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1 Introduction

Systems of differential equations are foundational in modeling dynamic processes across control theory,
optimization, and applied mathematics [13, 14]. This paper focuses on linear first-order ordinary differ-
ential equations (ODEs) with parametric coefficients, a class of problems that could be critical to optimal
control design [1], sensitivity analysis [20], and robust stability under parameter variations [28]. Such
systems may arise frequently in engineering and scientific applications, where optimizing performance
or ensuring stability might benefit from explicit solutions for arbitrary parameter configurations [23].
Traditional methods for solving parametric ODEs face limitations in scalability and generality, par-
ticularly when parameters influence system behavior discontinuously. Our work addresses this gap by
integrating computational algebra with control-oriented frameworks, enabling systematic analysis of
parametric dependencies. Specifically, we focus on systems where the number of unknown functions
equals the number of equations, a structure common in state-space control systems [19], expressed as

dz; )
T;:ajl(t)xl++a]n(t)'rn+g](t)? .7:17"'an7
where a;;(t) and g;(t) are arbitrary functions of the independent variable ¢, and n is a positive integer.

A first-order linear system of ODEs may be written in matrix form:
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or simply
x(t) = A()x(t) + g(t).

When the coefficients aj;(t) are constant, the general solution to the system x(¢) = Ax(¢t) + g(t) is
the sum of the general solution to the associated homogeneous system x(¢f) = Ax(t) and a particular
solution to the non-homogeneous system.

The general solution to the homogeneous system is constructed from the eigenvalues and eigenvec-
tors of the matrix A. If A is diagonalizable (e.g., when it has n distinct eigenvalues), this solution is
given by:

Xp(t) = CrvieMt + Cyvoe2! + - 4 O v, et

where A1, Ag, ..., A, are the eigenvalues and vy, vo, . .., v, are the corresponding eigenvectors. Cases
with fewer distinct eigenvalues required different treatment.
A particular solution, x,(t), to the non-homogeneous system can be found by methods such as

undetermined coefficients or variation of parameters. The general solution is then:
X(t) = xn(t) + xp(t).

Several methods exist to solve systems of linear first-order differential equations, including the ma-
trix method (finding the eigenvalues of A), the elimination method, the operator method D, the Laplace
transform method, and so on [14]. Furthermore, Ritt’s characteristic set method, developed by Ritt
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[21, 22] and Wu [26, 27], offers a constructive approach to solving polynomial systems, including dif-
ferential equations. This method analyzes and solves these systems by decomposing them into simpler,
triangular forms known as ascending chains.

Any differential algebraic system’s zero-set decomposes into chains’ zero-sets. Our method’s key
advantage lies in its ability to handle differential equations with parametric coefficients, particularly in
finding solutions for first-order parametric ODE:s.

Numerous engineering and scientific problems can be modeled using differential equations with
parametric coefficients, necessitating repeated analysis for various parameter values. Therefore, this
paper focuses solely on the solution of first-order parametric ODEs, which has not, to our knowledge,
been explored in the literature. The following example shows that the mentioned traditional solution
approach may not be used for such systems of ODE:s.

Example 1. Consider the first-order linear system of equations where a, b, ¢, d are parameters in R:

z(t) = (a — Dx(t) + by(t) + d,
y(t) = (b—c)z(t) + ay(t) — 1.

sys =

The solution set is computed using one of the above well-known methods and the function PDEtools:-dsolve(sys)
in Maple 18:
€I i= (?(
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Figure 1: Solution set of the parametric system of ODEs computed using Maple.
Substituting a = 1,b = 2,¢ = 2, and d = —1 yields:

B(t) = 2y(t) — 1,

3y3|a:1,b:2,c:2,d:71: )
y(t) =yt) — 1,

resulting in the solution set:

{x(t) = 2Coe" +t+ C1, y(t) = Cae +1}. (1)
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However, this evaluation of parameters a, b, ¢, d does not align with = and y, the Maple output in Figure
1, since these are undefined fora =1,b =2,¢ = 2,and d = —1.

One may be interested in determining the values of parameters s.t. o(z(t)) and o(y(¢)) are the
solution of o(sys) where o : R[a] — R’ D R is a specialization involving parameter assignments; more
especially, one may seek to understand the solution space structure. In this direction, we introduce the
concept of a comprehensive solution system for a system of parametric first-order ODEs and design an
algorithm for its computation, utilizing the key idea of Grébner systems.

