm(t)− ϵµ(1− x2m(t))ẋm(t) + µ2xm(t)− um(t)

)
dt = 0, (18)

for i = 0, 1, . . . ,m.
The functions Fi are linear in λ but nonlinear in η. Consequently, the optimal control prob-

lem is reduced to the following constrained nonlinear programming problem:

Minimize Jm(η, λ) (19)

subject to Fi(η, λ) = 0, i = 0, 1, . . . ,m, (20)
m∑
i=0

ηiPm,i(0) = x0, (21)

m∑
i=0

ηiṖm,i(0) = ẋ0, (22)
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m∑
i=0

ηiPm,i(T ) = 0, (23)

m∑
i=0

ηiṖm,i(T ) = 0. (24)

Finally, by solving this constrained nonlinear programming problem and substituting the ob-
tained values of η and λ into Equations (8) and (9), approximate solutions for x(t) and u(t) are
obtained.

The interior-point method is employed to solve this nonlinear optimization problem. For
implementation, Matlab’s fmincon function is used. This function is a gradient-based opti-
mization method that requires both the objective and constraint functions to be continuous and
differentiable.

3 Numerical Results

The results for Chelyshkov approximations of different ordersm with

T = 2, ϵ = 0.15, µ = 1, x(0) = 0.5, ẋ(0) = −0.5,

are reported as follows.
In Table 1, the Chelyshkov solutions and Jm for m = 4, 5, 7, 8 are presented. It can be

seen that as the value ofm increases, the value of Jm decreases. In particular, the Chelyshkov
approximation of order m = 7 compared to that of m = 8 yields a difference of |J8 − J7| ≈
7.99× 10−12.

Approximated state and control variables for different cases of m are shown in Figures 2
and 3. To test the accuracy of this approximate method, additional values for the parameters T ,
µ, ϵ, x0, and ẋ0 have also been used.

The Chebyshev method, another direct method proposed in [15], is used for comparison.
In this method, x(t) and u(t) are approximated as follows:

xm(t) =
1

2
η0T0(t) +

m∑
n=1

ηnTn(t), (25)

um(t) =
1

2
λ0T0(t) +

m∑
n=1

λnTn(t), (26)

where {T0, T1, . . . , Tm} are Chebyshev polynomials. Similar to the Chelyshkov approxima-
tion, the considered nonlinear optimal control problem becomes a nonlinear optimization prob-
lem by using Equations (25) and (26). The results obtained by the Chebyshevmethod are shown
in Table 2.
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Table 1: The chelyshkov approximations of various orders for the Van der Pol oscillator.

m = 4 m = 5 m = 7 m = 8

η0 0.100000 0.083333 0.062500 0.055555
η1 0.250000 0.221429 0.175595 0.158333
η2 0.257044 0.275324 0.253311 0.236294
η3 0.137327 0.220513 0.276080 0.274710
η4 0.030283 0.106145 0.237504 0.264888
η5 0.022861 0.154460 0.210147
η6 0.066420 0.129559
η7 0.013601 0.054012
η8 0.010907

λ0 0.125982 0.099747 0.074809 0.066496
λ1 0.384209 0.313761 0.230393 0.203668
λ2 0.602810 0.531102 0.395342 0.348713
λ3 0.677035 0.669809 0.551474 0.493038
λ4 0.406494 0.634328 0.659629 0.613646
λ5 0.387107 0.676416 0.679288
λ6 0.575041 0.662218
λ7 0.351367 0.548488
λ8 0.338226

Jm 0.358230043954352 0.358092136163495 0.358092104096317 0.358092104088319

A comparison of Tables 3 and 4 shows that the solution obtained by the Chelyshkov method
is comparable to that obtained by the Chebyshev method. For illustration, we can express the
state variable and the control function in terms of Chelyshkov and Chebyshev polynomials
based on the results of Tables 1 and 2. For example, form = 4:

1. x(t) and u(t) using Chelyshkov approximation from Table 1:

x4(t) = 0.1P40 + 0.25P41 + 0.257044P42

+ 0.137327P43 + 0.030283P44,

u4(t) = 0.125982P40 + 0.384209P41 + 0.602810P42

+ 0.677035P43 + 0.406494P44.

