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Abstract. Energy constraint is the most critical challenge in Wireless
Sensor Networks (WSNs), particularly in dynamic environments
with mobile nodes. This paper proposes an intelligent clustering
protocol based on Fuzzy Neural Networks (FNN) that adaptively
optimizes energy consumption by dynamically selecting cluster heads
and determining optimal cluster configurations. The FNN integrates
fuzzy logic’s uncertainty handling with neural networks’ learning
capabilities, using key parameters including residual energy, node
Unlike static

clustering approaches such as LEACH and HEED, our method con-

distance, neighbor density, and signal-to-noise ratio.

tinuously adapts to changing network conditions through real-time
parameter evaluation. Extensive MATLAB simulations with 100 nodes
demonstrate significant performance improvements: the proposed FNN
extends network lifetime by 35% compared to LEACH, 28% compared
to HEED, and 15% compared to ANN-based ELDC. The First Node
Dies (FND) is delayed by 45%, 38%, and 22% respectively, while
achieving 25% lower energy consumption. Results confirm the FNN
approach’s superior energy efficiency and network stability, making it
highly suitable for dynamic WSN applications.
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1 Introduction

Wireless Sensor Networks (WSNs) represent a cornerstone technology in the modern era of
ubiquitous computing and the Internet of Things (IoT) [19]. Comprising numerous spatially
distributed, autonomous sensor nodes, WSNs facilitate unprecedented capabilities for monitor-
ing physical or environmental conditions, with applications spanning from precision agriculture
and industrial automation to critical healthcare and military surveillance [22, 26]. However, the
practical deployment and operational longevity of WSNs are fundamentally constrained by the
limited energy resources of their individual sensor nodes. These nodes typically rely on small,
irreplaceable batteries, making energy conservation the most critical design consideration to
maximize the network’s functional lifetime [14].

Among the various strategies developed to mitigate energy depletion, hierarchical clus-
tering has been widely recognized as a highly effective technique for enhancing both energy|
efficiency and network scalability [18]. Clustering/protocols organize nodes into groups (clus-
ters), each electing a Cluster Head (CH). Non-CH nodes then transmit their data over potentially,
shorter distances to their local CH, which aggregates the collected information, reducing redun-
dancy, and forwards it to a distant Base Station (BS). This hierarchical structure significantly,
reduces overall energy consumption compared to direct transmission. However, many semi-
nal and conventional clustering protocols, such as LEACH and HEED [12, 29], were designed
with static or slowly changing networks in mind. Their reliance on simplified probabilistic
models or fixed, predefined parameters for. CH selection renders them ill-equipped to handle
the challenges of dynamic environments. In many real-world scenarios, sensor nodes may be
mobile, channel conditions can fluctuate, and data generation rates may vary [15]. In such dy-
namic settings, the rigid nature of conventional protocols leads to suboptimal cluster formation,
imbalanced load distribution, and the premature death of critical nodes, ultimately degrading
network coverage and shortening its lifespan. This gap between the requirements of dynamic
applications and the capabilities of existing static protocols constitutes the central problem this
research aims to solve [7].

The clear limitations of traditional protocols necessitate a move towards more intelligent
and adaptive mechanisms. Machine learning offers a promising avenue for developing such
solutions. Approaches based on Artificial Neural Networks (ANNSs) [26], for instance, can learn
complex, non-linear relationships between network state parameters (like energy and distance)
and optimal clustering decisions. However, a purely ANN-based approach is not without its
own challenges in the WSN context. ANNs can be sensitive to the noisy and imprecise datal
inherent in sensor readings and wireless communications. Furthermore, they operate as “black
boxes,” which can struggle with the conceptual, linguistic-style reasoning that is often intuitive

for describing network states (e.g., a node’s energy is “low,” or its distance to the BS is “far”),

It is this specific limitation that motivates our proposed solution. We identify an opportunity
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to create a more robust and effective model by synergizing the adaptive learning strengths of
neural networks with the uncertainty-handling capabilities of fuzzy logic. Fuzzy logic excels
at modeling and reasoning with imprecise information and linguistic variables. By integrating
these two paradigms, we can construct a Fuzzy Neural Network (FNN) that not only learns
from data but also embraces and manages uncertainty [7, 31]. This hybrid approach is uniquely
suited to build an intelligent clustering mechanism that is both adaptive and resilient, capable
of making nuanced, context-aware decisions in the face of real-world network dynamics and
data imprecision [6].

To address the challenges outlined above, this paper introduces a new energy-efficient clus-
tering protocol for WSNs based on a dynamic Fuzzy Neural Network. We propose a compre-
hensive framework that leverages the FNN to intelligently guide the clustering process, signif-

icantly extending network lifetime and stability. The primary contributions of this work are:

* Design of a Novel FNN-based Clustering Protocol: We introduce an intelligent clustering
mechanism where an FNN adaptively determines CH suitability. The FNN is designed
to process multiple, often conflicting, real-time network parameters—including residual
energy, distance to the base station, local node density, and signal-to-noise ratio (SNR)—|

to make holistic and informed decisions.

* A Practical Framework for WSN Deployment: We propose and validate a two-phase
operational framework. An'intensive, one-time offline training phase builds the intelli-
gent FNN model without consuming any node energy. This is followed by a lightweight
online operational phase where each node can efficiently use the trained model for dis-
tributed, round-by-round decision-making, confirming the feasibility of our approach for

resource-constrained sensor nodes.

» Comprehensive Performance Validation: We conduct extensive simulations to rigor-
ously evaluate our proposed. protocol. The results provide definitive evidence that our]
FNN-basedapproach demonstrably outperforms not only the benchmark legacy protocols
(LEACH and HEED) but also a baseline ANN-based clustering model (ELDC) across
all key metrics, including network stability period, total lifetime, and overall energy ef-
ficiency. This empirically confirms the tangible benefits of integrating fuzzy logic for

enhanced robustness and performance.

The remainder of this paper is organized as follows: Section 2 reviews related work. Section
3 details the proposed FNN-based clustering methodology. Section 4 describes the simulation
setup and evaluation metrics. Section 5 presents and discusses the simulation results. Scala-
bility and Complexity Analysis are presented in Section 6. Overhead Comparison Summary

is discussed in Section 7. Finally, Section 8 concludes the paper and suggests future research

directions
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2 Related Work

Energy efficiency remains a primary concern in WSNs, leading to the development of numerous
clustering and routing protocols. Existing works can be categorized into conventional cluster-

ing, machine learning-based clustering, and bio-inspired/metaheuristic clustering techniques.