2 Grobner Systems

Grobner systems and their algorithms were introduced by Weispfenning in 1992 [25]. For a parametric
polynomial ideal, computing its Grobner system partitions the parameter space into a finite set of cells,
each linked to a specific set of polynomials. By identifying the cell corresponding to given parameter
values, we obtain a Grobner basis corresponding to those values.

Let R = K[, ..., x,] denote the polynomial ring in variables x1, . .., x,, over a field K. For g € R,
denote by LML(g), LC<(g), and LT<(g) the leading monomial, leading coefficient, and leading term
of g w.r.t. the monomial ordering <, respectively. Given an ideal 7 = (f1,..., fx) C R, the leading
monomial ideal of 7 is LM< (J) = (LM<(g) | g € J). finally, G = {¢1,...,9m} C J is a Grobner
basis for 7 w.rt. < if LM< (J) = (LM<(g1),--.,LM<(gm)). See [2] for further details concerning
Grobner bases.

Using these notations, we define Grobner bases for ideals with polynomial generators that include
parametric coefficients, referred to as Grobner systems. Grobner systems are widely utilized in mathe-
matics, science, and engineering, playing crucial roles in areas such as parametric linear algebra [5, 6, 10],
automated geometry theorem proving [15], robotics [16, 17], algebraic geometry [8, 15, 17, 25], and
electrical networks [17, 18], and more. These applications often require repeated analysis with varying
parameter values.

Essentially, Grobner systems extend the concept of Grobner bases for polynomial ideals over
fields to those with parametric coefficients. Consider the polynomial ring S = K]|a, x|, where a =
(ai,...,an) are parameters and x = (x1,...,2,) are variables. The sets {x} and {a} are disjoint.
Hence, any term in S takes the form a”x®, where a” € K]a] acts as a coefficient of x*. We define two
monomial orderings, <y for variables and <, for parameters. To compute Grobner systems, we establish
a product order <y ,, defined as follows: for any 7,6 € N™ and a, 8 € N™, we have a7x® <y, a°x? if
either x* < x? or both x* = x% and a” <, a’. Moreover, a specialization of parameters is a morphism
o : K[a] — K, where K denotes the algebraic closure of K. A parametric polynomial ideal consists of a
system of parametric polynomial equations generated by polynomials with parametric coefficients. Ad-
ditionally, a parametric linear polynomial is defined as a polynomial where the power of each variable
x; is at most one, allowing parametric coefficients to be polynomials of any power in K[a].

Let us revisit the definition of a Grobner system for polynomial ideals with parametric coefficients,
where Weispfenning established their existence for all such ideals [25, Proposition 3.4 and Theorem 2.7]
and proposed an algorithm for their computation [25, Theorem 3.6]. Since then, various algorithms have
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been developed to compute these Grobner systems, each with its advantages and drawbacks [3, 4, 6, 7,
8,9,11,12,17,24].

Definition 1. Let G = {(N;, W;, G;)}¢_, be a set of triples where G; C S and (N;, W;) is a conditions
pair in K[a] x K[a] for¢ = 1,..., /. The set G is a Grobner system for (F) C S with respect to <y a
over YV C K" if, for each ¢, the following holds:

* o(G,;) is a Grobner basis of (o(F)) w.r.t. <y, for any specialization o : K[a] — K satisfying
(Ni, W),

*VC UZ 1 V(N;) \ V(W;), where V() denotes the common zeros of a set of generators for V.

Each (N;, W;, G;) is referred to as a segment or branch of the Grébner system G for 1 < ¢ < £. Each
pair (N;, W;) is called a specification, with IV; and W referred to as the null and non-null condition sets,
respectively. G is generally termed a Grobner system of F', if affine variety V = K™. A condition pair
(N, W) is deemed inconsistent if, for every polynomial f € W, f lies in the radical ideal generated by
N. Consistency of parametric constraints can be efficiently determined by combining the ICheck and
CCheck algorithms (Kapur, et al. [12]) with Rabinovitch’s trick for radical membership testing, which
involves introducing a new variable in worst-case scenarios. See [12, Section 5] for details.

It is worth noting that there are two general approaches to computing Grobner systems. One ap-
proach branches in the parameter space during Grobner basis construction in the variable ring. The
other computes a Grobner basis in the combined variable and parameter ring at each iteration, branch-
ing based on the leading coefficients in terms of the parameters. In both cases, the parameter space is
automatically partitioned according to the algorithm’s structure.