2. x(t) and u(t) using Chebyshev approximation from Table 2:

x4(t) =
0.358501

2
T0(t)− 0.250000T1(t) + 0.073500T2(t)

+ 0.000000T3(t)− 0.002750T4(t),
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Table 2: The chebyshev approximations of various orders for the Van der Pol oscillator.

m = 4 m = 7 m = 10

η0 0.358501 0.35849949 0.3584995225
η1 -0.250000 -0.24950648 -0.2495064561
η2 0.073500 0.07349670 0.0734966309
η3 0.000000 -0.00074168 -0.0007416369
η4 -0.002750 -0.00274427 -0.0027442061
η5 0.00024910 0,0002490091
η6 -0.00000218 -0.0000021572
η7 -0.00000094 -0.0000009428
η8 -0.0000000367
η9 0.0000000266
η10 0.0000000078

λ0 0.836200 0.83620247 0.8362001016
λ1 -0.282980 -0.27069736 -0.2706901511
λ2 -0.063034 -0.06290773 -0.0629103261
λ3 0.004951 0.02388213 0.0238903519
λ4 -0.002983 -0.00360335 -0.0036078890
λ5 -0.00001130 0.0000008078
λ6 0.00006481 0.0000615566
λ7 -0.00001349 -0.0000057747
η8 0.0000021472
η9 0.0000006810
η10 -0.0000000936

Jm 0.358233 0.35809209 0.3580921041

u4(t) =
0.836200

2
T0(t)− 0.282980T1(t)− 0.063034T2(t)

+ 0.004951T3(t)− 0.002983T4(t).

Figure 2: Approximation of state and control functions withm = 4, 5.
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Figure 3: Approximation of state and control functions withm = 7, 8.

Table 3: Comparison of numerical results of two methods for state variable x(t).

t (Chelyshkov)m=4 (Chebyshev)m=4 (Chelyshkov)m=7 (Chebyshev)m=7

0.0 0.500000000000000 0.500000500000000 0.500000000000000 0.500000935000000
0.2 0.402148204004908 0.402149300000000 0.401736625218565 0.401736927602880
0.4 0.310986916361192 0.310989300000000 0.310012515446059 0.310012511025600
0.6 0.229473555137834 0.229477300000000 0.228359055029722 0.228358693286080
0.8 0.159720561812682 0.159725300000000 0.159001447881122 0.159000898683840
1.0 0.102995401272441 0.103000500000000 0.103011417094712 0.103010955000000
1.2 0.059720561812682 0.059725300000000 0.060463993745922 0.060463749522880
1.4 0.029473555137834 0.029477300000000 0.030594724540929 0.030594612216000
1.6 0.010986916361192 0.010989300000000 0.011953627990215 0.011953484345280
1.8 0.002148204004908 0.002149300000000 0.002552228778045 0.002551930882240
2.0 -0.000000000000000 0.000000500000000 0.000000000000000 -0.000000945000000

Table 4: Comparison of numerical results of two methods for control function u(t).

t (Chelyshkov)m=4 (Chebyshev)m=4 (Chelyshkov)m=7 (Chebyshev)m=7

0.0 0.629911775601662 0.630112000000000 0.598477916757448 0.598508475000000
0.2 0.631061153337303 0.631092497600000 0.628435169155285 0.628429840955200
0.4 0.612724427083472 0.612686921600000 0.623592047590547 0.623587303570880
0.6 0.579099578387002 0.579053185600000 0.592026634055332 0.592030365860160
0.8 0.533459609145372 0.533432825600000 0.541150872688548 0.541157711200960
1.0 0.478152541606711 0.478151000000000 0.477337840989421 0.477340805000000
1.2 0.414601418369792 0.414616489600000 0.405758958519094 0.405756197284800
1.4 0.343304302384040 0.343321697600000 0.330374092994909 0.330369958876480
1.6 0.263834276949525 0.263842649600000 0.254017523681979 0.254017683796160
1.8 0.174839445716966 0.174838993600000 0.178522721986642 0.178523490557760
2.0 0.074042932687728 0.074054000000000 0.104828909156403 0.104801455000000
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4 Conclusion

This paper presented a direct numerical scheme for the optimal control of the Van der Pol os-
cillator based on finite Chelyshkov-polynomial series. By projecting the state and control tra-
jectories onto an orthogonal Chelyshkov basis, the original two-point boundary-value problem
was converted into a finite-dimensional nonlinear program that can be solved efficiently with
standard interior-point solvers. The numerical experiments confirm three key findings.

