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1 Introduction

Systems of differential equations are foundational in modeling dynamic processes across con-
trol theory, optimization, and applied mathematics [13, 14]. This paper focuses on linear first-
order ordinary differential equations (ODEs) with parametric coefficients, a class of problems
that could be critical to optimal control design [1], sensitivity analysis [20], and robust sta-
bility under parameter variations [28]. Such systems may arise frequently in engineering and
scientific applications, where optimizing performance or ensuring stability might benefit from
explicit solutions for arbitrary parameter configurations [23].

Traditional methods for solving parametric ODEs face limitations in scalability and gen-
erality, particularly when parameters influence system behavior discontinuously. Our work
addresses this gap by integrating computational algebra with control-oriented frameworks, en-
abling systematic analysis of parametric dependencies. Specifically, we focus on systemswhere
the number of unknown functions equals the number of equations, a structure common in state-
space control systems [19], expressed as

dxj
dt

= aj1(t)x1 + · · ·+ ajn(t)xn + gj(t), j = 1, . . . , n,

where aji(t) and gj(t) are arbitrary functions of the independent variable t, and n is a positive
integer. A first-order linear system of ODEs may be written in matrix form:

d

dt


x1

x2
...
xn

 =


a11 · · · a1n

a21 · · · a2n
... . . . ...
an1 · · · ann



x1

x2
...
xn

+


g1

g2
...
gn

 ,

or simply
ẋ(t) = A(t)x(t) + g(t).

When the coefficients aji(t) are constant, the general solution to the system ẋ(t) = Ax(t)+g(t)
is the sum of the general solution to the associated homogeneous system ẋ(t) = Ax(t) and a
particular solution to the non-homogeneous system.

The general solution to the homogeneous system is constructed from the eigenvalues and
eigenvectors of the matrix A. If A is diagonalizable (e.g., when it has n distinct eigenvalues),
this solution is given by:

xh(t) = C1v1eλ1t + C2v2eλ2t + · · ·+ Cnvneλnt,

where λ1, λ2, . . . , λn are the eigenvalues and v1, v2, . . . , vn are the corresponding eigenvectors.
Cases with fewer distinct eigenvalues required different treatment.
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A particular solution, xp(t), to the non-homogeneous system can be found by methods such
as undetermined coefficients or variation of parameters. The general solution is then:

x(t) = xh(t) + xp(t).

Several methods exist to solve systems of linear first-order differential equations, including
the matrix method (finding the eigenvalues of A), the elimination method, the operator method
D, the Laplace transformmethod, and so on [14]. Furthermore, Ritt’s characteristic set method,
developed byRitt [21, 22] andWu [26, 27], offers a constructive approach to solving polynomial
systems, including differential equations. This method analyzes and solves these systems by
decomposing them into simpler, triangular forms known as ascending chains.

Any differential algebraic system’s zero-set decomposes into chains’ zero-sets. Ourmethod’s
key advantage lies in its ability to handle differential equations with parametric coefficients,
particularly in finding solutions for first-order parametric ODEs.

Numerous engineering and scientific problems can be modeled using differential equa-
tions with parametric coefficients, necessitating repeated analysis for various parameter values.
Therefore, this paper focuses solely on the solution of first-order parametric ODEs, which has
not, to our knowledge, been explored in the literature. The following example shows that the
mentioned traditional solution approach may not be used for such systems of ODEs.

Example 1. Consider the first-order linear system of equations where a, b, c, d are parameters
in R:

sys =

ẋ(t) = (a− 1)x(t) + by(t) + d,

ẏ(t) = (b− c)x(t) + ay(t)− 1.

The solution set is computed using one of the above well-known methods and the function
PDEtools:-dsolve(sys) in Maple 18:

Substituting a = 1, b = 2, c = 2, and d = −1 yields:

sys|a=1,b=2,c=2,d=−1 =

ẋ(t) = 2y(t)− 1,

ẏ(t) = y(t)− 1,

resulting in the solution set:

{x(t) = 2C2e
t + t+ C1, y(t) = C2e

t + 1}. (1)

However, this evaluation of parameters a, b, c, d does not align with x and y, the Maple output
in Figure 1, since these are undefined for a = 1, b = 2, c = 2, and d = −1.

One may be interested in determining the values of parameters s.t. σ(x(t)) and σ(y(t))
are the solution of σ(sys) where σ : R[a] → R′ ⊇ R is a specialization involving parameter
assignments; more especially, one may seek to understand the solution space structure. In
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Figure 1: Solution set of the parametric system of ODEs computed using Maple.

this direction, we introduce the concept of a comprehensive solution system for a system of
parametric first-order ODEs and design an algorithm for its computation, utilizing the key idea
of Gröbner systems.