2.1 Conventional Clustering Protocols

* LEACH (Low-Energy Adaptive Clustering Hierarchy): A seminal distributed clustering
protocol where nodes probabilistically elect themselves as CHs based on a target per-
centage and rotate the CH role to distribute energy load [12, 29]. While simple, it doesn’t]
guarantee optimal CH distribution or number. LEACH-C (Centralized) uses the BS for|
CH selection based on node energy and location [9].

* HEED (Hybrid Energy-Efficient Distributed Clustering): Improves upon LEACH by us-
ing residual energy as the primary parameter for CH selection and intra-cluster communi-
cation cost (e.g., node degree) as-asecondary parameter, aiming for better CH distribution|
and prolonged lifetime [16429].

* PEGASIS (Power-Efficient Gathering in Sensor Information Systems): Forms a chain|
among sensor nodes instead of clusters.. Each node transmits only to its neighbor, and
a designated leader transmits aggregated data to the BS [11, 17]. Reduces overhead but

increases delay and is sensitive to node failures.

» TEEN (Threshold sensitive Energy Efficient sensor Network protocol): Designed for re-
active networks, reducing transmissions by only reporting data when sensed values cross
predefined hard and soft thresholds. APTEEN adapts TEEN for periodic reporting along-

side reactive monitoring [4, 23].

* VGA (Virtual Grid Architecture routing): A location-aware protocol that partitions the
network into fixed zones, selecting a local and master aggregator for data fusion [19, 1].

Reduces energy but assumes location awareness.

» Other Protocols: Numerous variations exist, such as CBHRP (Cluster Based Hierar-
chical Routing Protocol) [8, 21], LLACA (adaptive localized clustering scheme named|
localized learning automata-based clustering algorithm) [9, 24], GAF (Geographic Adap-
tive Fidelity) [5, 10], and GEAR (Geographic and Energy Aware Routing) [25, 30], each

addressing specific aspects like mobility, localization, or data delivery quality.
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2.2 Learning-Based Clustering

Machine learning offers adaptive solutions.

* ANN-based Clustering (e.g., ELDC): As presented in [26], ANNs can be trained to learn
the relationship between network state (node energy, location, etc.) and optimal cluster-
ing parameters (e.g., number of clusters). Backpropagation is typically used for training,
The inputs often include residual energy, distance to BS, distance to cluster boundary,
distance to CH, number of neighbors, and SNR [18, 26]. While effective, ANNs might|
lack robustness to uncertainty and the interpretability of fuzzy systems.

» Ant Colony Optimization (ACO): ACO algorithms have been-applied to WSN routing
[21], including energy-aware variants like EEABR [13]. These bio-inspired methods
explore paths based on pheromone trails representing, path-quality (e.g., lower energy|

cost), but can have slow convergence.

» Fuzzy Logic: Fuzzy logic has been used in WSNs for CH selection (e.g., using energy,
centrality, distance) [3, 7] and routing, leveraging its ability to handle imprecise data and

make rule-based decisions.

2.3 Bio-Inspired and Metaheuristic Optimization Approaches

Recently, several metaheuristic optimization algorithms have been applied to clustering in

'WSNs to enhance energy efficiency:

* Cuckoo Optimization Algorithm (COA): In [20], a COA-based energy-aware clustering
protocol was proposed.-COA mimics the brood parasitism behavior of cuckoos to opti-
mize CH selection. While effective in reducing energy consumption, COA involves high

computational complexity and may not scale well in real-time WSN operations.

* Black Hole and Ant Colony Algorithms (BH-ACQO): The work in [28] combined black
hole and ant colony optimization to design an adaptive cluster-based data transmission
scheme. This hybrid approach improved energy balancing and routing efficiency. How-
ever, its reliance on iterative path optimization makes it less suitable for networks with|

frequent topology changes.

* Firefly Algorithm (FA): In [27], the firefly algorithm was used for data aggregation and
clustering. FA exploits swarm intelligence to minimize redundant transmissions, lead-

ing to reduced energy consumption. Nevertheless, FA-based clustering still suffers from|

parameter tuning challenges and convergence delays in large-scale WSNs
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These metaheuristic approaches demonstrate promising energy efficiency improvements, but
they often require significant computational overhead, making them less practical for resource-
constrained sensor nodes. These algorithms are typically iterative and may require substantial
computation to converge to a solution in each round. This can be a considerable drawback in
highly dynamic WSNs that require rapid, low-latency re-clustering.

2.4 Gap Analysis

While these works have established the potential of neuro-fuzzy systems,a critical review re-
veals specific gaps that our research aims to address. Firstly, many existing approaches focus
solely on the CH selection problem for a predefined or heuristically determined number of clus-
ters (k). They do not address the equally important problem of dynamically determining the
optimal number of clusters based on the network’s current state, which is crucial for true load

balancing and energy efficiency.

Secondly, the practical deployment model is often not fully detailed. Our work proposes a
clear two-phase framework, decoupling the high-cost offline training from the low-cost online
execution, which is a critical consideration for demonstrating real-world feasibility on resource-
constrained sensor nodes. Finally, few studies provide a direct, empirical comparison against
a pure ANN baseline to specifically isolate and validate the contribution of the fuzzy logic
component in enhancing robustness and performance. Our research directly addresses these

three aspects.

3 Proposed Methodology: FNN for Energy-Efficient Clustering

The core objective of our methodology is to dynamically optimize the clustering process in|
'WSNs to significantly reduce energy consumption and prolong network operational lifetime.
'We propose an intelligent approach based on a FNN, which synergizes the adaptive learning
capabilities of ANNs with the uncertainty handling and linguistic reasoning strengths of Fuzzy|
Logic [2]. This allows the system to make robust and context-aware decisions about cluster]
formation and Cluster Head (CH) selection in each round, adapting to the potentially changing

conditions of the network, including variations in node energy and topology.