Example 2. Let
F={(ay — D)z123 — agxg, —agxy + x% + 1} € K[ay, as, as][x1, 2, 23],

where a1, ag, az are parameters and x1, x2, x3 are variables. Using our Maple implementation of the

PF, algorithm [4], we compute a Grébner system for (F") with respect to the lexicographic term order
r3 <x9<x1 and a3z <as <aj.

The following Grobner system has five branches while assuming a3 = 3, a2 = 2, and a; = 1
randomly, the first triple satisfying these parameter values, and so a Grébner basis of (F) |4,=3,4,=2,a, =1
is {a3z3, —agws + 23 + 1}

(lax — 1], [as], lasa3, —azxs + 2 +1]])

(las, a2, [a1 — 1], [a125 — 23,27 +1])

(las,ar = 1), [],  [~agws + 2 +1])

([as], [a2, a1 — 1], [a1a27273 — a2T2x3 — a173 + 3, 412103 — T123, —aAeTs + 27 + 1])

([1,[@3(a1 — 1)], [—a2agwaz? + a3a3 + 2a1a2w223 + a323 — agwoxi — 20123 + 23,
1123 — a3m2 — T1T3, —G102T273 + agozle + agxox3 + a1xs — x3,
—agro + 22 + 1]).

This raises the question: “how can the Grobner system be applied to solving systems of parametric
first-order ODEs? ”
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3 Comprehensive Solution System

In this section, we present a comprehensive solution system for parametric first-order ODEs. We begin
by linearizing the ODEs through the substitution of all functional variables and their derivatives with
new variables A;, then rearranging the equations to move the right-hand sides to the left, setting them
to zero. Next, we construct an ideal in R[a, A] that corresponds to the ODEs and compute its Grobner
system. Here, a shows the sequence of parameters, and A denotes the sequence of new tag variables A;.

Definition 2. Let sys be a system of first-order ODEs with parametric coefficients. A finite triple set
L = {(N;,W;,S;)}¢_, is defined as a comprehensive solution system of sys if, for each i and any
specialization o : R[a] — R’ D R satisfying the parametric constraints (N;, W;), the solution set of
o (S;) is equivalent to the solution set of o (sys), where o satisfies the parametric conditions (N;, W;).

Based on this definition and the preceding discussion, we present the CSS algorithm to compute
a comprehensive solution. In this algorithm, the variable LIST starts as an empty set and eventually
represents a comprehensive solution system. Each entry in LIST is a triple (N;, W5, S;), where S; is
the solution set for the input system of parametric ODEs based on (V;, W;). We denote the i-th element
of L as L[i]. The bijective linear transformation ) maps functional variables m; and their derivatives to

tag variables A;, with ¢)~! performing the inverse mapping.

Theorem 1. The CSS algorithm terminates after a finite number of iterations and accurately computes

a comprehensive solution system.

Proof. The termination of the CSS algorithm is guaranteed by the termination of Grobner system com-
putations. Its correctness is based on established classical methods for solving systems of ODEs with
constant coefficients. Specifically, let (N;, W, G;) represent a triple of the Grébner system G at the i-th
step of the for-loop. During this step, all parametric coefficients in GG; are non-zero, allowing us to apply
classical methods after transforming GG; back into the original functional variables and their derivatives
to obtain .S;, the solution set of o (sys), based on the conditions (N;, W;). Thus, each S; is the solution
set of the input system sys under the parametric constraint (N;, W;). O

We illustrate this technique with an example.

Example 3. Consider the following system of two parametric first-order ODEs mentioned in Example
I:

z(t) = (a — Da(t) + by(t) + d,
y(t) = (b— c)z(t) + ay(t) — 1.

Initially, we define F' = {&(¢) + (1 — a)x(t) — by(t) —d = 0,y(t) — (b — ¢)z(t) — ay(t) + 1 = 0}.
We then apply a bijective linear transformation v to obtain the linearization

sYs =

L= ¢(F) = {Ag + (1 — CL)Al — bAQ — dA5,A4 — (b — C)Al — CLAQ + A5}

Using the efficient GES-GVW-CGS algorithms [3], we derive a Grobner system of L:
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Algorithm 4 CSS (Comprehensive Solution System).
Inputs: A system of parametric first-order ODEs

d!,Cj "
sYys =4 —= = aj1T1 + -+ ajnTy + g;(t)

dt =1
Outputs: A Comprehensive Solution System of sys.