2 Gröbner Systems

Gröbner systems and their algorithms were introduced by Weispfenning in 1992 [25]. For a
parametric polynomial ideal, computing its Gröbner system partitions the parameter space into
a finite set of cells, each linked to a specific set of polynomials. By identifying the cell corre-
sponding to given parameter values, we obtain a Gröbner basis corresponding to those values.
Let R = K[x1, . . . , xn] denote the polynomial ring in variables x1, . . . , xn over a field K.
For g ∈ R, denote by LM≺(g), LC≺(g), and LT≺(g) the leading monomial, leading coef-
ficient, and leading term of g w.r.t. the monomial ordering ≺, respectively. Given an ideal
J = ⟨f1, . . . , fk⟩ ⊂ R, the leading monomial ideal of J is LM≺(J ) = ⟨LM≺(g) | g ∈
J ⟩. finally, G = {g1, . . . , gm} ⊂ J is a Gröbner basis for J w.r.t. ≺ if LM≺(J ) =

⟨LM≺(g1), . . . ,LM≺(gm)⟩. See [2] for further details concerning Gröbner bases.

Using these notations, we define Gröbner bases for ideals with polynomial generators that
include parametric coefficients, referred to as Gröbner systems. Gröbner systems are widely
utilized in mathematics, science, and engineering, playing crucial roles in areas such as para-
metric linear algebra [5, 6, 10], automated geometry theorem proving [15], robotics [16, 17],
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algebraic geometry [8, 15, 17, 25], and electrical networks [17, 18], and more. These applica-
tions often require repeated analysis with varying parameter values.

Essentially, Gröbner systems extend the concept of Gröbner bases for polynomial ideals
over fields to those with parametric coefficients. Consider the polynomial ring S = K[a, x],
where a = (a1, . . . , am) are parameters and x = (x1, . . . , xn) are variables. The sets {x} and
{a} are disjoint. Hence, any term inS takes the form aγxα, where aγ ∈ K[a] acts as a coefficient
of xα. We define two monomial orderings,≺x for variables and≺a for parameters. To compute
Gröbner systems, we establish a product order≺x,a, defined as follows: for any γ, δ ∈ Nm and
α, β ∈ Nn, we have aγxα ≺x,a aδxβ if either xα ≺x xβ or both xα = xβ and aγ ≺a aδ.
Moreover, a specialization of parameters is a morphism σ : K[a] → K, where K denotes
the algebraic closure of K. A parametric polynomial ideal consists of a system of parametric
polynomial equations generated by polynomials with parametric coefficients. Additionally, a
parametric linear polynomial is defined as a polynomial where the power of each variable xi is
at most one, allowing parametric coefficients to be polynomials of any power in K[a].

Let us revisit the definition of a Gröbner system for polynomial ideals with parametric
coefficients, where Weispfenning established their existence for all such ideals [25, Proposition
3.4 and Theorem 2.7] and proposed an algorithm for their computation [25, Theorem 3.6]. Since
then, various algorithms have been developed to compute these Gröbner systems, each with its
advantages and drawbacks [3, 4, 6, 7, 8, 9, 11, 12, 17, 24].

Definition 1. Let G = {(Ni,Wi, Gi)}ℓi=1 be a set of triples where Gi ⊂ S and (Ni,Wi) is a
conditions pair in K[a] × K[a] for i = 1, . . . , ℓ. The set G is a Gröbner system for ⟨F ⟩ ⊂ S
with respect to ≺x,a over V ⊆ Km if, for each i, the following holds:

• σ(Gi) is a Gröbner basis of ⟨σ(F )⟩ w.r.t. ≺x, for any specialization σ : K[a] → K
satisfying (Ni,Wi),

• V ⊆
⋃ℓ

i=1V(Ni)\V(Wi), whereV(N) denotes the common zeros of a set of generators
for N.

Each (Ni,Wi, Gi) is referred to as a segment or branch of the Gröbner system G for 1 ≤
i ≤ ℓ. Each pair (Ni,Wi) is called a specification, with Ni andWi referred to as the null and
non-null condition sets, respectively. G is generally termed a Gröbner system of F , if affine
variety V = Km. A condition pair (N,W ) is deemed inconsistent if, for every polynomial
f ∈ W , f lies in the radical ideal generated by N . Consistency of parametric constraints
can be efficiently determined by combining the ICheck and CCheck algorithms (Kapur, et al.
[12]) with Rabinovitch’s trick for radical membership testing, which involves introducing a new
variable in worst-case scenarios. See [12, Section 5] for details.

It is worth noting that there are two general approaches to computing Gröbner systems. One
approach branches in the parameter space during Gröbner basis construction in the variable
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ring. The other computes a Gröbner basis in the combined variable and parameter ring at each
iteration, branching based on the leading coefficients in terms of the parameters. In both cases,
the parameter space is automatically partitioned according to the algorithm’s structure.