• First, the Chelyshkov expansion yields highly accurate state and control approximations:
for instance, raising the polynomial order from m = 7 to m = 8 changed the objective
value by only 8× 10−12.

• Second, when benchmarked against a Chebyshev-based collocation scheme, the pro-
posed method achieves comparable—or slightly superior—accuracy with fewer basis
functions and lower computational cost (Tables 3–4).

• Third, the procedure naturally enforces both standard and multipoint boundary condi-
tions, giving it a structural simplicity that is often lacking in indirect approaches such as
Pontryagin’s Maximum Principle or dynamic programming.

Owing to these advantages, the Chelyshkov framework is well suited to a broad class of
nonlinear optimal-control problems. Future research will focus on

• extending the algorithm to high-dimensional systems that arise in epidemiology, power-
system dynamics, and robotic motion planning;

• incorporating parameter uncertainty and measurement noise through robust or stochastic
formulations; and

• combining Chelyshkov collocation with adaptive-dynamic-programming ideas to cope
with partially unknown system models.

Taken together, the results demonstrate that Chelyshkov polynomials constitute a flexible, ac-
curate, and computationally attractive alternative to more traditional polynomial bases in non-
linear optimal control.

Declarations

Availability of Supporting Data
All data generated or analyzed during this study are included in this published paper.

Funding



In
Pr
es
s

Dehghan 11

The author conducted this research without any funding, grants, or support.

Competing Interests
The author declares that there are no competing interests relevant to the content of this paper.

References

[1] Ardabili, J.S., Talaei, Y. (2018). “Chelyshkov collocation method for solving the two-dimensional
Fredholm–Volterra integral equations”, International Journal of Applied and Computational Math-
ematics, 4(25), 1-13, doi:https://doi.org/10.1007/s40819-017-0433-2.

[2] Bellman, R. (1957). “Dynamic programming”, Series: Princeton Landmarks in Mathematics and
Physics, NJ: Princeton University Press.

[3] Bowen, Z., Honglei, Xu., Kok, L.T. (2023). “A numerical algorithm for constrained optimal control
problems”, Journal of Industrial and Management Optimization, 19(12), 8602-8616, doi:https:
//www.aimsciences.org/article/doi/10.3934/jimo.2023053.

[4] Carlos, E., Solorzano, E., José, A., Avelar, B., Rolando, M.M. (2020). “Regulation of a Van der P
ol oscillator using reinforcement learning”, International Congress of Telematics and Computing,
281-296. Springer, doi:http://dx.doi.org/10.1007/978-3-030-62554-2_21.

[5] Chagas, T.P., Toledo, B.A., Rempel, E.L., Chian, A.C.L., Valdivia, J.A. (2012). “Optimal feedback
control of the forced Van der Pol system”, Chaos, Solitons & Fractals, 45(9-10), 1147-1156, doi:
https://doi.org/10.1016/j.chaos.2012.06.004.

[6] Chelyshkov, V.S. (2006). “Alternative orthogonal polynomials and quadratures”, Electronic Trans-
actions on Numerical Analysis, 25(7), 17-26.

[7] Id Ouaziz, S., El Khomssi, M. (2024). “Mathematical approaches to controlling COVID-19: Opti-
mal control and financial benefits”, Mathematical Modelling and Numerical Simulation with Ap-
plications, 4(1), 1-36, doi:https://doi.org/10.53391/mmnsa.1373093.