1. Construct the set N

das
F= { zj (aj121 + - + ajnty +gj(t))}

dt =1
2. Compute a linearization of F', denoted by L := ¢(F).

3. Determine a Grobner system of L, namely
G= {<va Wiv Gi)}le

4. Initialize an empty list, LIST := {}.

5. Foreach: =1,...,¢, perform the following steps: Define the system
F{={7Gilj]) =0]j=1,...,n}.

Solve F! using any standard classical method, and denote the solution set by S;.
Update the list:
LIST := LISTU {(N;, W;, S;)}.

6. Return LIST.

([a — 1], [c — b, ], [bA2 + dAs — A3, bA1 — cAr — As + A — As))

([b,1—al,[d], [~dAs + Az, cA1 — As + As + As))

(1 —a,b,q, 1], [—dAs + Az, Ay — Ay — As5))

([b—c,a—1],[d, [—cAs — cAs — dAs + As, Ay — As — A4))

([a®> —b* +bc—a],[l —a,b—c,b], [~adAs+aAs —bAs —bAs,aA; +bAs + dAs — A1 — A3))

([b, al, [c], [—cdAs + cAs — Ay — As, A1 — dAs + Asz])

([e, b, a], [1], [As + A4, —dAs + A1 + A3])

(b—c¢,al,[d], [As + A4, —cAz — dAs + Ay + A3))

([1,[(1 = a)(a® = b* + be — a)], [(a®> = b* +bc— a)As + (1 —bd + cd — a)As + (1 — a) Ag+
(b—c)As,aA1 4+ bAs + dAs — A1 — Az]).

Next, we transform all G; back into the original functions and their derivatives, resulting in a system
containing nine triples.
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(la = 1], [c —b,0], [by(t) + d — @(t), ba(t) — y(t) — 1 — ca(t) + y(1)])

(16,1 —al, [d], [2(t) — d, —y(t) + cx(t) + y(t) +1])

(1 —a,b,c], 1], [2(t) — d,y(t) — y(t) — 1])

(1b—c,a—1],[d], [—ey(t) —cl —d+ (1), y(t) — §(t) —1])

([a* = b* +bc — al,[b,a — 1,b—c], [—ad+ a®(t) — by(t) — bl,ax(t) + by(t) — &(t) + d — z(t)])

(b, al, [d], [—ed + ci(t) —y(t) — La(t) — d+ (1))

(le; b, al, [1], [H(t) + 1, —d + @(t) + =(1)])

(Ib—c,al,lc], [5(t) + 1, —cy(t) + &(t) — d + z(t)])

([1,[(1 = a)(a® — b* + bc — a)], [(a®> = b* +bc— a)y(t) + (1 —bd 4 cd — a) + (1 — a)y(t)+
(b—c)x(t), ax(t) + by(t) + d — z(t) — z(t)]).

The solution sets S; can be calculated using any established method applied to the third component of
the branches (We use the function PDEtools:-dsolve(sys) in Maple 18).

1 1 2 1 2
141 /ap2_ap +1)t (777\/ b2 —4b +1) b+d
S1 = {z(t> = C’ze(2 2 ‘ +Cre\? 2 ¢ + +

b(b—c)’

( 144/4b2 — 4br+1) %(1—\/4b2—4bc+1)t
172d+(1+\/ ~dbe + )02e +(17 462 — dbe + 1) Cre

y(t) = 2

b

Sy = {m(t) = Cy +dt,y(t) = cdt + Coc+cd + 1 + Clet}
S5 = {z(t) = O +dt,y(t) =1+ Clet}

Sq = {a(t) = Cace’ + et +dt + C1,y(t) = 1+ Cpe' }

s

s @ adt + C1bac(2e= Dt _ 2C5a2b + a2bt — a2dt — C16e(24~ Dt | Chab — a?d — abt + ab + ad
z(t) =
5 (2a — Da(a — 1)

) = —a2dt + C1be(2a= Dt 4 9C,ab — abt + adt — Cob + tb
vl = b(2a — 1)

—t —t
Sg = {z(t) =d+ Coe b y(t) = Coce ™t — cdt + C1 — t}
Sr={a®) =d+Cre™" y(t) = —t + O3}
Sg = {z(t) =Coc—ct+c+d+Cre b yt) = 7t+02}

