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Abstract. Energy constraint is the most critical challenge in Wireless
Sensor Networks (WSNs), particularly in dynamic environments
with mobile nodes. This paper proposes an intelligent clustering
protocol based on Fuzzy Neural Networks (FNN) that adaptively
optimizes energy consumption by dynamically selecting cluster heads
and determining optimal cluster configurations. The FNN integrates
fuzzy logic’s uncertainty handling with neural networks’ learning
capabilities, using key parameters including residual energy, node
Unlike static
clustering approaches such as LEACH and HEED, our method con-

distance, neighbor density, and signal-to-noise ratio.

tinuously adapts to changing network conditions through real-time
parameter evaluation. Extensive MATLAB simulations with 100 nodes
demonstrate significant performance improvements: the proposed FNN
extends network lifetime by 35% compared to LEACH, 28% compared
to HEED, and 15% compared to ANN-based ELDC. The First Node
Dies (FND) is delayed by 45%, 38%, and 22% respectively, while
achieving 25% lower energy consumption. Results confirm the FNN
approach’s superior energy efficiency and network stability, making it
highly suitable for dynamic WSN applications.
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1 Introduction

Wireless Sensor Networks (WSNs) represent a cornerstone technology in the modern era of ubiqui-
tous computing and the Internet of Things (IoT) [19]. Comprising numerous spatially distributed, au-
tonomous sensor nodes, WSNss facilitate unprecedented capabilities for monitoring physical or environ-
mental conditions, with applications spanning from precision agriculture and industrial automation to
critical healthcare and military surveillance [22, 26]. However, the practical deployment and operational
longevity of WSNs are fundamentally constrained by the limited energy resources of their individual sen-
sor nodes. These nodes typically rely on small, irreplaceable batteries, making energy conservation the

most critical design consideration to maximize the network’s functional lifetime [14].

Among the various strategies developed to mitigate energy depletion, hierarchical clustering has
been widely recognized as a highly effective technique for enhancing both energy efficiency and net-
work scalability [18]. Clustering protocols organize nodes into groups (clusters), each electing a Cluster
Head (CH). Non-CH nodes then transmit their data over potentially shorter distances to their local CH,
which aggregates the collected information, reducing redundancy, and forwards it to a distant Base
Station (BS). This hierarchical structure significantly reduces overall energy consumption compared to
direct transmission. However, many seminal and conventional clustering protocols, such as LEACH and
HEED [12, 29], were designed with static or slowly changing networks in mind. Their reliance on sim-
plified probabilistic models or fixed, predefined parameters for CH selection renders them ill-equipped
to handle the challenges of dynamic environments. In many real-world scenarios, sensor nodes may
be mobile, channel conditions can fluctuate, and data generation rates may vary [15]. In such dynamic
settings, the rigid nature of conventional protocols leads to suboptimal cluster formation, imbalanced
load distribution, and the premature death of critical nodes, ultimately degrading network coverage and
shortening its lifespan. This gap between the requirements of dynamic applications and the capabilities
of existing static protocols constitutes the central problem this research aims to solve [7].

The clear limitations of traditional protocols necessitate a move towards more intelligent and adap-
tive mechanisms. Machine learning offers a promising avenue for developing such solutions. Ap-
proaches based on Artificial Neural Networks (ANNs) [26], for instance, can learn complex, non-linear
relationships between network state parameters (like energy and distance) and optimal clustering de-
cisions. However, a purely ANN-based approach is not without its own challenges in the WSN con-
text. ANNs can be sensitive to the noisy and imprecise data inherent in sensor readings and wireless
communications. Furthermore, they operate as “black boxes,” which can struggle with the conceptual,
linguistic-style reasoning that is often intuitive for describing network states (e.g., a node’s energy is
“low,” or its distance to the BS is “far”). It is this specific limitation that motivates our proposed solu-
tion. We identify an opportunity to create a more robust and effective model by synergizing the adaptive
learning strengths of neural networks with the uncertainty-handling capabilities of fuzzy logic. Fuzzy
logic excels at modeling and reasoning with imprecise information and linguistic variables. By integrat-
ing these two paradigms, we can construct a Fuzzy Neural Network (FNN) that not only learns from
data but also embraces and manages uncertainty [7, 31]. This hybrid approach is uniquely suited to
build an intelligent clustering mechanism that is both adaptive and resilient, capable of making nuanced,
context-aware decisions in the face of real-world network dynamics and data imprecision [6].
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To address the challenges outlined above, this paper introduces a new energy-efficient clustering
protocol for WSNs based on a dynamic Fuzzy Neural Network. We propose a comprehensive framework
that leverages the FNN to intelligently guide the clustering process, significantly extending network
lifetime and stability. The primary contributions of this work are:

* Design of a Novel FNN-based Clustering Protocol: We introduce an intelligent clustering mech-
anism where an FNN adaptively determines CH suitability. The FNN is designed to process mul-
tiple, often conflicting, real-time network parameters—including residual energy, distance to the
base station, local node density, and signal-to-noise ratio (SNR)—to make holistic and informed
decisions.

* A Practical Framework for WSN Deployment: We propose and validate a two-phase operational
framework. An intensive, one-time offline training phase builds the intelligent FNN model with-
out consuming any node energy. This is followed by a lightweight online operational phase where
each node can efficiently use the trained model for distributed, round-by-round decision-making,
confirming the feasibility of our approach for resource-constrained sensor nodes.

» Comprehensive Performance Validation: We conduct extensive simulations to rigorously evalu-
ate our proposed protocol. The results provide definitive evidence that our FNN-based approach
demonstrably outperforms not only the benchmark legacy protocols (LEACH and HEED) but also
a baseline ANN-based clustering model (ELDC) across all key metrics, including network sta-
bility period, total lifetime, and overall energy efficiency. This empirically confirms the tangible
benefits of integrating fuzzy logic for enhanced robustness and performance.

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3
details the proposed FNN-based clustering methodology. Section 4 describes the simulation setup and
evaluation metrics. Section 5 presents and discusses the simulation results. Scalability and Complexity
Analysis are presented in Section 6. Overhead Comparison Summary is discussed in Section 7. Finally,
Section 8 concludes the paper and suggests future research directions.