[8] Jajarmi, A., Ebrahimzadeh, A., Khanduzi, R. (2024). “Coronavirus metamorphosis optimiza-
tion algorithm and collocation method for optimal control problem in COVID-19 vaccination
model”,Optimal Control Applications and Methods, 46(1), 292-306, doi:http://dx.doi.org/
10.1002/oca.3215.

[9] Mustapha, U.T., Maigoro, Y.A., Yusuf, A., Qureshi, S. (2024). “Mathematical modeling for the
transmission dynamics of cholera with an optimal control strategy”, Bulletin of Biomathematics,
2(1), 1-20, doi:http://dx.doi.org/10.59292/bulletinbiomath.2024001.

[10] Nayfeh, A.H., Mook, D.T. (1979). “Nonlinear oscillations”, John Wiley & Sons, New York.

[11] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F. (1962). “The Mathemat-
ical Theory of Optimal Processes”,Wiley Interscience, New York.

doi:https://doi.org/10.1007/s40819-017-0433-2.
doi: https://www.aimsciences.org/article/doi/10.3934/jimo.2023053.
doi: https://www.aimsciences.org/article/doi/10.3934/jimo.2023053.
doi: http://dx.doi.org/10.1007/978-3-030-62554-2_21.
doi: https://doi.org/10.1016/j.chaos.2012.06.004.
doi: https://doi.org/10.1016/j.chaos.2012.06.004.
doi:https://doi.org/10.53391/mmnsa.1373093.
doi: http://dx.doi.org/10.1002/oca.3215.
doi: http://dx.doi.org/10.1002/oca.3215.
doi: http://dx.doi.org/10.59292/bulletinbiomath.2024001.


In
Pr
es
s

12 Optimal Control of the Van der Pol Oscillator Problem ...

[12] Sirisena, H.R. (1973). “Computation of optimal controls using a piecewise polynomial parameter-
ization”, IEEE Transactions on Automatic Control, 18(4), 409-411, doi:https://doi.org/10.
1109/TAC.1973.1100329.

[13] Sirisena, H., Chou, F. (1976). “An efficient algorithm for solving optimal control problems with
linear terminal constraints”, IEEE Transactions on Automatic Control, 21, 275-277, doi:https:
//doi.org/10.1109/TAC.1976.1101176.

[14] Sirisena, H., Tan, K. (1974). “Computation of constrained optimal controls using parameterization
techniques”, IEEE Transactions on Automatic Control, 19(4), 431-433, doi:https://doi.org/
10.1109/TAC.1974.1100614.

[15] Van Dooren, R. (1987). “Numerical study of the controlled Van der Pol oscillator in Chebyshev
series”, Journal of Applied Mathematics and Physics, 38(6), 934-939, doi:https://doi.org/
10.1007/BF00945828.

[16] Vlassenbroeck, J., Van Dooren, R. (1988). “A Chebyshev technique for solving nonlinear optimal
control problems”, IEEE Transactions on Automatic Control, 33(4), 333-340, doi:https://doi.
org/10.1109/9.192187.

[17] Zheng, J., Xuyang, L. (2018). “Adaptive dynamic programming for optimal control of Van der Pol
oscillator”, Chinese Control and Decision Conference, Shenyang, China, 1537-1542, doi:https:
//doi.org/10.1109/CCDC.2018.8407371.

doi: https://doi.org/10.1109/TAC.1973.1100329.
doi: https://doi.org/10.1109/TAC.1973.1100329.
doi: https://doi.org/10.1109/TAC.1976.1101176.
doi: https://doi.org/10.1109/TAC.1976.1101176.
doi: https://doi.org/10.1109/TAC.1974.1100614.
doi: https://doi.org/10.1109/TAC.1974.1100614.
doi: https://doi.org/10.1007/BF00945828.
doi: https://doi.org/10.1007/BF00945828.
doi: https://doi.org/10.1109/9.192187.
doi: https://doi.org/10.1109/9.192187.
doi: https://doi.org/10.1109/CCDC.2018.8407371.
doi: https://doi.org/10.1109/CCDC.2018.8407371.

	Optimal Control of the Van der Pol Oscillator Problem by Using Orthogonal Polynomial-Based Optimizationto.44em.
	Reza Dehghan 