Example 2. Let

F = {(a1 − 1)x1x3 − a3x22,−a2x2 + x21 + 1} ⊂ K[a1, a2, a3][x1, x2, x3],

where a1, a2, a3 are parameters and x1, x2, x3 are variables. Using our Maple implementation
of the PF4 algorithm [4], we compute a Gröbner system for ⟨F ⟩with respect to the lexicographic
term order

x3 ≺ x2 ≺ x1 and a3 ≺ a2 ≺ a1.

The following Gröbner system has five branches while assuming a3 = 3, a2 = 2, and
a1 = 1 randomly, the first triple satisfying these parameter values, and so a Gröbner basis of
⟨F ⟩ |a3=3,a2=2,a1=1 is {a3x22,−a2x2 + x21 + 1}.

([a1 − 1], [a3], [a3x
2
2,−a2x2 + x21 + 1]])

([a3, a2], [a1 − 1], [a1x3 − x3, x21 + 1])

([a3, a1 − 1], [ ], [−a2x2 + x21 + 1])

([a3], [a2, a1 − 1], [a1a2x2x3 − a2x2x3 − a1x3 + x3, a1x1x3 − x1x3,−a2x2 + x21 + 1])

([ ], [a23(a1 − 1)], [−a21a2x2x23 + a23x
4
2 + 2a1a2x2x

2
3 + a21x

2
3 − a2x2x23 − 2a1x

2
3 + x23,

a1x1x3 − a3x22 − x1x3,−a1a2x2x3 + a3x1x
2
2 + a2x2x3 + a1x3 − x3,

−a2x2 + x21 + 1]).

This raises the question: “how can the Gröbner system be applied to solving systems of
parametric first-order ODEs? ”

3 Comprehensive Solution System

In this section, we present a comprehensive solution system for parametric first-order ODEs.
We begin by linearizing the ODEs through the substitution of all functional variables and their
derivatives with new variables Ai, then rearranging the equations to move the right-hand sides
to the left, setting them to zero. Next, we construct an ideal in R[a,A] that corresponds to
the ODEs and compute its Gröbner system. Here, a shows the sequence of parameters, and A
denotes the sequence of new tag variables Ai.

Definition 2. Let sys be a system of first-order ODEs with parametric coefficients. A finite
triple set L = {(Ni,Wi, Si)}ℓi=1 is defined as a comprehensive solution system of sys if, for
each i and any specialization σ : R[a]→ R′ ⊇ R satisfying the parametric constraints (Ni,Wi),
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the solution set of σ(Si) is equivalent to the solution set of σ(sys), where σ satisfies the para-
metric conditions (Ni,Wi).

Based on this definition and the preceding discussion, we present the CSS algorithm to
compute a comprehensive solution. In this algorithm, the variable LIST starts as an empty
set and eventually represents a comprehensive solution system. Each entry in LIST is a triple
(Ni,Wi, Si), where Si is the solution set for the input system of parametric ODEs based on
(Ni,Wi). We denote the i-th element of L as L[i]. The bijective linear transformation ψ maps
functional variables mi and their derivatives to tag variables Ai, with ψ−1 performing the in-
verse mapping.

Algorithm 1 CSS (Comprehensive Solution System).
Inputs: A system of parametric first-order ODEs

sys =

{
dxj
dt

= aj1x1 + · · ·+ ajnxn + gj(t)

}n

j=1

Outputs: A Comprehensive Solution System of sys.

1. Construct the set
F =

{
dxj
dt
− (aj1x1 + · · ·+ ajnxn + gj(t))

}n

j=1

.

2. Compute a linearization of F , denoted by L := ψ(F ).

3. Determine a Gröbner system of L, namely

G = {(Ni,Wi, Gi)}ℓi=1.

4. Initialize an empty list, LIST := {}.

5. For each i = 1, . . . , ℓ, perform the following steps: Define the system

F ′
i = {ψ−1(Gi[j]) = 0 | j = 1, . . . , n}.

Solve F ′
i using any standard classical method, and denote the solution set by Si.

Update the list:
LIST := LIST ∪ {(Ni,Wi, Si)}.

6. Return LIST.

Theorem 1. The CSS algorithm terminates after a finite number of iterations and accurately
computes a comprehensive solution system.

Proof. The termination of the CSS algorithm is guaranteed by the termination of Gröbner sys-
tem computations. Its correctness is based on established classical methods for solving systems



In
Pr
es
s

8 A Computer Algebra Approach to Linear ODE Systems ...

of ODEs with constant coefficients. Specifically, let (Ni,Wi, Gi) represent a triple of the Gröb-
ner system G at the i-th step of the for-loop. During this step, all parametric coefficients in Gi

are non-zero, allowing us to apply classical methods after transforming Gi back into the origi-
nal functional variables and their derivatives to obtain Si, the solution set of σ(sys), based on
the conditions (Ni,Wi). Thus, each Si is the solution set of the input system sys under the
parametric constraint (Ni,Wi).