2 Related Work

Energy efficiency remains a primary concern in WSNs, leading to the development of numerous clus-
tering and routing protocols. Existing works can be categorized into conventional clustering, machine
learning-based clustering, and bio-inspired/metaheuristic clustering techniques.

2.1 Conventional Clustering Protocols

* LEACH (Low-Energy Adaptive Clustering Hierarchy): A seminal distributed clustering protocol
where nodes probabilistically elect themselves as CHs based on a target percentage and rotate
the CH role to distribute energy load [12, 29]. While simple, it doesn’t guarantee optimal CH
distribution or number. LEACH-C (Centralized) uses the BS for CH selection based on node
energy and location [9].
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* HEED (Hybrid Energy-Efficient Distributed Clustering): Improves upon LEACH by using resid-
ual energy as the primary parameter for CH selection and intra-cluster communication cost (e.g.,

node degree) as a secondary parameter, aiming for better CH distribution and prolonged lifetime
[16,29].

* PEGASIS (Power-Efficient Gathering in Sensor Information Systems): Forms a chain among
sensor nodes instead of clusters. Each node transmits only to its neighbor, and a designated leader
transmits aggregated data to the BS[11, 17]. Reduces overhead but increases delay and is sensitive
to node failures.

o TEEN (Threshold sensitive Energy Efficient sensor Network protocol): Designed for reactive
networks, reducing transmissions by only reporting data when sensed values cross predefined hard
and soft thresholds. APTEEN adapts TEEN for periodic reporting alongside reactive monitoring
[4, 23].

* VGA (Virtual Grid Architecture routing): A location-aware protocol that partitions the network
into fixed zones, selecting a local and master aggregator for data fusion [19, 1]. Reduces energy

but assumes location awareness.

» Other Protocols: Numerous variations exist, such as CBHRP (Cluster Based Hierarchical Rout-
ing Protocol) [8, 21], LLACA (adaptive localized clustering scheme named localized learning
automata-based clustering algorithm) [9, 24], GAF (Geographic Adaptive Fidelity) [5, 10], and
GEAR (Geographic and Energy Aware Routing) [25, 30], each addressing specific aspects like
mobility, localization, or data delivery quality.

2.2 Learning-Based Clustering

Machine learning offers adaptive solutions.

* ANN-based Clustering (e.g., ELDC): As presented in [26], ANNs can be trained to learn the re-
lationship between network state (node energy, location, etc.) and optimal clustering parameters
(e.g., number of clusters). Backpropagation is typically used for training. The inputs often in-
clude residual energy, distance to BS, distance to cluster boundary, distance to CH, number of
neighbors, and SNR [18, 26]. While effective, ANNs might lack robustness to uncertainty and
the interpretability of fuzzy systems.

* Ant Colony Optimization (ACO): ACO algorithms have been applied to WSN routing [21], in-
cluding energy-aware variants like EEABR [13]. These bio-inspired methods explore paths based
on pheromone trails representing path quality (e.g., lower energy cost), but can have slow con-
vergence.

» Fuzzy Logic: Fuzzy logic has been used in WSNs for CH selection (e.g., using energy, centrality,
distance) [3, 7] and routing, leveraging its ability to handle imprecise data and make rule-based
decisions.
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2.3 Bio-Inspired and Metaheuristic Optimization Approaches

Recently, several metaheuristic optimization algorithms have been applied to clustering in WSNs to
enhance energy efficiency:

* Cuckoo Optimization Algorithm (COA): In [20], a COA-based energy-aware clustering protocol
was proposed. COA mimics the brood parasitism behavior of cuckoos to optimize CH selection.
While effective in reducing energy consumption, COA involves high computational complexity
and may not scale well in real-time WSN operations.

* Black Hole and Ant Colony Algorithms (BH-ACO): The work in [28] combined black hole and ant
colony optimization to design an adaptive cluster-based data transmission scheme. This hybrid
approach improved energy balancing and routing efficiency. However, its reliance on iterative

path optimization makes it less suitable for networks with frequent topology changes.

o Firefly Algorithm (FA): In [27], the firefly algorithm was used for data aggregation and clustering.
FA exploits swarm intelligence to minimize redundant transmissions, leading to reduced energy
consumption. Nevertheless, FA-based clustering still suffers from parameter tuning challenges
and convergence delays in large-scale WSNs.

These metaheuristic approaches demonstrate promising energy efficiency improvements, but they often
require significant computational overhead, making them less practical for resource-constrained sensor
nodes. These algorithms are typically iterative and may require substantial computation to converge to
a solution in each round. This can be a considerable drawback in highly dynamic WSNs that require
rapid, low-latency re-clustering.

2.4 Gap Analysis

While these works have established the potential of neuro-fuzzy systems, a critical review reveals spe-
cific gaps that our research aims to address. Firstly, many existing approaches focus solely on the CH
selection problem for a predefined or heuristically determined number of clusters (k). They do not ad-
dress the equally important problem of dynamically determining the optimal number of clusters based

on the network’s current state, which is crucial for true load balancing and energy efficiency.

Secondly, the practical deployment model is often not fully detailed. Our work proposes a clear
two-phase framework, decoupling the high-cost offline training from the low-cost online execution,
which is a critical consideration for demonstrating real-world feasibility on resource-constrained sensor
nodes. Finally, few studies provide a direct, empirical comparison against a pure ANN baseline to
specifically isolate and validate the contribution of the fuzzy logic component in enhancing robustness
and performance. Our research directly addresses these three aspects.
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3 Proposed Methodology: FNN for Energy-Efficient Clustering

The core objective of our methodology is to dynamically optimize the clustering process in WSNs to
significantly reduce energy consumption and prolong network operational lifetime. We propose an in-
telligent approach based on a FNN, which synergizes the adaptive learning capabilities of ANNs with
the uncertainty handling and linguistic reasoning strengths of Fuzzy Logic [2]. This allows the system
to make robust and context-aware decisions about cluster formation and Cluster Head (CH) selection in
each round, adapting to the potentially changing conditions of the network, including variations in node
energy and topology.