The proposed FNN adapts its clustering decisions at every communication round by evalu-
ating real-time parameters (residual energy, neighbor density, SNR, distance to BS). This per-

round decision-making allows the protocol to handle typical gradual network changes. How-

ever, since the FNN was trained offline, it assumes static or low-mobility networks. Sudden
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large-scale topology changes, such as rapid mobility or simultaneous mass node failures, are
not explicitly addressed in this study.

3.1 System Model and Energy Consumption

'We adopt a standard WSN model consistent with related works [14, 15]:

» A set of N sensor nodes is deployed (initially randomly) within a defined sensing field
(e.g., 100m x 100m).

* A stationary Base Station (BS) resides at a known location (e.g., the center (50, 50)).
» Each node begins with an initial energy, Ey, (e.g., 0.5 J).

» Nodes can adjust their transmission power based on distance.

* The first-order radio energy model [12] is used:

o Energy to run transmitter/receiver circuitry: Fej.. (e.g., 0.5 nl/bit).
o Energy for data aggregation: Ep4 (e.g., 0.5 nJ/bit/signal).
o Amplifier energy depends.on distance d:

- Eps.d® if  d < d (free space),

- Emp.d4 if d > dy (multipath).

FE1x shows Transmission Energy, the energy consumed by a node transmitting a k-bit message

over distance d is:

Ejo-k-d2, if d<dy

1
Epp-k-db, if d>do, M

ETx(k.d) = Eelec -k A+ {

where Eelec

Eys or By, are the amplifier energy costs depending on the distance drelative to the threshold

is the energy dissipated per bit to run the transmitter or receiver circuitry, and

distance dy. This equation shows that energy consumption grows quadratically with distance
for short links (free space) but quartically for long links (multipath). Therefore, minimizing the
transmission distance (via clustering) significantly reduces energy consumption.

Reception Energy (Frx (k)), the energy consumed receiving a k-bit message is:
Erx(k) = Ee]ec k. (2)

Unlike transmission, reception energy depends only on the number of bits and not on the

distance. The energy for reception depends only on the number of bits k& and the electronics
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energy Egjec-

members, calculated as Ep4 per bit per aggregation signal, data aggregation energy (Ep4).

Cluster Heads also expend energy for aggregating data received from cluster]

Minimizing the total energy consumed across all nodes per round is the primary goal.
Cluster Heads (CHs) aggregate data from their member nodes to reduce redundancy before
forwarding it to the Base Station. The energy spent for aggregating k bits is:

Epa(k) = Epa -k, (3)

where E'p 4 is the energy required per bit for data aggregation (€.g., 5 nJ/bit). Data aggregation
significantly lowers the volume of transmitted data, saving energy-at the network level.
The total energy consumed in a round is the sum of transmission, reception, and aggregation|

energy across all nodes:

N
Eround = Z (EZTX + E%X + EBA) ) 4)
i=1
where NNN is the number of nodes. The clustering protocol’s goal is to minimize E.y,,q tO
prolong network lifetime.
The proposed FNN-based clustering protocol.uses these Equations (1) to (4) indirectly to

guide its learning and decision-making:

» The inputs (residual energy, distance, neighbor density, SNR) relate to the components

of these formulas.

» The FNN learns to minimize total energy per round by selecting optimal CHs and forming

energy-efficient clusters.

3.2 The FNN Architecture

The intelligence of our clustering mechanism resides in the FNN. It processes real-time net-
work information to output decisions guiding the clustering process. Our FNN likely follows
a structure similar to ANFIS (Adaptive Neuro-Fuzzy Inference System), comprising multiple
layers, as conceptually shown in Figure 1.

The proposed FNN integrates the fuzzy inference system with neural network learning,
forming a layered architecture analogous to an Adaptive Neuro-Fuzzy Inference System (AN-
FIS). The FNN comprises five layers: Input, Fuzzification, Rule, Normalization, and Output.
Figure 1 illustrates the interconnections among these layers: the Input Layer accepts the network
parameters, the Fuzzification Layer employs Membership Functions, the Rule Layer encodes

IF-THEN rules, the Normalization/Consequent Layer performs normalization and combines

rule outputs, and the Output Layer producing a crisp result (e.g., CH Suitability Score)
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 1: Conceptual layered architecture of the proposed FNN.

» Layer 1 (Input Layer): The input layer accepts crisp numerical values that represent
the current state of a node and its surrounding environment. Drawing on factors known|
to influence energy-efficient clustering and the inputs employed in the baseline work of
the cited literature [14, 26], we identify the following critical parameters (summarized in|
Table 1): Residual Energy, Distance to Base Station; Nede Degree, Average Distance to
Neighbors, and Signal-to-Noise Ratio.

Inputs: x = [E,,dps, ND, SN R}, where:

— E, = residual energy
— dpg = distance to base station
— ND = node degree

— SN R = signal-to-noise ratio
The output of Layer 1/is O¢ = z;.

* Layer 2 (Fuzzification Layer): Each input node from Layer 1 connects to nodes in this
layer that represent fuzzy sets: This layer converts the crisp input values into fuzzy de-
grees of membership using Membership Functions (MFs). In this paper, we employ 7#i-
angular MF’s due to their simplicity and computational efficiency. For instance, ‘Resid-
ual Energy’ might be mapped to fuzzy sets like ‘Low’, ‘Medium’, and ‘High’, each with
its corresponding triangular MF, as illustrated conceptually in Figure 2. The parame-
ters defining these MFs (e.g., the vertices of the triangles) are adapted during the FNN’g

training phase.

e Each input z; is fuzzified into linguistic terms (e.g., Low, Medium, and High) using
the Triangular MFs:
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0, z < a,

T—a

—a’ a<x§b,
pale)=q %

=, b<z<q

0, T >c.

e Here (a, b, ¢) define the triangle vertices for each fuzzy set.

1 Low Medium High

Figure 2: Triangular membership functions for ‘residual energy’.

Figure 2 shows the input range for Residual Energy on the z-axis and Degree of Member-
ship (0 to 1) on the y-axis. ;Three overlapping triangles representing ‘Low’, ‘Medium’,
and ‘High’ energy levels are shown.