We illustrate this technique with an example.

Example 3. Consider the following system of two parametric first-order ODEs mentioned in
Example 1:

sys =

ẋ(t) = (a− 1)x(t) + by(t) + d,

ẏ(t) = (b− c)x(t) + ay(t)− 1.

Initially, we defineF = {ẋ(t)+(1−a)x(t)−by(t)−d = 0, ẏ(t)−(b−c)x(t)−ay(t)+1 = 0}.
We then apply a bijective linear transformation ψ to obtain the linearization

L = ψ(F ) = {A3 + (1− a)A1 − bA2 − dA5, A4 − (b− c)A1 − aA2 +A5}.

Using the efficient GES-GVW-CGS algorithms [3], we derive a Gröbner system of L:



([a− 1], [c− b, b], [bA2 + dA5 −A3, bA1 − cA1 −A4 +A2 −A5])

([b, 1− a], [c], [−dA5 +A3, cA1 −A2 +A4 +A5])

([1− a, b, c], [1], [−dA5 +A3, A2 −A4 −A5])

([b− c, a− 1], [c], [−cA4 − cA5 − dA5 +A3, A2 −A5 −A4])

([a2 − b2 + bc− a], [1− a, b− c, b], [−adA5 + aA3 − bA4 − bA5, aA1 + bA2 + dA5 −A1 −A3])

([b, a], [c], [−cdA5 + cA3 −A4 −A5, A1 − dA5 +A3])

([c, b, a], [1], [A5 +A4,−dA5 +A1 +A3])

([b− c, a], [c], [A5 +A4,−cA2 − dA5 +A1 +A3])

([ ], [(1− a)(a2 − b2 + bc− a)], [(a2 − b2 + bc− a)A2 + (1− bd+ cd− a)A5 + (1− a)A4+

(b− c)A3, aA1 + bA2 + dA5 −A1 −A3]).

Next, we transform all Gi back into the original functions and their derivatives, resulting in a
system containing nine triples.
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

([a− 1], [c− b, b], [by(t) + d− ẋ(t), bx(t)− ẏ(t)− 1− cx(t) + y(t)])

([b, 1− a], [c], [ẋ(t)− d,−y(t) + cx(t) + ẏ(t) + 1])

([1− a, b, c], [1], [ẋ(t)− d, y(t)− ẏ(t)− 1])

([b− c, a− 1], [c], [−cẏ(t)− c1− d+ ẋ(t), y(t)− ẏ(t)− 1])

([a2 − b2 + bc− a], [b, a− 1, b− c], [−ad+ aẋ(t)− bẏ(t)− b1, ax(t) + by(t)− ẋ(t) + d− x(t)])

([b, a], [c], [−cd+ cẋ(t)− ẏ(t)− 1, x(t)− d+ ẋ(t)])

([c, b, a], [1], [ẏ(t) + 1,−d+ ẋ(t) + x(t)])

([b− c, a], [c], [ẏ(t) + 1,−cy(t) + ẋ(t)− d+ x(t)])

([ ], [(1− a)(a2 − b2 + bc− a)], [(a2 − b2 + bc− a)y(t) + (1− bd+ cd− a) + (1− a)ẏ(t)+

(b− c)ẋ(t), ax(t) + by(t) + d− x(t)− ẋ(t)]).

The solution sets Si can be calculated using any established method applied to the third com-
ponent of the branches (We use the function PDEtools:-dsolve(sys) in Maple 18).

S1 =

x(t) = C2e

(
1
2
+ 1

2

√
4b2−4bc+1

)
t
+ C1e

(
1
2
− 1

2

√
4b2−4bc+1

)
t
+

b + d

b(b − c)
,

y(t) =
1

2

−2d +
(
1 +

√
4b2 − 4bc + 1

)
C2e

1
2

(
1+

√
4b2−4bc+1

)
t
+

(
1 −

√
4b2 − 4bc + 1

)
C1e

1
2

(
1−

√
4b2−4bc+1

)
t

b


S2 =

{
x(t) = C2 + dt, y(t) = cdt + C2c + cd + 1 + C1e

t
}

S3 =
{
x(t) = C2 + dt, y(t) = 1 + C1e

t
}

S4 =
{
x(t) = C2ce

t
+ ct + dt + C1, y(t) = 1 + C2e

t
}

S5 =

{
x(t) =

a3dt + C1bae(2a−1)t − 2C2a
2b + a2bt − a2dt − C1be(2a−1)t + C2ab − a2d − abt + ab + ad

(2a − 1)a(a − 1)
,

y(t) =
−a2dt + C1be(2a−1)t + 2C2ab − abt + adt − C2b + tb

b(2a − 1)