%(2a—1+1/4b2—4bc+1)t %(2a—17\/4b2—4bc+1>t
a | Cae + Cie

(c — b)ad + a — a>
—b+c (2a2 — 2b2 4 2bc — 2a) (b — c)

So = a(t) =

(20. 144/4b2 — 4bv+1) %(2@—1—\/4b2—4bc+1)t
Ca(2a — 1 +v/4b2 — 4be + ) c (2a — 1 — /462 — 4bc + 1) e

+
2(b—c) 2(b—c) -
S+3/ap2— 4bc+1> (a—l—l\/zlbz —4bc+1>t (b—c)d+a—1
— y(t)=C e< 2 +Cre\ 202 e
b—cy() 2 ! a2 —b2 +bc—a

To conserve space and due to the length and complexity of some branches’ solutions, we focus on the
fourth branch’s solution set, which pertains to the challenging values in Example 1. The solution set for
the fourth triple is given with conditions b — ¢ = 0, a — 1 = 0, and ¢ # 0 (satisfying the parametric
constraint (g, Wy)):

{x(t) = Cy(ce’) + (c+ d)t + C1, y(t) = Cae® +1}.

For example, ifa = 1, b = ¢ = 2, and d = —1 (an assignment in (N4, W,)), the resulting solution set

is:
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{x(t) = 2Cqe’ +t + C1, y(t) = Coe® + 1},

which coincides with the solution set in (1) from Example 1. This means that for any 1 < ¢ < 9 and
each specialization o corresponding to (N;, W), we can obtain a solution set for a system of parametric
first-order ODEs, referred to as a comprehensive solution system.

4 Improvement of CSS Algorithm

The computation of comprehensive solution systems through the use of Grobner systems is not without
its challenges and drawbacks. As highlighted by Suzuki and Sato in their work [24], the process of
computing Grobner systems for parametric linear ideals tends to be “generally slow and inefficient.” This
inefficiency is further illustrated in the comparison table presented on [6, Page 48]. Because of these
limitations, we have decided to adopt a slight modification of the GES algorithm, which is detailed in
[6, Algorithm 3]. This algorithm functions as a parametric variant of the Gaussian elimination method.
and notably avoids the complications associated with Grobner systems. Instead, we utilize the GES
approach to compute comprehensive solution systems that are based on the LDS algorithm introduced in
[6], which serves as a foundation for our efforts. As a crucial initial step in this direction, we must provide
a brief review of the parametric linear algebra techniques to achieve our objective outlined in effectively
cite[Section 3]pfglm. The GES algorithm is designed to return a Gaussian elimination system suitable
for a matrix that contains parametric entries, which can be equated to a linear system with parametric
coefficients. However, our specific application of this algorithm is geared toward a system of first-order
ordinary differential equations (ODEs); through this application, we aim to establish the solutions set
concerning the corresponding specifications presented. To execute this process properly, the input ODEs
need to be linearized. This linearization involves the crucial step of replacing all the functional variables
that appear within the ODEs with newly introduced variables, thereby simplifying the system.

The LDS algorithm [6, Algorithm 2], a crucial sub-algorithm within GES, efficiently addresses the
parametric linear dependency check. It determines dependencies within a linear polynomial containing
parameters relative to a set of parametric polynomials, bypassing the need for Grobner systems. This
approach allows for a more streamlined analysis of the problem at hand. For the reader’s convenience,
we present the following example to further illustrate these concepts. Additionally, for those seeking
more in-depth information related to the LDS algorithm and its applications, we direct readers to consult
[6] for further details and explanations.

Example 4. Consider a linear Grébner basis L = [a125 + o1, as4 + x2, x3] under the conditions pair
(N, W) = ([],[a1 — 1,a2 — 1,a3]). Let f = (a1 — 2)x1 + asx2 + aszs + du + (3 — az)xs be a
polynomial with parametric coefficients.