Layer 3 (Rule Layer): This layer embodies the fuzzy inference engine. Each node in
this layer corresponds to a fuzzy IF-THEN rule. These rules capture heuristic knowledge
about desirable clustering characteristics. Example rules might be:

o Rule 1: If Eyregss High and Dpg is Low and N D is Medium, then CHSuitability
is Very High.
o Rule 2: If Ereg is High, then CHSuitability is Very Low.
o Rule 3: If ND is High and Dy is Low, then CHSuitability is High.
The firing strength of each rule is calculated in this layer, typically using a fuzzy AND

operator (T-norm). The output of each rule node represents how strongly that rule applies
given the current fuzzified inputs.

Firing strength of rule j:

wj; = H'UAz ('r’L)
7

Layer 4 (Normalization/Consequent Layer): This layer aggregates the outcomes of]

the activated fuzzy rules. It often involves normalizing the firing strengths calculated in

Layer 3 and applying these weights to the consequent part of each rule (e.g., the fuzzy se
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representing *Very High’ suitability). The specific operations depend on the FNN model

but aim to combine the contributions of all relevant rules.

e Firing strengths are normalized:

Wy = —d
]_ijj'

e Consequent functions f;(x) (linear in inputs) are applied:

OZL =w; X f](x) = w;j (ijr +gjdps +1;ND +s;SNR + tj) .

* Layer 5 (Defuzzification/Output Layer): This layer convertsthe aggregated fuzzy out-
put from Layer 4 back into a single, crisp numerical value.. The paperindicates the use of
the Centroid (Center of Gravity) or Weighted Average of Centers defuzzification meth-

ods, which are widely used and effective in practice, as conceptually illustrated in Figure
3.

The final output, denoted as the CH suitability score y), is computed as:
y=)0i
J

representing the crisp decision of the FNN. For example, y may indicate the node’s overall
suitability to act as a CH in the current round, or potentially provide an estimation of the

optimal number of clusters (k) for the network to target.

Layer 5:
Defuzzification
(Crisp Output)

Figure 3. Centroid Defuzzification in Layer 5 (Output Layer)
1.0t

Centroid

0.8f

0.6

0.4r

Degree of Membership

0.21

0.0

0 2 4 6 8 10
Output Values

Figure 3: Illustration of centroid defuzzification.

Figure 3 presents the centroid defuzzification process. The horizontal axis « corresponds

to output values, while the vertical axis y indicates their associated degrees of member-

ship. The figure also depicts the centroid method used to derive a single crisp value
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3.3 Input Parameters

The choice of input parameters is critical for the effectiveness of FNN. Table 1 summarizes the
rationale for the selected inputs.

Table 1: FNN Input parameters and rationale.

Rationale for Energy- ..
Parameter Symbol ] . Description
Efficient Clustering

i Nodes with higher energy are | Thecurrent energy level of the
Residual Energy FEres . .
preferable CHs. node. Crucial for node survival.

Shorter distance to BS reduces

. transmission cost. (CHs closer :
Distance to Base . Affects the energy required for
Dpg to the BS require less energy for

Station o . CH=to-BS transmission.

long-haul transmission, saving

significant energy.)

Indicates local node density and

clustering potential. (Reflects | Number of nodes within com-
Node Degree ND local density; high degree may | munication range; indicates lo-

imply good data aggregationpo- | cal density.

tential but higher CH load.)

Reflects intra-cluster communi- | Influences  potential  intra-
Average Distance D cation efficiency. (Influences | cluster communication costs;
to Neighbors N intra-cluster communication en- | lower Dy suggests more com-

ergy.) pact clustering.

High SNR implies better com-

i ) munication reliability.  (Indi- | Reflects channel quality, im-
Signal-to-Noise

Rati SNR | cates channel quality; nodes | pacting transmission reliability
atio

with better links may be pre- | and required power.
ferred for reliable transmission.)

The FNN learns to weighrand combine these potentially conflicting factors (e.g., high en-
ergy but far from BS) using its fuzzy rules and learned parameters.

3.4 The FNN training and dynamic operational flow

The proposed FNN-based clustering mechanism operates in two distinct phases: an offline
training phase where the FNN learns the optimal clustering behavior, and an online operational

phase where the trained FNN dynamically guides the clustering process in each communication

round. Algorithm 1 shows details of pseudocode for FNN-Based Dynamic Clustering
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Algorithm 1 Pseudocode for FNN-based dynamic clustering

// Phase 1: Offline (Executed once)

Function Train FNN_Model():

TrainingData = GenerateTrainingData() // Input vectors & Target outputs
FNN = InitializeFNN()

Loop until stopping criterion met:

Error = CalculateFNNError(FNN, TrainingData)
AdjustFNNParameters(FNN, TrainingData, LearningRate)

End Loop

Save TrainedFNN

End Function

// Phase 2: Online (Executed each round)

Function Run_FNN_ Clustering Round(round r, Nodes, TrainedFNN; BS):
// Step 1 & 2: Status Acquisition & FNN Evaluation

For each Node n in Nodes:

n.status = GetNodeStatus(n)

n.ch _score = EvaluateFNN(TrainedFNN, n.status)

End For

/I Step 3: CH Selection (Simplified Example: Threshold & Target k)
k_optimal = DetermineOptimalK(Nodes) // Optional FNN output or heuristic
CandidateCHs = FilterNodesByScoreThreshold(Nodes)

SelectedCHs = ResolveContention(CandidateCHs; k optimal)

For each Node n in Nodes:

n.role = (n in SelectedCHs) ? CH : NonCH

End For

// Step 4 & 5: Cluster Formation
BroadcastCHAdvertisements(SelectedCHs)

For each Node m where m.role == NonCH:

m.chosen_ch = FindBestCH(m, ReceivedAds)

SendJoinRequest(m, m.chosen_ch)

End For

/I Step 5: TDMA Scheduling

For each Node ¢ where c.role== CH:

c.schedule = CreateTDMASchedule(c.member nodes) BroadcastSchedule(c, c.schedule)
End For

// Step 6: Steady-State Data Transmission

RunSteadyStatePhase(Nodes, BS) // Includes intra & inter-cluster transmission End Function
// Main Loop

Load TrainedFNN

InitializeNodes()

Forr=1to MAX ROUNDS:

If NumberOfAliveNodes > 0:

Run_FNN_Clustering Round(r, AliveNodes, TrainedFNN, BS)

Else:

Break // Network dead

End If End For =0
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1. Offline Training: The objective of the offline phase is to train the FNN parameters
(Membership Functions, rule consequents/weights depending on the specific FNN type

like ANFIS) to accurately map network state inputs to desired clustering outputs.