}

S6 =
{
x(t) = d + C2e

−t
, y(t) = C2ce

−t − cdt + C1 − t
}

S7 =
{
x(t) = d + C1e

−t
, y(t) = −t + C2

}
S8 =

{
x(t) = C2c − ct + c + d + C1e

−t
, y(t) = −t + C2

}

S9 =


x(t) =

a

C2e
1
2

(
2a−1+

√
4b2−4bc+1

)
t
+ C1e

1
2

(
2a−1−

√
4b2−4bc+1

)
t


−b + c

+
(c − b)ad + a − a2(

2a2 − 2b2 + 2bc − 2a
)
(b − c)

+

C2(2a − 1 +
√

4b2 − 4bc + 1
)
e
1
2

(
2a−1+

√
4b2−4bc+1

)
t

2(b − c)
+

C1

(
2a − 1 −

√
4b2 − 4bc + 1

)
e
1
2

(
2a−1−

√
4b2−4bc+1

)
t

2(b − c)
+

1

b − c
, y(t) = C2e

(
a− 1

2
+ 1

2

√
4b2−4bc+1

)
t
+ C1e

(
a− 1

2
− 1

2

√
4b2−4bc+1

)
t
+

(b − c)d + a − 1

a2 − b2 + bc − a


To conserve space and due to the length and complexity of some branches’ solutions, we focus
on the fourth branch’s solution set, which pertains to the challenging values in Example 1. The
solution set for the fourth triple is given with conditions b − c = 0, a − 1 = 0, and c ̸= 0

(satisfying the parametric constraint (N4,W4)):

{x(t) = C2(ce
t) + (c+ d)t+ C1, y(t) = C2e

t + 1}.
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For example, if a = 1, b = c = 2, and d = −1 (an assignment in (N4,W4)), the resulting
solution set is:

{x(t) = 2C2e
t + t+ C1, y(t) = C2e

t + 1},

which coincides with the solution set in (1) from Example 1. This means that for any 1 ≤ i ≤ 9

and each specialization σ corresponding to (Ni,Wi), we can obtain a solution set for a system
of parametric first-order ODEs, referred to as a comprehensive solution system.

4 Improvement of CSS Algorithm

The computation of comprehensive solution systems through the use of Gröbner systems is not
without its challenges and drawbacks. As highlighted by Suzuki and Sato in their work [24],
the process of computing Gröbner systems for parametric linear ideals tends to be “generally
slow and inefficient.” This inefficiency is further illustrated in the comparison table presented
on [6, Page 48]. Because of these limitations, we have decided to adopt a slight modification
of the GES algorithm, which is detailed in [6, Algorithm 3]. This algorithm functions as a
parametric variant of the Gaussian elimination method. and notably avoids the complications
associated with Gröbner systems. Instead, we utilize the GES approach to compute comprehen-
sive solution systems that are based on the LDS algorithm introduced in [6], which serves as a
foundation for our efforts. As a crucial initial step in this direction, we must provide a brief re-
view of the parametric linear algebra techniques to achieve our objective outlined in effectively
cite[Section 3]pfglm. The GES algorithm is designed to return a Gaussian elimination system
suitable for a matrix that contains parametric entries, which can be equated to a linear system
with parametric coefficients. However, our specific application of this algorithm is geared to-
ward a system of first-order ordinary differential equations (ODEs); through this application,
we aim to establish the solutions set concerning the corresponding specifications presented. To
execute this process properly, the input ODEs need to be linearized. This linearization involves
the crucial step of replacing all the functional variables that appear within the ODEs with newly
introduced variables, thereby simplifying the system.

The LDS algorithm [6, Algorithm 2], a crucial sub-algorithm within GES, efficiently ad-
dresses the parametric linear dependency check. It determines dependencies within a linear
polynomial containing parameters relative to a set of parametric polynomials, bypassing the
need for Gröbner systems. This approach allows for a more streamlined analysis of the prob-
lem at hand. For the reader’s convenience, we present the following example to further illustrate
these concepts. Additionally, for those seeking more in-depth information related to the LDS
algorithm and its applications, we direct readers to consult [6] for further details and explana-
tions.
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Example 4. Consider a linear Gröbner basis L = [a1x5 + x1, a2x4 + x2, x3] under the condi-
tions pair (N,W ) = ([ ], [a1−1, a2−1, a3]). Let f = (a1−2)x1+a5x2+a3x3+du+(3−a2)x5
be a polynomial with parametric coefficients.