Utilizing our Maple implementation of the LDS algorithm, we derive the following linear depen-
dency system of f on L with respect to a5 <jer a4 <jex A3 <lex A2 <iex a1 ANd Ty <jer T4 <Jex
X3 <jex T2 <lex 1 according to (N, W):
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([],[ar — 1,a9 — 1, a3, —asas), [false,[a1 — 2, a5, a3], —asasxs+
(—a? + 2a; — ag + 3)x5 + asz4)),
([~azas), [az,a1 — 1,a9 — 1,a% —2a1 +az — 3],  [false, a1 — 2,a5,a3], —azaszs+
(—a? + 2a1 — az + 3)x5 + asz4)),

([—azas, —a? + 2a1 — as + 3], [ag, a1 — 1,a2 — 1], [false,[a1 — 2, a5, a3], —asaszs + asz4)),

[
([—azas, —a} + 2a1 — az + 3, asz4),[], [true, [a1 — 2, a5, as], —aza514)).
We can now apply a modified version of the GES algorithm using the LDS algorithm to compute a

Gaussian elimination system for a set of parametric polynomials.

In the GES algorithm, Sys represents a global variable initially as an empty set, which ultimately
becomes a Gaussian elimination system. Each entry in Sys is a triple (N, W, G), where (N, W) is
a parametric constraint and G is the Gaussian elimination form of the input parametric polynomials
corresponding to (N, W). Additionally, if B is a list or set, its i-th element is denoted as Bl[i].

Algorithm 5 GES Algorithm.

Input: F as a subset of K[a, A], where a denotes the parameters a;, A denotes the variables A;, and (N, W) is a
pair of parametric conditions.
Output: Sys, a Gaussian-elimination system for F.

« Initialization: Sys := ()
+ Initial queue: B := (N, W, ,T[1],T)
+ Main loop: While B # (), do
1. Letb:= B[l]andset B := B\ b
2. Ifb[5] = {} then
Sys := Sys U (b[1], b[2], b[3]).
3. Else
G:=0b[5]\ b[4], g:=G[1].
P := LDS(b[1],b[2], b[3], b[4]).
4. Fort=1,...,|P|,do

— Let P[i] = (N1, W, [flag, Q, f])
— Ifflag = true then
B:=B U (N17W1,b[3],g,G),

else
B:=BU (N1, W1,b3]U f,g,G)

* Return: Sys

Theorem 2. The GES algorithm eventually terminates after a finite number of iterations and computes
a linear Grobner basis.



Dehghani Darmian,/ COAM, 10 (2), Summer-Autumn (2025) 145

Proof. GES algorithm termination and correction are addressed in [6, Theorem 16]. In more detail, the
algorithm terminates because F' and each linear dependency system associated with f € F' are finite.
Correctness follows from the correctness of the LDS algorithm. Specifically, for each new polynomial
f € F, the LDS algorithm determines its linear dependency on the current basis. If dependent, f is
discarded; otherwise, its normal form w.r.t. the basis is added. Consequently, each branch yields a
Gaussian elimination form (or linear Grobner basis) of the input matrix (or linear system) under the
corresponding conditions. O

Dehghani Darmian and Hashemi illustrated the algorithm’s behavior in detail [6, Example 15]; its
output is presented:
Example 5. Consider the polynomial set F' = {(a1 —ag)r122+23—1,a100+2% —2, (a1 — 1) 25 — 23 —
asxs} C Klay, as][z1, 22, x3]. Applying the Maple implementation of GES to F yields the Gaussian
elimination system below.

([],[a1 — a2, 1 —a1], [(a1 —a2)x122 + 23 — 1, 0122 +2? -2 a125 — 25 + a2 — asws — 2)),
([T —a1],[1 — az], [—asmizs + 212 + T3 — 1, 2% 4 32 — 2, —a2x3 + T2 — 2]),

(J[az — a1], [1 — a2], [t3 — 1, a2 + 23 — 2, a2xd — 23 + asxe — a2z — 2),

([az —a1,1 —a2],[], [z3— 1,27 + 22 — 2,22 — 3]).

The GES algorithm efficiently computes Grobner systems for parametric linear (homogeneous)
polynomial ideals. We implemented both GES and PGBMain [12] in Maple and compared their perfor-
mance using the examples from [6, Page 48]. The following table summarizes the results, showing CPU
time (seconds) and memory usage (MB). The monomial orderings used were c3 <jex C2 <iex C1 <lex
s <ex G2 <leg a1 andu < 2z <y < .