1. Data Generation: A diverse dataset is crucial for effective training. This dataset
consists of input-output pairs. Training data is generated by simulating various
network scenarios (different node distributions, energy levels). For each scenario,
an optimal or near-optimal clustering configuration (e.g., determined by running
LEACH [12] and selecting its best outcomes, or defined-by an optimization ob-
jective) is identified. The inputs are the node states, and the target output is the

suitability score or optimal k for that scenario.

2. FNN Initialization: The FNN architecture is defined, and its parameters (e.g., ini-
tial shapes and positions of triangular MFs, initial rule weights/consequents) are

initialized, often randomly or based on preliminary domain knowledge.

3. Learning Algorithm: The FNN is trained using the generated dataset. A hybrid
learning algorithm, often combining gradient descent (like backpropagation) with
least-squares estimation (common in ANFIS), is typically used. The algorithm it-
eratively adjusts the FNN’s tunable parametetrs to minimize the error between the
FNN’s predicted output and the target output from the dataset.

4. Stopping Criterion: Training continues until a predefined error threshold is met, a
maximum number of training epochs is reached, or the error on a separate validation
dataset stops improving (to prevent overfitting).

5. Result: The outcome is a trained FNN capable of evaluating network states and

predicting desirable clustering actions.

2. Online Operation (Round-by-Round): Once trained, the FNN is deployed in the WSN
to guide clustering dynamically in each communication round (r). This phase executes

dynamically in the WSN during operation, as depicted in Algorithm 1.

o Step 1: Parameter Acquisition: At the beginning of each round, nodes determine
their current input parameter values (measure Eres, estimate distances, count neigh-
bors, assess SNR).

o Step 2: FNN Evaluation: Each node feeds its current parameters into its locally
stored, trained FNN model to compute its CH suitability score (or contribute to
determining k).

o Step 3: CH Selection and Cluster Formation: Nodes potentially broadcast thein

suitability scores. A distributed protocol selects CHs based on these scores (e.g.,

highest score within a neighborhood, or probabilistic selection weighted by score)
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The FNN might also output an optimal %, influencing how many CHs are ultimately
selected. Non-CH nodes join the CH that requires the minimum communication|

energy (usually the closest).

o Step 4: Steady-State Data Transmission: Nodes transmit data to their CHs within
their allocated time slots. CHs aggregate data and transmit it to the BS.

o Step S: Re-Clustering: The process repeats from Step 1 for the next round, allowing
the network to dynamically adapt its cluster structure based on the most recent node

states.

This dynamic, round-by-round adaptation, guided by the intelligently trained FNN, is key to
achieving superior energy efficiency and network longevity; especially-in environments where
node energy and network topology are not static. The'FNN provides a mechanism to continu-
ously strive for an optimal clustering configuration based on the current network reality. Table

2 shows all notations will be used in the paper.

Table 2: The table of notations.

Notation Description

N Total number of sensor nodes/in the network

k Size of a data packet (bits)

r Current simulation round

Erx(k-d) | Energy consumed to transmit a k-bit packet over distance d

Egrx (k) Energy consumed to receive a k-bit packet

Epa(k) Energy consumed for aggregating a k-bit data packet at a Cluster Head (CH)

Eqlec Energy required to operate transmitter/receiver circuitry (nJ/bit)

Eg Energy consumption coefficient for free-space amplifier model (pJ/bit/m?)

Emp Energy consumption coefficient for multipath amplifier model (pJ/bit/m*)

D Distance between the transmitting node and the receiving node (m)

Dy Threshold distance distinguishing free-space and multipath propagation models

Etound Total energy consumed by all nodes during a single communication round
;eqi dual Residual energy of node 7 at a given round

CH Cluster Head node responsible for aggregating and forwarding data

BS Base Station that collects aggregated data from CHs

ND Node degree, representing the number of neighboring nodes within range

SNR Signal-to-Noise Ratio, indicating link quality

K optimal Optimal number of clusters determined by the FNN

FND First Node Dies: round at which the first node depletes energy

HND Half Nodes Die: round at which 50% of nodes have died

LND Last Node Dies: round at which the last node depletes energy
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4 Simulation Setup and Evaluation Metrics

To assess the performance of the proposed FNN based clustering protocol, we conducted com-
prehensive simulations using MATLAB. The simulation environment and parameters were de-
signed to reflect typical WSN scenarios and allow for fair comparison with established bench-
mark algorithms. The experiments were implemented using MATLAB R2016, chosen for its
robust support for matrix computations, fuzzy systems, and neural network modeling. Simula-
tions ran on a Windows 10 Pro workstation with the following specifications:

* Processor: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
* RAM: 8 GB
* Operating system: 64-bit Windows

The FNN model was implemented using MATLAB’s Fuzzy Logic Toolbox, complemented by
custom scripts for adaptive clustering.
Benchmark protocols (LEACH, HEED, ELDC) were implemented following their standard

formulations in the literature to ensure fair comparisons.

4.1 Simulation environment

The network consists of NV sensor nodes randomly distributed within a square area. A single,
stationary Base Station (BS) with unlimited energy is located at the center of the simulation|
field. All sensor nodes are assumed to have the same initial energy and capabilities. The key|

simulation parameters are summarized in Table 3.

4.2 Comparison protocols

The performance of the propesed FNN protocol is compared against three well-known cluster-
ing algorithms:
1. LEACH (Low-Energy Adaptive Clustering Hierarchy): A distributed, probabilistic clus-

tering protocol serving as a common baseline [12, 18].

2. HEED (Hybrid Energy-Efficient Distributed Clustering): A distributed protocol that pri-

marily uses residual energy for CH selection [29].

3. ELDC (Energy-efficient and Load-balanced clustering using ANNs): The Artificial Neu-

ral Network-based approach described in [26], which serves as a direct machine-learning

baseline for our FNN model
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Table 3: Simulation parameters.