Utilizing our Maple implementation of the LDS algorithm, we derive the following linear
dependency system of f on L with respect to a5 ≺lex a4 ≺lex a3 ≺lex a2 ≺lex a1 and
x5 ≺lex x4 ≺lex x3 ≺lex x2 ≺lex x1 according to (N,W ):



([ ], [a1 − 1, a2 − 1, a3,−a2a5], [false, [a1 − 2, a5, a3],−a2a5x4+

(−a21 + 2a1 − a2 + 3)x5 + a4x4]),

([−a2a5], [a3, a1 − 1, a2 − 1, a21 − 2a1 + a2 − 3], [false, [a1 − 2, a5, a3],−a2a5x4+

(−a21 + 2a1 − a2 + 3)x5 + a4x4]),

([−a2a5,−a21 + 2a1 − a2 + 3], [a3, a1 − 1, a2 − 1], [false, [a1 − 2, a5, a3],−a2a5x4 + a4x4]),

([−a2a5,−a21 + 2a1 − a2 + 3, a4x4], [ ], [true, [a1 − 2, a5, a3],−a2a5x4]).

We can now apply a modified version of the GES algorithm using the LDS algorithm to
compute a Gaussian elimination system for a set of parametric polynomials.

In the GES algorithm, Sys represents a global variable initially as an empty set, which
ultimately becomes a Gaussian elimination system. Each entry in Sys is a triple (N,W,G),
where (N,W ) is a parametric constraint and G is the Gaussian elimination form of the input
parametric polynomials corresponding to (N,W ). Additionally, if B is a list or set, its i-th
element is denoted as B[i].



In
Pr
es
s

12 A Computer Algebra Approach to Linear ODE Systems ...

Algorithm 2 GES Algorithm.

Input: F as a subset of K[a,A], where a denotes the parameters ai, A denotes the variables Ai, and (N,W ) is a
pair of parametric conditions.
Output: Sys, a Gaussian-elimination system for F .

• Initialization: Sys := ∅

• Initial queue: B := (N,W, , T [1], T )

• Main loop: While B ̸= ∅, do

1. Let b := B[1] and set B := B \ b

2. If b[5] = {} then
Sys := Sys ∪ (b[1], b[2], b[3]).

3. Else
G := b[5] \ b[4], g := G[1].

P := LDS(b[1], b[2], b[3], b[4]).

4. For i = 1, . . . , |P |, do

– Let P [i] = (N1,W1, [flag, Q, f ])

– If flag = true then
B := B ∪ (N1,W1, b[3], g,G),

else
B := B ∪ (N1,W1, b[3] ∪ f, g,G)

• Return: Sys

Theorem 2. The GES algorithm eventually terminates after a finite number of iterations and
computes a linear Gröbner basis.

Proof. GES algorithm termination and correction are addressed in [6, Theorem 16]. In more
detail, the algorithm terminates because F and each linear dependency system associated with
f ∈ F are finite. Correctness follows from the correctness of the LDS algorithm. Specifically,
for each new polynomial f ∈ F , the LDS algorithm determines its linear dependency on the
current basis. If dependent, f is discarded; otherwise, its normal form w.r.t. the basis is added.
Consequently, each branch yields a Gaussian elimination form (or linear Gröbner basis) of the
input matrix (or linear system) under the corresponding conditions.

Dehghani Darmian and Hashemi illustrated the algorithm’s behavior in detail [6, Example
15]; its output is presented:

Example 5. Consider the polynomial set F = {(a1− a2)x1x2+x3− 1, a1x2+x21− 2, (a1−
1)x32 − x21 − a2x3} ⊂ K[a1, a2][x1, x2, x3]. Applying the Maple implementation of GES to F
yields the Gaussian elimination system below.
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Table 1: Performance comparison of the GES and PGBMain algorithms.

Example Algorithm Time (sec.) Used Memory (MB)

Ex. 1
GES 0.37 19.47

PGBMain 1.58 112.8

Ex. 2
GES 0.34 24.99

PGBMain 1.49 107.1

Ex. 3
GES 1.04 60.37

PGBMain 4.95 302.6

Ex. 4
GES 0.44 21.31

PGBMain 1.48 111.54

Ex. 5
GES 0.78 39.73

PGBMain 3.92 250.69



([ ], [a1 − a2, 1− a1], [(a1 − a2)x1x2 + x3 − 1, a1x2 + x2
1 − 2, a1x

3
2 − x3

2 + a1x2 − a2x3 − 2]),

([1− a1], [1− a2], [−a2x1x2 + x1x2 + x3 − 1, x2
1 + x2 − 2,−a2x3 + x2 − 2]),

([a2 − a1], [1− a2], [x3 − 1, a2x2 + x2
1 − 2, a2x

3
2 − x3

2 + a2x2 − a2 − 2]),

([a2 − a1, 1− a2], [ ], [x3 − 1, x2
1 + x2 − 2, x2 − 3]).