The proposed FNN adapts its clustering decisions at every communication round by evaluating
real-time parameters (residual energy, neighbor density, SNR, distance to BS). This per-round decision-
making allows the protocol to handle typical gradual network changes. However, since the FNN was
trained offline, it assumes static or low-mobility networks. Sudden large-scale topology changes, such
as rapid mobility or simultaneous mass node failures, are not explicitly addressed in this study.

3.1 System Model and Energy Consumption

We adopt a standard WSN model consistent with related works [14, 15]:

+ A set of N sensor nodes is deployed (initially randomly) within a defined sensing field (e.g.,
100m x 100m).

*+ A stationary Base Station (BS) resides at a known location (e.g., the center (50, 50)).
» Each node begins with an initial energy, Ey, (e.g., 0.5 J).
* Nodes can adjust their transmission power based on distance.

* The first-order radio energy model [12] is used:

o Energy to run transmitter/receiver circuitry: Fe. (€.g., 0.5 nJ/bit).
o Energy for data aggregation: Ep4 (e.g., 0.5 nJ/bit/signal).
o Amplifier energy depends on distance d:

- Efs.d2 if d < dy (free space),

- Epp.d* if  d > dp (multipath).

Erx shows Transmission Energy, the energy consumed by a node transmitting a k-bit message over
distance d is:
Eps-k-d?, if d<do,

1
Epp - k-d*, if d>do, M

Brx(kd) = Bypee - k + {

where Eelec

E,,p are the amplifier energy costs depending on the distance drelative to the threshold distance dj.

is the energy dissipated per bit to run the transmitter or receiver circuitry, and Ey, or

This equation shows that energy consumption grows quadratically with distance for short links (free
space) but quartically for long links (multipath). Therefore, minimizing the transmission distance (via
clustering) significantly reduces energy consumption.
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Reception Energy (Erx (k)), the energy consumed receiving a k-bit message is:

elec’

Unlike transmission, reception energy depends only on the number of bits and not on the distance.
The energy for reception depends only on the number of bits & and the electronics energy Fg|q.. Cluster
Heads also expend energy for aggregating data received from cluster members, calculated as E'p 4 per bit
per aggregation signal, data aggregation energy (Ep 4). Minimizing the total energy consumed across
all nodes per round is the primary goal.

Cluster Heads (CHs) aggregate data from their member nodes to reduce redundancy before forward-
ing it to the Base Station. The energy spent for aggregating k bits is:

Epa(k)=FEpa -k, 3)

where Ep 4 is the energy required per bit for data aggregation (e.g., 5 nJ/bit). Data aggregation signifi-
cantly lowers the volume of transmitted data, saving energy at the network level.
The total energy consumed in a round is the sum of transmission, reception, and aggregation energy

across all nodes:
N

Eround = Z (E’}‘X + E;—EX + EZDA) ’ (4)
=1

where NNN is the number of nodes. The clustering protocol’s goal is to minimize E

round to prolong

network lifetime.
The proposed FNN-based clustering protocol uses these Equations (1) to (4) indirectly to guide its
learning and decision-making:

» The inputs (residual energy, distance, neighbor density, SNR) relate to the components of these
formulas.

* The FNN learns to minimize total energy per round by selecting optimal CHs and forming energy-
efficient clusters.

3.2 The FNN Architecture

The intelligence of our clustering mechanism resides in the FNN. It processes real-time network infor-
mation to output decisions guiding the clustering process. Our FNN likely follows a structure similar to
ANFIS (Adaptive Neuro-Fuzzy Inference System), comprising multiple layers, as conceptually shown
in Figure 1.

The proposed FNN integrates the fuzzy inference system with neural network learning, forming a
layered architecture analogous to an Adaptive Neuro-Fuzzy Inference System (ANFIS). The FNN com-
prises five layers: Input, Fuzzification, Rule, Normalization, and Output. Figure 1 illustrates the inter-
connections among these layers: the Input Layer accepts the network parameters, the Fuzzification Layer
employs Membership Functions, the Rule Layer encodes IF-THEN rules, the Normalization/Consequent
Layer performs normalization and combines rule outputs, and the Output Layer producing a crisp result
(e.g., CH Suitability Score).
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Layer 1 Layer 2 Layer 3 Layer 4 Layer5

Figure 1: Conceptual layered architecture of the proposed FNN.

+ Layer 1 (Input Layer): The input layer accepts crisp numerical values that represent the current
state of a node and its surrounding environment. Drawing on factors known to influence energy-
efficient clustering and the inputs employed in the baseline work of the cited literature [14, 26],
we identify the following critical parameters (summarized in Table 1): Residual Energy, Distance
to Base Station, Node Degree, Average Distance to Neighbors, and Signal-to-Noise Ratio.
Inputs: x = [E,,dgs, ND, SN R], where:

— E, = residual energy
— dpg = distance to base station
— ND = node degree

— SNR = signal-to-noise ratio
The output of Layer 1 is O% = x;.

* Layer 2 (Fuzzification Layer): Each input node from Layer 1 connects to nodes in this layer that
represent fuzzy sets. This layer converts the crisp input values into fuzzy degrees of membership
using Membership Functions (MFs). In this paper, we employ Triangular MFs due to their sim-
plicity and computational efficiency. For instance, ‘Residual Energy’ might be mapped to fuzzy
sets like ‘Low’, ‘Medium’, and ‘High’, each with its corresponding triangular MF, as illustrated
conceptually in Figure 2. The parameters defining these MFs (e.g., the vertices of the triangles)
are adapted during the FNN’s training phase.

e Each input z; is fuzzified into linguistic terms (e.g., Low, Medium, and High) using the

Triangular MFs:
0, r < a,
=2 g<x<b
b—a’ =Y
pata) = 4 I
=, b<xz<ug
0 T > c.

)

e Here (a, b, ¢) define the triangle vertices for each fuzzy set.

Figure 2 shows the input range for Residual Energy on the x-axis and Degree of Membership (0 to
1) on the y-axis. Three overlapping triangles representing ‘Low’, ‘Medium’, and ‘High’ energy
levels are shown.
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Figure 2: Triangular membership functions for ‘residual energy’.