Parameter Value Description
Network Area 100m x100m Simulation field dimensions
Number of Nodes (N) 100 Total sensor nodes deployed
Random uniform distribu- .
Node Deployment ‘ Initial placement of nodes
ion
BS Location (50m, 50m) Central location of the Base Station
Initial Node Energy Eq 0517 Starting energy for each sensor node
Data Packet Size (k) 4000 bits Size of data packet transmitted/received
. Assumed smaller, (e.g., 200 .
Control Packet Size bits) Size of overhead/control messages
its
. Energy for transmitter/receiver elec-

Eglec 50 nJ/bit 4

tronics

Amplifier energy for free space model
Es 10 pI/bit/m P & P

(d=t.do)

Amplifier ‘energy for multi-path model
Emp 0.0013 pl/bit/m* P gy formuitp

(d > do)
Epa 5 nJ/bit/signal Energy for data aggregation at CH
Maximum Rounds (7max) 2000 Simulation duration limit
Simulator MATLAB R20xx Software used for simulation

4.3 Experimental procedure

The experimental evaluation was conducted as follows:

1. Network Initialization: 100 nodes were randomly distributed within the 100m x 100m|

area, and all nodes were assigned equal initial energy.

2. Protocol Execution: Each protocol (LEACH, HEED, ELDC, FNN) was executed under

identical conditions for 2000 simulation rounds.

3. FNN Operation:

o The FNN was trained offline with simulated network states to learn optimal clus-
tering decisions.
o During runtime, each node locally evaluated its CH suitability score using the

trained FNN model.

4. Repetition: Each simulation was repeated 10 times with different random node place-

ments to ensure statistical reliability, and the average results were reported
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4.4 Evaluation metrics

The following metrics are used to quantitatively assess the performance of the clustering pro-
tocols:

* Network Lifetime: This is the primary metric, measured in terms of simulation rounds.

We consider three key milestones:

o First Node Dies (FND): The round number when the first sensor node depletes its
energy. This indicates the start of network degradation and loss of sensing coverage.

o Half Nodes Die (HND): The round number when 50% of the sensor nodes have
depleted their energy. This represents significant network functionality loss.

o Last Node Dies (LND): The round number when the last active sensor node depletes

its energy. This indicates the total operational span of the network.

+ Stability Period: The duration, in rounds, fromthe start of the simulation until the FND
occurs. A longer stability period is desirable.

* Number of Alive Nodes per Round: Tracks the count of nodes with remaining energy|
in each round, providing insight into the network’s’'degradation rate.

* Energy Consumption:

o Cumulative Energy Consumption: The total energy consumed by all nodes in the
network over the simulation rounds. Lower cumulative consumption indicates

higher efficiency.

o Energy Consumption per Round: The rate at which energy is consumed, providing

insight into the efficiency of operations within each round.

These metrics collectively provide a comprehensive view of the energy efficiency, longevity,

and robustness of'the proposed FNN clustering protocol compared to the benchmark algorithms.

5 Results and discussion

This section presents the simulation results comparing the performance of the proposed Fuzzy,
INeural Network (FNN) based clustering protocol against the benchmark algorithms: LEACH
[18], HEED [29], and the ANN-based ELDC [26]. The evaluation focuses on key metrics
including network lifetime, stability, and energy consumption. All reported results represent

the average performance over 30 independent simulation runs with different random seeds to

ensure robustness
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5.1 Network lifetime and stability analysis

INetwork lifetime and stability are critical indicators of a WSN’s operational effectiveness. We

analyze these using the number of active nodes over time and specific node death milestones.

* Alive Nodes vs. Rounds: Figure 4 illustrates the number of nodes remaining operational

(with energy > 0) as the simulation progresses over rounds.

=+=LEACH
60 —HEED
ELOC

20 == Proposed Algorithm

o I % Wy N T T N % By sy Us, sy By W, 1, By,

Figure 4: The number of alivenodes vs. rounds for LEACH, HEED, ELDC, and FNN.

As depicted in Figure 4, the curve representing the proposed FNN protocol remains at
100% (all nodes alive) for a significantly longer.duration compared to the other protocols.
Furthermore, the rate of node death (slope of the curve) for the FNN is considerably|
slower. This visually confirms that the FNN approach sustains network operation more
effectively and exhibits aimore graceful degradation compared to LEACH, HEED, and
ELDC. LEACH shows the most rapid decline in active nodes.

* Stability Period (FND): The First Node Death marks the end of the network’s fully op-

erational phase. Figure 5 specifically compares this metric.

Figure 5 clearly shows that the FND occurs latest for the proposed FNN protocol. This
extended stability period signifies that the FNN’s intelligent clustering prevents the pre-
mature depletion of any single node’s energy, likely due to better load balancing in CH|
selection and rotation. FNN outperforms ELDC, which in turn outperforms HEED and
LEACH in this regard.

* Total Network Lifetime (LND): The Last Node Death indicates the maximum operational

lifespan the network can achieve. Figure 6 compares the LND across protocols.

Consistent with the FND results, Figure 6 demonstrates that the proposed FNN achieves

the longest total network lifetime. The round number at which the last node dies is signif-
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Figure 5: The round number for First Node Dies (FND) for LEACH, HEED, ELDC, and FNN.
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Figure 6: Comparing the round number for Last Node Dies (LND) for LEACH, HEED, ELDC, and FNN.

icantly higher for FNN compared to ELDC, HEED, and LEACH, indicating its superior]
ability to manage energy resources over the long term.

5.2 Energy consumption analysis

Efficient energy management is the core objective. We analyze the cumulative energy con-

sumption and the energy consumed in specific phases of the network’s life.

* Cumulative Energy Consumption. Figure 7 tracks the total energy consumed by all nodes
in the network from the beginning of the simulation.

The curve for the proposed FNN in Figure 7 exhibits the lowest slope, indicating the lowest
rate of energy consumption per round. This implies that the clustering and data transmission
strategy employed by the FNN is inherently more energy-efficient than those of the other pro-
tocols. LEACH shows the highest rate of energy depletion
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Figure 7: Cumulative energy consumption (e.g., in Joules) vs. rounds for LEACH, HEED, ELDC, and FNN.

» Energy Consumption in Round Intervals: Figure 8 provides a more detailed view by

comparing the energy consumed within specific intervals (e.g., Rounds 1-250, 251-500,
501-750, 751-900).