The GES algorithm efficiently computes Gröbner systems for parametric linear (homoge-
neous) polynomial ideals. We implemented both GES and PGBMain [12] in Maple and com-
pared their performance using the examples from [6, Page 48]. The following table summarizes
the results, showing CPU time (seconds) and memory usage (MB). The monomial orderings
used were c3 ≺lex c2 ≺lex c1 ≺lex · · · ≺lex a2 ≺lex a1 and u ≺ z ≺ y ≺ x.

• Ex. 1: [(3− a1)x+ (2− a1a2)y + b1a3z, (b1 − 1)x+ a2b2y + a1b3z]

• Ex. 2: [a1x+ a1a2y + a1a2a3z, b1x+ b1b2y + b1b2b3z, c1x+ c1c2y + c1c2c3z]

• Ex. 3: [a1x + (a1 − a2)y + (a2 − a3)z, b1x + (b1 − b2)y + (b2 − b3)z, c1x + (c1 −
c2)y + (c2 − c3)z]

• Ex. 4: [a1a2x+ (a1a2 − a3)z, b1b2x+ (b1b2 − b3)y, c1c2y + (c1c2 − c3)z]

• Ex. 5: [(3− a1a2a3)z+ a1u, (2− b2)2x+ b1b2b3u, (1− c1c3)x+(c1− c2)y+(c2c3−
c3)u, c1x− c2u]

Installing the GES algorithm on the CSS algorithm instead of using the Gröbner system
computations, we enhance the CSS algorithm, resulting in the Improved-CSS algorithm.
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Algorithm 3 Improved-CSS
Input: System of parametric first-order ODEs

sys =
{
dxj
dt

= aj1x1 + . . .+ ajnxn + gj(t)

}n

j=1

.

Output: A comprehensive solution system of sys.
Procedure:

• Define
F :=

{
dxj
dt
− (aj1x1 + . . .+ ajnxn + gj(t))

}n

j=1

.

• Compute a linearization of F :
L← ψ(F ),

where ψ denotes the linearization operator (and ψ(F ) is its linearization).

• Obtain a Gaussian elimination system:

G← {(Ni,Wi, Gi)}ℓi=1,

which is a Gaussian elimination system of L using the GES algorithm.

• Initialize an empty list:
LIST← ∅.

• For i = 1, . . . , ℓ do:

– Define
F ′
i :=

{
ψ−1(Gi[j]) = 0

∣∣, j = 1, . . . , n
}
.

– Compute the solution set

Si ← the solution set of F ′
i using any well-known classical methods.

– Update the list:
LIST← LIST ∪ {(Ni,Wi, Si)}.

Return: LIST.

Theorem 3. The Improved-CSS algorithm terminates after finite iterations and effectively
computes a complete solution system.

Proof. The termination of the Improved-CSS algorithm is guaranteed by the termination of the
GES algorithm and its correctness is the same as the correctness of the CSS algorithm.
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5 Comparison and Conclusion

In this section, we compare the performance of the Improved-CSS and CSS algorithms, im-
plemented in Maple. We tested both algorithms on parametric first-order ODE systems, where
parameters belong to the polynomial ringK[a, b, c, d,m, n], and aimed to compute comprehen-
sive solution systems for each with respect to the parameter ordering n ≺lex m ≺lex d ≺lex

c ≺lex b ≺lex a.

• EX.1 = [ẋ(t) = (a− 1)x(t) + by(t) + d, ẏ(t) = (b− c)x(t) + ay(t)− 1]

• EX.2 = [ẋ(t) = (ab − 1)x(t) + (n3 − 1)y(t) + z(t), ẏ(t) = (cd −mn)x(t) + y(t) −
z(t), ż(t) = x(t) + (−cd+ 1)z(t)− ny(t)]

• EX.3 = [ẋ(t) = (a2−1)x(t)+y(t)+(b−1)z(t), ẏ(t) = (b−c)x(t)+y(t)−az(t), ż(t) =
(1− c)x(t)− y(t)− z(t)]

• EX.4 = [ẋ(t) = (a − b + 1)x(t) + c + u(t), ẏ(t) = cx(t) + y(t) − a2z(t), ż(t) =

(1− d)x(t)− y(t)− bu(t), u̇(t) = 2x(t)− (b− d)u(t)]

• EX.5 = [ẋ(t) = (−d4 + 1)u(t) + x(t) + 1, ẏ(t) = c2 − a2 + u(t) − y(t), ż(t) =

−dv(t)− u(t), u̇(t) = u(t)− ay(t)− z(t), v̇(t) = x(t)− y(t) + (b− 1)v(t)]

• EX.6 = [ẋ(t) = (1 + c)v(t) + x(t), ẏ(t) = (c− a)u(t)− y(t), ż(t) = −dv(t)− u(t)−
by(t), u̇(t) = bu(t)− y(t)− z(t), v̇(t) = −y(t) + (b− 1)z(t)]