* Layer 3 (Rule Layer): This layer embodies the fuzzy inference engine. Each node in this layer
corresponds to a fuzzy IF-THEN rule. These rules capture heuristic knowledge about desirable
clustering characteristics. Example rules might be:

o Rule 1: If Eres is High and Dpg is Low and N D is Medium, then CHSuitability is
Very_High.

o Rule 2: If Eyeg is High, then CHSuitability is Very Low.
o Rule 3: If ND is High and Dy is Low, then CHSuitability is High.

The firing strength of each rule is calculated in this layer, typically using a fuzzy AND operator
(T-norm). The output of each rule node represents how strongly that rule applies given the current
fuzzified inputs.

Firing strength of rule j:

wj = H“A{ ().

* Layer 4 (Normalization/Consequent Layer): This layer aggregates the outcomes of the ac-
tivated fuzzy rules. It often involves normalizing the firing strengths calculated in Layer 3
and applying these weights to the consequent part of each rule (e.g., the fuzzy set representing
"Very High’ suitability). The specific operations depend on the FNN model but aim to combine
the contributions of all relevant rules.

+ Firing strengths are normalized: w
J

ijj.

+ Consequent functions f;(z) (linear in inputs) are applied:

wy; =

O] =w; x fj(x) =@; (pEr + qjdps +r;ND + s;SNR + ;).

+ Layer 5 (Defuzzification/Output Layer): This layer converts the aggregated fuzzy output from
Layer 4 back into a single, crisp numerical value. The paper indicates the use of the Centroid
(Center of Gravity) or Weighted Average of Centers defuzzification methods, which are widely
used and effective in practice, as conceptually illustrated in Figure 3.

The final output, denoted as the CH suitability score y), is computed as:
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y=>_0j,
J

representing the crisp decision of the FNN. For example, y may indicate the node’s overall suit-
ability to act as a CH in the current round, or potentially provide an estimation of the optimal
number of clusters (k) for the network to target.

Layer 5:
Defuzzification
(Crisp Output)

Figure 3. Centroid Defuzzification in Layer 5 (Oytput Layer)

1.0f

Centroid

0.81

0.6

0.4

Degree of Membership

0.2

0.0

0 2 4 6 8 10
Output Values

Figure 3: Illustration of centroid defuzzification.

Figure 3 presents the centroid defuzzification process. The horizontal axis x corresponds to output
values, while the vertical axis y indicates their associated degrees of membership. The figure also

depicts the centroid method used to derive a single crisp value.

3.3 Input Parameters
The choice of input parameters is critical for the effectiveness of FNN. Table 1 summarizes the rationale
for the selected inputs.

The FNN learns to weigh and combine these potentially conflicting factors (e.g., high energy but far
from BS) using its fuzzy rules and learned parameters.
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Algorithm 3 Pseudocode for FNN-based dynamic clustering

// Phase 1: Offline (Executed once)

Function Train FNN_Model():

TrainingData = GenerateTrainingData() // Input vectors & Target outputs
FNN = InitializeFNN()

Loop until stopping criterion met:

Error = CalculateFNNError(FNN, TrainingData)
AdjustFNNParameters(FNN, TrainingData, LearningRate)

End Loop

Save TrainedFNN

End Function

// Phase 2: Online (Executed each round)

Function Run_FNN_ Clustering Round(round r, Nodes, TrainedFNN, BS):
// Step 1 & 2: Status Acquisition & FNN Evaluation

For each Node n in Nodes:

n.status = GetNodeStatus(n)

n.ch_score = EvaluateFNN(TrainedFNN, n.status)

End For

/I Step 3: CH Selection (Simplified Example: Threshold & Target k)
k_optimal = DetermineOptimalK(Nodes) // Optional FNN output or heuristic
CandidateCHs = FilterNodesByScoreThreshold(Nodes)

SelectedCHs = ResolveContention(CandidateCHs, k _optimal)

For each Node n in Nodes:

n.role = (n in SelectedCHs) ? CH : NonCH

End For

// Steps 4 and 5: Cluster Formation
BroadcastCHAdvertisements(SelectedCHs)

For each Node m where m.role == NonCH:

m.chosen_ch = FindBestCH(m, ReceivedAds)

SendJoinRequest(m, m.chosen_ch)

End For

/I Step 5: TDMA Scheduling

For each Node ¢ where c.role == CH:

c.schedule = CreateTDMASchedule(c.member_nodes) BroadcastSchedule(c, c.schedule)
End For

// Step 6: Steady-State Data Transmission

RunSteadyStatePhase(Nodes, BS) // Includes intra & inter-cluster transmission End Function
// Main Loop

Load TrainedFNN

InitializeNodes()

Forr=1to MAX ROUNDS:

If NumberOfAliveNodes > 0:

Run_FNN_ Clustering Round(r, AliveNodes, TrainedFNN, BS)
Else:

Break // Network dead

End If

End For
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Table 1: FNN Input parameters and rationale.

Rationale for Energy-Efficient L.
Parameter Symbol . Description
Clustering

. Nodes with higher energy are | The current energy level of the
Residual Energy Eres . .
preferable CHs. node. Crucial for node survival.

Shorter distance to BS reduces

. transmission cost. (CHs closer to )
Distance to Base . Affects the energy required for CH-
Dpg the BS require less energy for long-

Station . ; L to-BS transmission.

haul transmission, saving signifi-

cant energy.)

Indicates local node density and

clustering potential. (Reflects lo- | Number of nodes within commu-
Node Degree ND cal density; high degree may imply | nication range; indicates local den-

good data aggregation potential but | sity.
higher CH load.)

Reflects intra-cluster communica- | Influences potential intra-cluster

Average Distance

. Dy tion efficiency. (Influences intra- | communication costs; lower Dy
to Neighbors

cluster communication energy.) suggests more compact clustering.

High SNR implies better communi-

. i cation reliability. (Indicates chan- | Reflects channel quality, impacting
Signal-to-Noise

Rati SNR | nel quality; nodes with better links | transmission reliability and required
atio

may be preferred for reliable trans- | power.

mission.)

3.4 The FNN Training and Dynamic Operational Flow

The proposed FNN-based clustering mechanism operates in two distinct phases: an offline training phase
where the FNN learns the optimal clustering behavior, and an online operational phase where the trained
FNN dynamically guides the clustering process in each communication round. Algorithm 3 shows details
of pseudocode for FNN-Based Dynamic Clustering.