40
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Figure 8: Total energy consumed within specific round intervals for LEACH, HEED, ELDC, and FNN.

Figure 8 demonstrates that the FNN protocol consistently consumes less energy not only|

overall but also within different operational phases of the network. This consistent efficiency|

across early, mid, and late stages highlights the robustness and adaptability of the FNN’s energy|

management strategy.
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5.3 Node death progression summary

Figure 9 provides a consolidated view comparing the key lifetime milestones: FND, HND (Half
Nodes Die), and LND.

(Round)
3

1600
1400

1200

1000
W First Node Dies
800 1
W Half Node Dies
600 i Last Node Dies
400
200
0

LEACH HEED ELDC Proposed Algorithm

Figure 9: Comparing FND, HND, and LND round numbers for LEACH, HEED, ELDC, and FNN.

This summary chart, Figure 9, reinforces the previous findings. The proposed FNN sig-
nificantly delays all stages of network degradation (FND, HND, LND) compared to ELDC,
HEED, and LEACH. Notably, the interval' between FND and LND is also wider for FNN, sug-
gesting that even after some nodes start dying, the network under FNN control maintains partial
functionality for a longer period, indicating more graceful degradation.

5.4 Discussion

The collective simulation results consistently underscore the advantages of the proposed FNN-
based dynami¢ clustering approach. The FNN demonstrably outperforms LEACH, HEED, and
the baseline ANN model (ELDC) across all evaluated metrics: stability period (FND), total
lifetime (LND), number of active nodes over time, and overall energy efficiency.

The superior performance of the FNN can be attributed to several factors inherent in its

design:

1. Intelligent Decision Making: The FNN leverages its trained knowledge base to make
more informed decisions. Unlike many approaches that only output a CH suitability]
score, our framework allows the FNN to influence both CH selection and the optimal
number of clusters (k). This dual optimization leads to a more globally efficient network

structure in each round, adapting not just which nodes are CHs, but also how many CHs|

there should be. It considers multiple factors (residual energy, distance metrics, density
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via neighbors, SNR) simultaneously within a framework that handles inherent uncertain-

ties and imprecision.

2. Adaptive Load Balancing: Unlike LEACH’s purely probabilistic approach or HEED’s
more fixed criteria, the FNN dynamically adapts the clustering structure based on the
current state of the network. This leads to a more equitable distribution of the energy-
intensive CH role among nodes, preventing energy hotspots and premature node failure,
thus enhancing both stability (FND) and overall lifetime (LND).

3. Enhanced Robustness: Compared to the ELDC (ANN) baseline, the integration of fuzzy
logic provides greater robustness to noisy sensor readings and minor fluctuations in net-
work parameters. Fuzzy logic’s ability to work with linguistic variables and overlapping
membership functions allows for smoother transitions-and less sensitivity to crisp in-
put thresholds. This theoretical benefit is empirically. validated by our FNN’s superion
performance over ELDC across all key metrics (Figures 4-9), confirming that the fuzzy,

component adds tangible value in managing the inherent uncertainty of WSNss.

4. Optimized Energy Usage: By forming more effective clusters and selecting strategically|
located CHs with sufficient energy, the FNN minimizes intra-cluster and inter-cluster
communication distances and reduces redundant data transmissions through efficient ag-

gregation, leading to lower overall energy consumption (as seen in Figures 4-3 and 4-5).

In essence, the FNN acts as an intelligent controller that continuously optimizes the net-
work’s clustering configuration round by round, leading to significant gains in longevity and
efficiency, particularly highlighting its suitability for dynamic WSN environments where con-
ditions are not static.

The proposed FNN is evaluated using the first-order radio model, which provides a widely,
accepted baseline for energy/consumption analysis in WSNs. While this model simplifies radio
behavior, real-world WSNs often face additional energy drain due to hardware inconsistencies,
interference, and environmental factors. The FNN incorporates limited robustness to these
factors through fuzzy reasoning and parameter noise during training. However, its current for-
mulation does not explicitly model all non-idealities. Future work will extend this approach by,
incorporating stochastic radio models and real-world measurement data to enhance the FNN’s

reliability under practical deployment conditions.

6 Scalability and complexity analysis

For any WSN protocol to be considered practical, it must be able to scale to networks of vary-

ing sizes and operate within the severe computational and memory constraints of individual
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sensor nodes. Although the proposed FNN protocol was tested on a network of 100 nodes, its
distributed decision-making structure ensures that computational cost per node remains con-
stant and total overhead scales linearly with network size. Therefore, the protocol is theoret-
ically scalable to larger WSN deployments. However, explicit simulations with networks of]
500+ nodes and different area sizes were not performed in this study. Future work will involve
large-scale experiments to empirically validate the protocol’s performance under high-density|
deployments. This section analyzes the scalability and complexity of our proposed FNN-based
approach.

6.1 Scalability of the proposed FNN algorithm

The proposed FNN protocol is designed to be highly scalable. This scalability is achieved

primarily through its distributed intelligence and hierarchical structure.

1. Distributed Decision-Making: The most computationally significant task during the on-
line phase, the FNN evaluation to calculate a node’s CH suitability score, is performed
locally at each node. The inputs to the ENN (residual energy, SNR, etc.) are either known
internally or determined through communication with only immediate one-hop neighbors|
(for node degree). A node does not require information from the entire network to make
its decision. This localized nature prevents the communication overhead and processing
bottlenecks that would occur if a central entity had to collect data from all N nodes to

make a decision.

2. Hierarchical Operation: By leveraging a clustering hierarchy, the protocol naturally par-
titions the network. The energy-intensive task of long-range communication is restricted
to the small subset of nodes elected as CHs. As the network scales in size and density,
the numbet of clusters:.can be adaptively managed by the FNN, ensuring the network

architecture remains efficient:

Assumptions and Conditions:

The scalability of the system assumes that the underlying clustered topology remains effective,
In extremely large or dense networks, the Base Station (BS) could become a bottleneck if the
number of CHs reporting to it becomes excessive. Similarly, a CH in a very dense region could
become overloaded. However, this is a general challenge for all CH-based protocols, and our]
FNN’s ability to dynamically adjust clustering based on local density (Node Degree) inherently

works to mitigate this issue.