* Ex. 1: [(3 —a1)x + (2 — a1a2)y + brasz, (b1 — 1)z + agbay + a1bsz]

« Ex. 2: [a12 + a1a2y + a1a2a32, b1 + biboy + b1babsz, crx + c1c2y + ¢1¢2¢32]

* Ex. 3: [arz+ (a1 —a2)y+ (a2 —a3)z,b1x+ (b1 —ba)y+ (b2 —b3)z, crx+ (c1 — c2)y+ (ca —c3)Z]
* Ex. 4: [ajasx + (a1a2 — a3)z,bibox + (b1be — b3)y, c1coy + (c1c0 — ¢3) 7]

» Ex. 5: [(3—ajaza3)z+aju, (2—bg)2x +b1babzu, (1 —cic3)x+(c1 —c2)y+ (cacz —c3)u, c1o—
cou]

Installing the GES algorithm on the CSS algorithm instead of using the Grobner system computa-
tions, we enhance the CSS algorithm, resulting in the Improved-CSS algorithm.

Theorem 3. The Improved-CSS algorithm terminates after finite iterations and effectively computes a
complete solution system.

Proof. The termination of the Improved-CSS algorithm is guaranteed by the termination of the GES
algorithm and its correctness is the same as the correctness of the CSS algorithm. O
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Table 1: Performance comparison of the GES and PGBMain algorithms.

Example | Algorithm | Time (sec.) | Used Memory (MB)

GES 0.37 19.47

Ex. 1 .
PGBMain 1.58 112.8
GES 0.34 24.99

Ex. 2 .
PGBMain 1.49 107.1
GES 1.04 60.37

Ex. 3 .
PGBMain 4.95 302.6
GES 0.44 21.31

Ex. 4 )
PGBMain 1.48 111.54
GES 0.78 39.73

Ex. 5 .
PGBMain 3.92 250.69

5 Comparison and Conclusion

In this section, we compare the performance of the Improved-CSS and CSS algorithms, implemented in
Maple. We tested both algorithms on parametric first-order ODE systems, where parameters belong to
the polynomial ring K[a, b, ¢, d, m, n], and aimed to compute comprehensive solution systems for each

with respect to the parameter ordering n <, M <jer d <jex € <jex b <iex G-

« EX 1 =[i(t) = (a — Da(t) + by(t) +d, y(t) = (b — c)x(t) + ay(t) — 1]
« EX2=[2(t) = (ab—1)z(t) + (n — Dy(t) + 2(t), y(t) = (cd — mn)z(t) + y(t) — 2(t), 2(t) =
z(t) + (—cd + 1)2(t) — ny(t)]

* EX3=[i(t) = (¢® — Da(t) + y(t) + (b — Dz(t),5(t) = (b — c)a(t) + y(t) — az(t), 2(t) =
(1 =c)z(t) —y(t) — 2(t)]

« EX4=[2(t) = (a— b+ 1)x(t) + c+u(t),y(t) = cx(t) + y(t) — a®z(t), 2(t) = (1 — d)x(t) —
y(t) — bu(t), u(t) = 22(t) — (b — d)u(t)]

. EXS:[ (t) = (=d* + Du(t) + 2(t) + 1,5(t) = ¢ — a® +u(t) — y(t), 2(t) = —dv(t) —
=u(t) —ay(t) — 2(1),o(t) = z(t) — y(t) + (b — L)v(?)]
(

© BX6=[2(t) = (1+c)o(t)+x(t), §(t) = (c—a)u(t)—y(t), £(t) = —dv(t)—u(t) —by(),u(t) =
bu(t) —y(t) — 2(t),0(t) = —y(t) + (b= 1)2(t)]
)

= 2(t)+(mn—m)y(t)+(—a®+bc)a(t), y(t) = (—m>+1)z(t)+y(t)—=(t), £(t) =
+ Dy(t) — 2(2)]

© EX8=T[a(t) = x(t) + (1 = m)y(t) — u(t),&(t) = (b= y(t) — 2u(t) — =(t),y(t) = (a —
bu(t) +y(t) — 2(1), 2(t) = (a — 2)x(t) — 2(t) + y(1)]

* EX9=[2(t) = (—m3 +mn)z(t) + (—a® + be)y(t), y(t) = (a® — m3)x(t) + (n® — d®)y(t)]
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Algorithm 6 Improved-CSS
Input: System of parametric first-order ODEs

n

dx;
dt J=1

Output: A comprehensive solution system of sys.
Procedure:

* Define

n

dx;
F .= {dtj — (aj1951 + ...t ajpnTy +gj(t))}

j=1

» Compute a linearization of F:

L (F),

where 1) denotes the linearization operator (and ¢ (F) is its linearization).
* Obtain a Gaussian elimination system:
G {(Ni, Wi, Gi) Y1,
which is a Gaussian elimination system of L using the GES algorithm.