1. Offline Training: The objective of the offline phase is to train the FNN parameters (Member-
ship Functions, rule consequents/weights depending on the specific FNN type like ANFIS) to
accurately map network state inputs to desired clustering outputs.

1. Data Generation: A diverse dataset is crucial for effective training. This dataset consists
of input-output pairs. Training data is generated by simulating various network scenarios
(different node distributions, energy levels). For each scenario, an optimal or near-optimal
clustering configuration (e.g., determined by running LEACH [12] and selecting its best
outcomes, or defined by an optimization objective) is identified. The inputs are the node
states, and the target output is the suitability score or optimal k for that scenario.
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2. FNN Initialization: The FNN architecture is defined, and its parameters (e.g., initial shapes
and positions of triangular MFs, initial rule weights/consequents) are initialized, often ran-

domly or based on preliminary domain knowledge.

3. Learning Algorithm: The FNN is trained using the generated dataset. A hybrid learning
algorithm, often combining gradient descent (like backpropagation) with least-squares es-
timation (common in ANFIS), is typically used. The algorithm iteratively adjusts the FNN’s
tunable parameters to minimize the error between the FNN’s predicted output and the target
output from the dataset.

4. Stopping Criterion: Training continues until a predefined error threshold is met, a max-
imum number of training epochs is reached, or the error on a separate validation dataset
stops improving (to prevent overfitting).

5. Result: The outcome is a trained FNN capable of evaluating network states and predicting
desirable clustering actions.

2. Online Operation (Round-by-Round): Once trained, the FNN is deployed in the WSN to guide
clustering dynamically in each communication round (r). This phase executes dynamically in the
WSN during operation, as depicted in Algorithm 3.

o Step 1: Parameter Acquisition: At the beginning of each round, nodes determine their
current input parameter values (measure Ereg, estimate distances, count neighbors, assess
SNR).

o Step 2: FNN Evaluation: Each node feeds its current parameters into its locally stored,
trained FNN model to compute its CH suitability score (or contribute to determining k).

o Step 3: CH Selection and Cluster Formation: Nodes potentially broadcast their suitability
scores. A distributed protocol selects CHs based on these scores (e.g., highest score within
a neighborhood, or probabilistic selection weighted by score). The FNN might also output
an optimal &, influencing how many CHs are ultimately selected. Non-CH nodes join the
CH that requires the minimum communication energy (usually the closest).

o Step 4: Steady-State Data Transmission: Nodes transmit data to their CHs within their
allocated time slots. CHs aggregate data and transmit it to the BS.

o Step 5: Re-Clustering: The process repeats from Step 1 for the next round, allowing the
network to dynamically adapt its cluster structure based on the most recent node states.

This dynamic, round-by-round adaptation, guided by the intelligently trained FNN, is key to achiev-
ing superior energy efficiency and network longevity, especially in environments where node energy and
network topology are not static. The FNN provides a mechanism to continuously strive for an optimal
clustering configuration based on the current network reality. Table 2 shows all notations will be used
in the paper.
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Table 2: The table of notations.

Notation Description

N Total number of sensor nodes in the network
k Size of a data packet (bits)

r Current simulation round

Erx(k-d) | Energy consumed to transmit a k-bit packet over distance d

Erx (k) Energy consumed to receive a k-bit packet

Epa(k) Energy consumed for aggregating a k-bit data packet at a Cluster Head (CH)
Eelec Energy required to operate transmitter/receiver circuitry (nJ/bit)

Es Energy consumption coefficient for free-space amplifier model (pJ/bit/m?)
Emp Energy consumption coefficient for multipath amplifier model (pJ/bit/m*)
D Distance between the transmitting node and the receiving node (1m)

Do Threshold distance distinguishing free-space and multipath propagation models
Eround Total energy consumed by all nodes during a single communication round
E;eq]- dual Residual energy of node ¢ at a given round

CH Cluster Head node responsible for aggregating and forwarding data

BS Base Station that collects aggregated data from CHs

ND Node degree, representing the number of neighboring nodes within range
SNR Signal-to-Noise Ratio, indicating link quality

K, optimal Optimal number of clusters determined by the FNN

FND First Node Dies: round at which the first node depletes energy

HND Half Nodes Die: round at which 50% of nodes have died

LND Last Node Dies: round at which the last node depletes energy

4 Simulation Setup and Evaluation Metrics

To assess the performance of the proposed FNN based clustering protocol, we conducted comprehen-
sive simulations using MATLAB. The simulation environment and parameters were designed to reflect
typical WSN scenarios and allow for fair comparison with established benchmark algorithms. The exper-
iments were implemented using MATLAB R2016, chosen for its robust support for matrix computations,
fuzzy systems, and neural network modeling. Simulations ran on a Windows 10 Pro workstation with

the following specifications:

* Processor: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
* RAM: 8 GB
* Operating system. 64-bit Windows

The FNN model was implemented using MATLAB’s Fuzzy Logic Toolbox, complemented by custom
scripts for adaptive clustering.

Benchmark protocols (LEACH, HEED, ELDC) were implemented following their standard formu-
lations in the literature to ensure fair comparisons.
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4.1 Simulation Environment

The network consists of NV sensor nodes randomly distributed within a square area. A single, stationary
Base Station (BS) with unlimited energy is located at the center of the simulation field. All sensor
nodes are assumed to have the same initial energy and capabilities. The key simulation parameters are
summarized in Table 3.

Table 3: Simulation parameters.

Parameter Value Description
Network Area 100m x100m Simulation field dimensions
Number of Nodes (N) 100 Total sensor nodes deployed
Random uniform distribu- .
Node Deployment " Initial placement of nodes
ion
BS Location (50m, 50m) Central location of the Base Station
Initial Node Energy Eq 0.517 Starting energy for each sensor node
Data Packet Size (k) 4000 bits Size of data packet transmitted/received
. Assumed smaller, (e.g., 200 .
Control Packet Size bits) Size of overhead/control messages
its
. Energy for transmitter/receiver elec-

Eglec 50 nl/bit .

tronics

Amplifier energy for free space model
Ex 10 pI/bit/m P & P

(d < do)

Amplifier energy for multi-path model
Emp 0.0013 p/bit/m* P gy for MUt P

(d = do)
Epa 5 nl/bit/signal Energy for data aggregation at CH
Maximum Rounds (7'max) 2000 Simulation duration limit
Simulator MATLAB R20xx Software used for simulation

4.2 Comparison Protocols

The performance of the proposed FNN protocol is compared against three well-known clustering algo-
rithms:

1. LEACH (Low-Energy Adaptive Clustering Hierarchy).: A distributed, probabilistic clustering pro-
tocol serving as a common baseline [12, 18].