• EX.7 = [ẋ(t) = z(t)+(mn−m)y(t)+(−a2+ bc)x(t), ẏ(t) = (−m3+1)z(t)+y(t)−
x(t), ż(t) = x(t) + (−d2 + 1)y(t)− z(t)]

• EX.8 = [u̇(t) = x(t) + (1−m)y(t)− u(t), ẋ(t) = (b− 1)y(t)− 2u(t)− x(t), ẏ(t) =
(a− b)u(t) + y(t)− z(t), ż(t) = (a− 2)x(t)− z(t) + y(t)]

• EX.9 = [ẋ(t) = (−m3+mn)x(t)+(−a2+bc)y(t), ẏ(t) = (a3−m3)x(t)+(n3−d2)y(t)]

The following results were obtained from a Ryzen 6800 PC (8GB RAM, 64-bit Windows
10): Columns 3 and 4 show CPU time (s) and memory (GB). The last column indicates the
number of solution branches. “—” signifies that the CSS algorithm failed to compute a com-
prehensive solution system within 300 seconds.
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Table 2: Performance comparison of the improved-CSS and CSS algorithms.

Example Algorithm Time (Sec) Used Memory (GB) Branch
Improved-CSS 0.31 0.046 7

EX.1 CSS 0.51 0.069 9
Improved-CSS 74.18 12.76 16

EX.2 CSS 120.18 30.36 16
Improved-CSS 21.52 3.51 13

EX.3 CSS — — —
Improved-CSS 9.51 1.93 18

EX.4 CSS — — —
Improved-CSS 6.83 1.84 2

EX.5 CSS — — —
Improved-CSS 5.47 0.98 8

EX.6 CSS 279.82 41.35 9
Improved-CSS 34.79 5.14 12

EX.7 CSS 41.67 6.83 7
Improved-CSS 25.03 4.87 6

EX.8 CSS 167.92 38.67 8
Improved-CSS 0.48 0.52 9

EX.9 CSS 2.65 0.91 10

A comparison of the timing columns and our tests across various examples highlights the
efficiency of our implemented Improved-CSS algorithm. Benchmark examples results demon-
strate that the Improved-CSS algorithm, which employs parametric linear algebra techniques,
significantly outperforms the CSS algorithm that relies on Gröbner system computations. Nev-
ertheless, Gröbner systems remain effective tools for analyzing problems in mathematics, sci-
ence, and engineering, such as solving systems of first-order ordinary differential equations
with parametric coefficients. They facilitate the transformation of complex multivariable poly-
nomial problems into simpler forms, leading to clearer solutions. This technique is applied to
solving the system of parametric first-order ODEs, where partitioning the parameter space can
ensure and enhance computational efficiency. Eventually, computational complexity increases
significantly with the number and degree of parameters and larger system dimensions. While
Gröbner bases computations and consistency checks contribute most to the complexity of the
CSS algorithm, consistency checks remain the bottleneck in the improved-CSS algorithm. In-
creasing parameter length and the number/degree of parameters introduces practical problems
for both CSS and improved-CSS algorithms.
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6 Conclusion

This paper presented a novel algorithmic framework for solving systems of linear first-order
ordinary differential equations (ODEs) with parametric coefficients. By leveraging Gröbner
systems and parametric linear algebra techniques, we introduced a comprehensive solution sys-
tem that partitions the parameter space into computationally tractable cells, each associated
with a closed-form solution. The Improved-CSS algorithm, based on the GES method, signif-
icantly outperformed traditional Gröbner-based approaches in efficiency, as demonstrated by
benchmark examples in Maple. Our work may offer insights into challenges in control theory
and optimization, where parametric ODEs could model systems with uncertain or variable pa-
rameters (e.g., gain scheduling, robust stability analysis). Potential advantages might include
optimization under uncertainty, where the cell-partitioning strategy could enable systematic
analysis of parameter-dependent solutions, potentially supporting the design of controllers or
estimators that may remain stable across parameter ranges. Additionally, the method appears to
improve computational efficiency by avoiding Gröbner systems in favor of the GES algorithm,
possibly reducing the complexity of solving parametric ODEs and potentially making it viable
for real-time applications such as adaptive control and sensitivity analysis.

While the Improved-CSS algorithm shows promise for linear systems, extensions to nonlin-
ear parametric ODEs or hybrid dynamical systems (e.g., switched control systems) may present
significant challenges. Future work could explore coupling the method with optimal control
techniques such as Pontryagin’s principle to potentially solve boundary-value problems, as well
as applications to data-driven optimization, where parameter cells might inform machine learn-
ing models of dynamical systems. It is possible that this work could inspire further collabo-
rations between computer algebra and control communities, particularly in scenarios requiring
rigorous handling of parametric dependencies.
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