* Initialize an empty list:
LIST « 0.

* Fori=1,...,/do:

— Define
F o= {o ' (Gil)=0].i=1,...,n}.

— Compute the solution set

S; « the solution set of F using any well-known classical methods.

— Update the list:
LIST « LISTU {(Nz, Wi, Sl)}

Return: LIST.

The following results were obtained from a Ryzen 6800 PC (8GB RAM, 64-bit Windows 10):
Columns 3 and 4 show CPU time (s) and memory (GB). The last column indicates the number of solu-
tion branches. “—” signifies that the CSS algorithm failed to compute a comprehensive solution system
within 300 seconds.
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Table 2: Performance comparison of the improved-CSS and CSS algorithms.

Example Algorithm Time (Sec) | Used Memory (GB) | Branch
Improved-CSS 0.31 0.046 7
EX.1 CSS 0.51 0.069 9
Improved-CSS 74.18 12.76 16
EX.2 CSS 120.18 30.36 16
Improved-CSS 21.52 3.51 13
EX.3 CSS — — —
Improved-CSS 9.51 1.93 18
EX.4 CSS — — —
Improved-CSS 6.83 1.84 2
EX.5 CSS — — —
Improved-CSS 5.47 0.98
EX.6 CSS 279.82 41.35
Improved-CSS 34.79 5.14 12
EX.7 CSS 41.67 6.83
Improved-CSS 25.03 4.87
EX.8 CSS 167.92 38.67
Improved-CSS 0.48 0.52
EX.9 CSS 2.65 0.91 10

A comparison of the timing columns and our tests across various examples highlights the effi-
ciency of our implemented Improved-CSS algorithm. Benchmark examples results demonstrate that
the Improved-CSS algorithm, which employs parametric linear algebra techniques, significantly outper-
forms the CSS algorithm that relies on Grobner system computations. Nevertheless, Grobner systems
remain effective tools for analyzing problems in mathematics, science, and engineering, such as solving
systems of first-order ordinary differential equations with parametric coefficients. They facilitate the
transformation of complex multivariable polynomial problems into simpler forms, leading to clearer so-
lutions. This technique is applied to solving the system of parametric first-order ODEs, where partition-
ing the parameter space can ensure and enhance computational efficiency. Eventually, computational
complexity increases significantly with the number and degree of parameters and larger system dimen-
sions. While Grobner bases computations and consistency checks contribute most to the complexity of
the CSS algorithm, consistency checks remain the bottleneck in the improved-CSS algorithm. Increas-
ing parameter length and the number/degree of parameters introduces practical problems for both CSS
and improved-CSS algorithms.
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6 Conclusion

This paper presented a novel algorithmic framework for solving systems of linear first-order ordinary
differential equations (ODEs) with parametric coefficients. By leveraging Grobner systems and para-
metric linear algebra techniques, we introduced a comprehensive solution system that partitions the pa-
rameter space into computationally tractable cells, each associated with a closed-form solution. The
Improved-CSS algorithm, based on the GES method, significantly outperformed traditional Grobner-
based approaches in efficiency, as demonstrated by benchmark examples in Maple. Our work may offer
insights into challenges in control theory and optimization, where parametric ODEs could model systems
with uncertain or variable parameters (e.g., gain scheduling, robust stability analysis). Potential advan-
tages might include optimization under uncertainty, where the cell-partitioning strategy could enable
systematic analysis of parameter-dependent solutions, potentially supporting the design of controllers
or estimators that may remain stable across parameter ranges. Additionally, the method appears to im-
prove computational efficiency by avoiding Grobner systems in favor of the GES algorithm, possibly
reducing the complexity of solving parametric ODEs and potentially making it viable for real-time ap-
plications such as adaptive control and sensitivity analysis. While the Improved-CSS algorithm shows
promise for linear systems, extensions to nonlinear parametric ODEs or hybrid dynamical systems (e.g.,
switched control systems) may present significant challenges. Future work could explore coupling the
method with optimal control techniques such as Pontryagin’s principle to potentially solve boundary-
value problems, as well as applications to data-driven optimization, where parameter cells might inform
machine learning models of dynamical systems. It is possible that this work could inspire further collab-
orations between computer algebra and control communities, particularly in scenarios requiring rigorous

handling of parametric dependencies.
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