2. HEED (Hybrid Energy-Efficient Distributed Clustering): A distributed protocol that primarily
uses residual energy for CH selection [29].

3. ELDC (Energy-efficient and Load-balanced clustering using ANNs): The Artificial Neural Network-
based approach described in [26], which serves as a direct machine-learning baseline for our FNN
model.
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4.3 Experimental Procedure

The experimental evaluation was conducted as follows:

1. Network Initialization: 100 nodes were randomly distributed within the 100m x 100m area, and
all nodes were assigned equal initial energy.

2. Protocol Execution: Each protocol (LEACH, HEED, ELDC, FNN) was executed under identical
conditions for 2000 simulation rounds.

3. FNN Operation:
o The FNN was trained offline with simulated network states to learn optimal clustering de-
cisions.
o During runtime, each node locally evaluated its CH suitability score using the trained FNN

model.

4. Repetition: Each simulation was repeated 10 times with different random node placements to
ensure statistical reliability, and the average results were reported.

4.4 Evaluation Metrics

The following metrics are used to quantitatively assess the performance of the clustering protocols:

» Network Lifetime: This is the primary metric, measured in terms of simulation rounds. We
consider three key milestones:

o First Node Dies (FND): The round number when the first sensor node depletes its energy.
This indicates the start of network degradation and loss of sensing coverage.

o Half Nodes Die (HND): The round number when 50% of the sensor nodes have depleted
their energy. This represents significant network functionality loss.
o Last Node Dies (LND): The round number when the last active sensor node depletes its

energy. This indicates the total operational span of the network.

« Stability Period: The duration, in rounds, from the start of the simulation until the FND occurs.
A longer stability period is desirable.

* Number of Alive Nodes per Round: Tracks the count of nodes with remaining energy in each
round, providing insight into the network’s degradation rate.

* Energy Consumption:
o Cumulative Energy Consumption: The total energy consumed by all nodes in the network
over the simulation rounds. Lower cumulative consumption indicates higher efficiency.
o Energy Consumption per Round: The rate at which energy is consumed, providing insight

into the efficiency of operations within each round.

These metrics collectively provide a comprehensive view of the energy efficiency, longevity, and ro-
bustness of the proposed FNN clustering protocol compared to the benchmark algorithms.



Jalili & Babakordi,/ COAM, 10 (2), Summer-Autumn (2025) 91

5 Results and Discussion

This section presents the simulation results comparing the performance of the proposed Fuzzy Neu-
ral Network (FNN) based clustering protocol against the benchmark algorithms: LEACH [18], HEED
[29], and the ANN-based ELDC [26]. The evaluation focuses on key metrics including network life-
time, stability, and energy consumption. All reported results represent the average performance over 30
independent simulation runs with different random seeds to ensure robustness

5.1 Network Lifetime and Stability Analysis

Network lifetime and stability are critical indicators of a WSN’s operational effectiveness. We analyze
these using the number of active nodes over time and specific node death milestones.

* Alive Nodes vs. Rounds: Figure 4 illustrates the number of nodes remaining operational (with
energy > 0) as the simulation progresses over rounds.

~-LEACH
60 —HEED
ELDC
0 —Proposed Algorithm

o I % W W o B Mo % Vo sy Us, s By Wy, B, B,
Figure 4: The number of alive nodes vs. rounds for LEACH, HEED, ELDC, and FNN.

As depicted in Figure 4, the curve representing the proposed FNN protocol remains at 100% (all
nodes alive) for a significantly longer duration compared to the other protocols. Furthermore, the
rate of node death (slope of the curve) for the FNN is considerably slower. This visually confirms
that the FNN approach sustains network operation more effectively and exhibits a more graceful
degradation compared to LEACH, HEED, and ELDC. LEACH shows the most rapid decline in
active nodes.

o Stability Period (FND): The First Node Death marks the end of the network’s fully operational
phase. Figure 5 specifically compares this metric.

Figure 5 clearly shows that the FND occurs latest for the proposed FNN protocol. This extended
stability period signifies that the FNN’s intelligent clustering prevents the premature depletion of
any single node’s energy, likely due to better load balancing in CH selection and rotation. FNN
outperforms ELDC, which in turn outperforms HEED and LEACH in this regard.
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Figure 5: The round number for First Node Dies (FND) for LEACH, HEED, ELDC, and FNN.

* Total Network Lifetime (LND).: The Last Node Death indicates the maximum operational lifespan
the network can achieve. Figure 6 compares the LND across protocols.
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Figure 6: Comparing the round number for Last Node Dies (LND) for LEACH, HEED, ELDC, and FNN.

Consistent with the FND results, Figure 6 demonstrates that the proposed FNN achieves the
longest total network lifetime. The round number at which the last node dies is significantly
higher for FNN compared to ELDC, HEED, and LEACH, indicating its superior ability to man-
age energy resources over the long term.

5.2 Energy Consumption Analysis

Efficient energy management is the core objective. We analyze the cumulative energy consumption and
the energy consumed in specific phases of the network’s life.

* Cumulative Energy Consumption: Figure 7 tracks the total energy consumed by all nodes in the
network from the beginning of the simulation.
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Figure 7: Cumulative energy consumption (e.g., in Joules) vs. rounds for LEACH, HEED, ELDC, and FNN.

The curve for the proposed FNN in Figure 7 exhibits the lowest slope, indicating the lowest rate of
energy consumption per round. This implies that the clustering and data transmission strategy employed
by the FNN is inherently more energy-efficient than those of the other protocols. LEACH shows the
highest rate of energy depletion.

» Energy Consumption in Round Intervals: Figure 8 provides a more detailed view by comparing
the energy consumed within specific intervals (e.g., Rounds 1-250, 251-500, 501-750, 751-900).