The proposed FNN-based protocol scales effectively under the following assumptions:
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1. Nodes have minimal computational capacity to execute lightweight FNN evaluation (a

small neural-fuzzy inference model).

2. Local parameter acquisition (residual energy, neighbor density, SNR, etc.) is available

via periodic sensing or low-overhead control messages.

3. The Base Station (BS) is stationary and does not impose centralized control, ensuring

that network expansion does not increase processing overhead.at a single point.

4. Clustering decisions are made locally, and communication overhead remains proportional

to the number of neighboring nodes, not the total network size.

Under these conditions, the algorithm’s overhead grows linearly with the number of nodes
O(N), which is acceptable for WSNs.

6.2 Complexity analysis of the proposed FNN algorithm

We analyze the complexity of algorithm by separating.its two distinct phases: offline training

and online operation.
* Offline Training Phase (Executed Once):

o Computational Complexity: The training of the FNN, similar to any neural network,
is a computationally intensive process. Its complexity depends on the size of the
training dataset (D), the number of training epochs (E), and the number of parame-
ters in the FNN model. Thisis a high-cost operation, but it is critical to note that it is
a one-time, pre-deployment cost. It is performed on a powerful external computer

and consumes zero energy. oryprocessing time from the sensor nodes themselves.
o Space Complexity: The training phase requires significant memory on the host com-
puter to store the dataset and the model, but this has no bearing on the sensor nodes.
* Online Operational Phase (Executed Each Round):
o Computational Complexity: The per-round complexity for a single node is the sum
of its tasks:

1. Parameter Acquisition: A node measures its own residual energy and assesses
SNR (O(1)). To determine its Node Degree (ND) and Average Distance to

Neighbors (DN), it must exchange beacon messages with its k& immediate

neighbors. This requires O (k) computation
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2. FNN Evaluation: The node performs a forward pass through the trained FNN.
The number of calculations is determined by the fixed structure of the FNN
(number of inputs, rules, and outputs). This is a constant-time operation, O(1),

with respect to the total number of nodes IV in the network.

3. CH Selection & Cluster Formation.: A node broadcasts its CH suitability score
and listens for the scores of its k£ neighbors. It then joins the best CH. This pro-
cess is dominated by local communication and comparison, making its com-
plexity O(k).

Therefore, the total online computational complexity for a single node per round is dominated
by its interaction with its neighbors, resulting in O(k). Since 'k is typically much smaller than
N (k << N), this is a highly efficient and scalable complexity.

o Space Complexity: The memory required on each sensornode is also minimal:

1. The FNN Model Storage: The primary storage requirement is for the parameters of
the trained FNN model (membership functions, rule weights, etc.). The size of thig
model is fixed after training and is.independent of the network size N.

2. Neighbor Table: A nodeneeds temporary storage to maintain information about its
k neighbors. This requires O(k) space.

The total space complexity per node is therefore constant for a given FNN model and O(k)
for neighbor data. This small and predictable memory footprint makes our protocol perfectly|

suitable for deployment on resource-constrained sensor nodes.

7 Overhead comparison summary

The proposed FNN requires each node to compute a CH suitability score by evaluating a small
neuro-fuzzy model. This computation is lightweight, involving only a few membership evalu-
ations and rule-based calculations, resulting in constant-time complexity per node O(1). Com-
munication overhead remains comparable to LEACH since no additional control messages or]
global optimization steps are required. Therefore, the overhead introduced by the FNN is min-
imal and does not compromise its suitability for resource-constrained WSN nodes. All results
have been shown in Table 4.

Computational Overhead

 LEACH:

o_Uses a probabilistic CH selection based on a simple threshold function
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Table 4: Overhead Comparison summary.

Computation per | Communication

Protocol Remarks
Node Overhead
Very lightweight, but energy-
LEACH O(1), minimal Low very Tghhwelg &y
inefficient
Static parameters, improved
HEED O(1), moderate Low to moderate
over LEACH
O(W),where Higher than LEACH, adaptive
ELDC (ANN) ) Low . .
W=ANN weights butnoise-sensitive

FNN (Proposed) O(LxM), small | Low (similar to | Slightly <higher computation,

constant LEACH) negligible impact on runtime

o Complexity per node is O(1) with minimal computations.
* Proposed FNN:

o Each node evaluates a lightweight FNN model with a small number of fuzzy rules

and membership functions.

o Complexity per node is O(L x M), where LLL is the number of network layers
and MMM is the number of fuzzy rules.

o Since LLL and MMM are fixed and small, the per-node computation remains con-
stant (O(1)), only slightly higher than LEACH.

o The FNN computations involve simple arithmetic operations (membership evalu-
ation, rule firing, and weighted summation), which are well within the processing
capacity of typical WSN nodes.

Communication Overhead

* LEACH:

o Requires nodes to send local information to candidate CHs and for CHs to broadcast

their status.

o Communication overhead is low but limited by its probabilistic selection, which

can lead to suboptimal energy use.
* Proposed FNN:

o Similar to LEACH, the FNN does not require extra global communication.

o Nodes make decisions locally and only send a single suitability score or CH adver-

tisement to neighbors or the base station as needed.

o No additional iterations or global information exchange are required, unlike meta-

heuristic or swarm-based protocols
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8 Conclusion and future work

Addressing energy constraints, particularly in dynamic WSNSs, is crucial for their widespread
adoption. This paper introduced an intelligent and dynamic clustering mechanism utilizing a
Fuzzy Neural Network (FNN). The FNN adaptively optimizes the clustering process by learning
complex relationships between real-time network parameters (energy, distance, density, SNR)
and ideal cluster configurations. Simulation results validated the proposed approach, demon-
strating significant improvements in network lifetime, stability, and energy efficiency compared
to benchmark protocols like LEACH, HEED, and the ANN-based ELDC. The FNN’s ability to
handle uncertainty and adapt dynamically makes it particularly suitable for WSNs with mobile
nodes or changing environmental conditions. Future research will focus on extending the FNN
model to explicitly incorporate node mobility prediction, investigate its performance in larger-
scale, heterogeneous networks, and explore the integration of Quality of Service (QoS) metrics
alongside energy efficiency within the FNN framework. Further work could also involve hard-

ware implementation and real-world testing to validate the simulation findings.
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