W 250-Rounds
M 500-Rounds
W 750-Rounds
W 500-Rounds

|
LEACH HEED ELDC Proposed Algorithm

Figure 8: Total energy consumed within specific round intervals for LEACH, HEED, ELDC, and FNN.

Figure 8 demonstrates that the FNN protocol consistently consumes less energy not only overall but
also within different operational phases of the network. This consistent efficiency across early, mid, and
late stages highlights the robustness and adaptability of the FNN’s energy management strategy.
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5.3 Node Death Progression Summary

Figure 9 provides a consolidated view comparing the key lifetime milestones: FND, HND (Half Nodes
Die), and LND.

(Round)
A
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1000
W First Node Dies
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600 u Last Node Dies
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200
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Figure 9: Comparing FND, HND, and LND round numbers for LEACH, HEED, ELDC, and FNN.

This summary chart, Figure 9, reinforces the previous findings. The proposed FNN significantly
delays all stages of network degradation (FND, HND, LND) compared to ELDC, HEED, and LEACH.
Notably, the interval between FND and LND is also wider for FNN, suggesting that even after some
nodes start dying, the network under FNN control maintains partial functionality for a longer period,

indicating more graceful degradation.

5.4 Discussion

The collective simulation results consistently underscore the advantages of the proposed FNN-based
dynamic clustering approach. The FNN demonstrably outperforms LEACH, HEED, and the baseline
ANN model (ELDC) across all evaluated metrics: stability period (FND), total lifetime (LND), number
of active nodes over time, and overall energy efficiency.

The superior performance of the FNN can be attributed to several factors inherent in its design:

1. Intelligent Decision Making: The FNN leverages its trained knowledge base to make more in-
formed decisions. Unlike many approaches that only output a CH suitability score, our framework
allows the FNN to influence both CH selection and the optimal number of clusters (k). This dual
optimization leads to a more globally efficient network structure in each round, adapting not just
which nodes are CHs, but also how many CHs there should be. It considers multiple factors (resid-
ual energy, distance metrics, density via neighbors, SNR) simultaneously within a framework that
handles inherent uncertainties and imprecision.

2. Adaptive Load Balancing: Unlike LEACH’s purely probabilistic approach or HEED’s more fixed
criteria, the FNN dynamically adapts the clustering structure based on the current state of the
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network. This leads to a more equitable distribution of the energy-intensive CH role among nodes,
preventing energy hotspots and premature node failure, thus enhancing both stability (FND) and
overall lifetime (LND).

3. Enhanced Robustness: Compared to the ELDC (ANN) baseline, the integration of fuzzy logic
provides greater robustness to noisy sensor readings and minor fluctuations in network parame-
ters. Fuzzy logic’s ability to work with linguistic variables and overlapping membership functions
allows for smoother transitions and less sensitivity to crisp input thresholds. This theoretical ben-
efit is empirically validated by our FNN’s superior performance over ELDC across all key metrics
(Figures 4-9), confirming that the fuzzy component adds tangible value in managing the inherent
uncertainty of WSNs.

4. Optimized Energy Usage: By forming more effective clusters and selecting strategically located
CHs with sufficient energy, the FNN minimizes intra-cluster and inter-cluster communication
distances and reduces redundant data transmissions through efficient aggregation, leading to lower
overall energy consumption (as seen in Figures 4-3 and 4-5).

In essence, the FNN acts as an intelligent controller that continuously optimizes the network’s clus-
tering configuration round by round, leading to significant gains in longevity and efficiency, particularly
highlighting its suitability for dynamic WSN environments where conditions are not static.

The proposed FNN is evaluated using the first-order radio model, which provides a widely accepted
baseline for energy consumption analysis in WSNs. While this model simplifies radio behavior, real-
world WSNs often face additional energy drain due to hardware inconsistencies, interference, and en-
vironmental factors. The FNN incorporates limited robustness to these factors through fuzzy reasoning
and parameter noise during training. However, its current formulation does not explicitly model all non-
idealities. Future work will extend this approach by incorporating stochastic radio models and real-world
measurement data to enhance the FNN’s reliability under practical deployment conditions.

6 Scalability and Complexity Analysis

For any WSN protocol to be considered practical, it must be able to scale to networks of varying sizes and
operate within the severe computational and memory constraints of individual sensor nodes. Although
the proposed FNN protocol was tested on a network of 100 nodes, its distributed decision-making struc-
ture ensures that computational cost per node remains constant and total overhead scales linearly with
network size. Therefore, the protocol is theoretically scalable to larger WSN deployments. However,
explicit simulations with networks of 500+ nodes and different area sizes were not performed in this
study. Future work will involve large-scale experiments to empirically validate the protocol’s perfor-
mance under high-density deployments. This section analyzes the scalability and complexity of our
proposed FNN-based approach.
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6.1 Scalability of the Proposed FNN Algorithm

The proposed FNN protocol is designed to be highly scalable. This scalability is achieved primarily
through its distributed intelligence and hierarchical structure.

1. Distributed Decision-Making: The most computationally significant task during the online phase,
the FNN evaluation to calculate a node’s CH suitability score, is performed locally at each node.
The inputs to the FNN (residual energy, SNR, etc.) are either known internally or determined
through communication with only immediate one-hop neighbors (for node degree). A node does
not require information from the entire network to make its decision. This localized nature pre-
vents the communication overhead and processing bottlenecks that would occur if a central entity
had to collect data from all N nodes to make a decision.

2. Hierarchical Operation: By leveraging a clustering hierarchy, the protocol naturally partitions
the network. The energy-intensive task of long-range communication is restricted to the small
subset of nodes elected as CHs. As the network scales in size and density, the number of clusters
can be adaptively managed by the FNN, ensuring the network architecture remains efficient.

Assumptions and conditions:

The scalability of the system assumes that the underlying clustered topology remains effective. In ex-
tremely large or dense networks, the Base Station (BS) could become a bottleneck if the number of CHs
reporting to it becomes excessive. Similarly, a CH in a very dense region could become overloaded.
However, this is a general challenge for all CH-based protocols, and our FNN’s ability to dynamically

adjust clustering based on local density (Node Degree) inherently works to mitigate this issue.

The proposed FNN-based protocol scales effectively under the following assumptions:

1. Nodes have minimal computational capacity to execute lightweight FNN evaluation (a small
neural-fuzzy inference model).

2. Local parameter acquisition (residual energy, neighbor density, SNR, etc.) is available via peri-
odic sensing or low-overhead control messages.

3. The Base Station (BS) is stationary and does not impose centralized control, ensuring that network
expansion does not increase processing overhead at a single point.

4. Clustering decisions are made locally, and communication overhead remains proportional to the

number of neighboring nodes, not the total network size.

Under these conditions, the algorithm’s overhead grows linearly with the number of nodes O(N), which
is acceptable for WSNs.
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6.2 Complexity Analysis of the Proposed FNN Algorithm

We analyze the complexity of algorithm by separating its two distinct phases: offline training and online

operation.
* Offline Training Phase (Executed Once):

o Computational Complexity: The training of the FNN, similar to any neural network, is a
computationally intensive process. Its complexity depends on the size of the training dataset
(D), the number of training epochs (E), and the number of parameters in the FNN model.
This is a high-cost operation, but it is critical to note that it is a one-time, pre-deployment
cost. It is performed on a powerful external computer and consumes zero energy or pro-

cessing time from the sensor nodes themselves.

o Space Complexity: The training phase requires significant memory on the host computer

to store the dataset and the model, but this has no bearing on the sensor nodes.
* Online Operational Phase (Executed Each Round):

o Computational Complexity: The per-round complexity for a single node is the sum of its
tasks:

1. Parameter Acquisition: A node measures its own residual energy and assesses SNR
(O(1)). To determine its Node Degree (ND) and Average Distance to Neighbors (DN),
it must exchange beacon messages with its k immediate neighbors. This requires O (k)
computation.

2. FNN Evaluation: The node performs a forward pass through the trained FNN. The
number of calculations is determined by the fixed structure of the FNN (number of
inputs, rules, and outputs). This is a constant-time operation, O(1), with respect to the
total number of nodes N in the network.

3. CH Selection & Cluster Formation: A node broadcasts its CH suitability score and
listens for the scores of its k neighbors. It then joins the best CH. This process is

dominated by local communication and comparison, making its complexity O(k).

Therefore, the total online computational complexity for a single node per round is dominated by its
interaction with its neighbors, resulting in O(k). Since k is typically much smaller than N(k << N),
this is a highly efficient and scalable complexity.

o Space Complexity: The memory required on each sensor node is also minimal:

1. The FNN Model Storage: The primary storage requirement is for the parameters of the
trained FNN model (membership functions, rule weights, etc.). The size of this model is
fixed after training and is independent of the network size V.

2. Neighbor Table: A node needs temporary storage to maintain information about its k£ neigh-
bors. This requires O(k) space.

The total space complexity per node is therefore constant for a given FNN model and O(k) for neighbor
data. This small and predictable memory footprint makes our protocol perfectly suitable for deployment
on resource-constrained sensor nodes.
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7 Overhead Comparison Summary

The proposed FNN requires each node to compute a CH suitability score by evaluating a small neuro-
fuzzy model. This computation is lightweight, involving only a few membership evaluations and rule-
based calculations, resulting in constant-time complexity per node O(1). Communication overhead
remains comparable to LEACH since no additional control messages or global optimization steps are
required. Therefore, the overhead introduced by the FNN is minimal and does not compromise its suit-
ability for resource-constrained WSN nodes. All results have been shown in Table 4.

Table 4: Overhead comparison summary.

Computation per | Communication Over-
Protocol Remarks
Node head
Vi lightweight, but -
LEACH O(1), minimal Low Yery lgntwerg b encigy
inefficient
Static parameters, improved over
HEED O(1), moderate Low to moderate
LEACH
O(W),where W=ANN Higher than LEACH, adaptive but
ELDC (ANN) . Low . ..
weights noise-sensitive
O(LxM), 11 - . Slightly high tation, negli-
FNN (Proposed) (LXM), small con- | Gimilar to LEACH) | Shehtly higher computation, negli
stant gible impact on runtime

Computational Overhead

* LEACH:

o Uses a probabilistic CH selection based on a simple threshold function.
o Complexity per node is O(1) with minimal computations.
* Proposed FNN:
o Each node evaluates a lightweight FNN model with a small number of fuzzy rules and
membership functions.

o Complexity per node is O(L x M), where LLL is the number of network layers and MMM
is the number of fuzzy rules.

o Since LLL and MMM are fixed and small, the per-node computation remains constant
(O(1)), only slightly higher than LEACH.

o The FNN computations involve simple arithmetic operations (membership evaluation, rule
firing, and weighted summation), which are well within the processing capacity of typical
WSN nodes.

Communication Overhead

* LEACH:

o Requires nodes to send local information to candidate CHs and for CHs to broadcast their
status.
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o Communication overhead is low but limited by its probabilistic selection, which can lead
to suboptimal energy use.

* Proposed FNN:

o Similar to LEACH, the FNN does not require extra global communication.

o Nodes make decisions locally and only send a single suitability score or CH advertisement
to neighbors or the base station as needed.

o No additional iterations or global information exchange are required, unlike metaheuristic

or swarm-based protocols.

8 Conclusion and Future Work

Addressing energy constraints, particularly in dynamic WSNSs, is crucial for their widespread adoption.
This paper introduced an intelligent and dynamic clustering mechanism utilizing a Fuzzy Neural Net-
work (FNN). The FNN adaptively optimizes the clustering process by learning complex relationships
between real-time network parameters (energy, distance, density, SNR) and ideal cluster configurations.
Simulation results validated the proposed approach, demonstrating significant improvements in network
lifetime, stability, and energy efficiency compared to benchmark protocols like LEACH, HEED, and the
ANN-based ELDC. The FNN’s ability to handle uncertainty and adapt dynamically makes it particu-
larly suitable for WSNs with mobile nodes or changing environmental conditions. Future research will
focus on extending the FNN model to explicitly incorporate node mobility prediction, investigate its
performance in larger-scale, heterogeneous networks, and explore the integration of Quality of Service
(QoS) metrics alongside energy efficiency within the FNN framework. Further work could also involve
hardware implementation and real-world testing to validate the simulation findings.
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