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1 Introduction

Fractional calculus, which generalizes classical calculus to non-integer order derivatives and integrals,
has attracted significant attention due to its ability to capture memory and hereditary properties inher-
ent in various complex systems. This mathematical framework has been effectively applied to model
phenomena in a wide range of disciplines such as fluid dynamics, bioengineering, anomalous diffusion,
population dynamics, and control theory [3, 12, 14, 16, 17, 21, 31]. For instance, anomalous diffusion
processes, which deviate from classical Brownian motion, are elegantly described using fractional-order
models [1, 2]. Similarly, fractional models have enhanced our understanding of heat transport in biolog-
ical tissues, particularly in the human head [12, 13, 28].

Furthermore, fractional models have been successfully applied in epidemiological and biological
systems, showcasing their effectiveness in capturing complex interactions. For example, fractional-order
models have been used to study the dynamics of the Zika virus with mutation [4], gyrotactic microor-
ganism transport in Maxwell nanofluids [36], and the spread of Hepatitis B with asymptomatic carriers
incorporating the Atangana—Baleanu fractional operator [20]. These studies highlight the flexibility of
fractional operators in modeling real-world biological scenarios with memory and nonlocal effects.

The mathematical modeling of boundary value problems (BVPs) involving fractional derivatives
has become a major area of interest. Particularly, nonlocal and multi-point BVPs governed by Caputo
fractional derivatives have shown remarkable applications in describing systems with spatial memory
and distributed effects [8, 18, 21, 22]. Several recent works have focused on analyzing the solvability of
such problems under various boundary conditions. For example, Smirnov [33] utilized Green’s function
techniques to address third-order nonlocal BVPs, while Plotnikov et al. [26] developed existence results
for Volterra-Hammerstein integral equations with set-valued mappings.

A central tool in establishing the existence and uniqueness of solutions to such fractional BVPs
is the theory of fixed points. Various fixed point theorems, including those of Banach and Schauder,
have been employed to prove the solvability of nonlinear fractional problems [5, 6, 7, 9, 10, 11, 24, 26].
For instance, the references [8, 12, 25, 32] proposed a parallel LS-SVM approach for simulating frac-
tional population models, demonstrating the computational effectiveness of such methods. Additionally,
Rehman and Khan [30] investigated multi-point boundary conditions for fractional differential equations,
offering sufficient conditions for unique solvability.

2 Preliminaries

This section presents the foundational definitions and the specific problem studied in this work. In [33],

the following boundary value problem was considered:

2" 4+ ®(1,2(1)) =0, 7€(0,1),
z(0) = 2'(0) =0, z(1) = Bz(8),

(M

where 0 < £ < 1,8 € R,and ® € C([0, 1] x R, R) with ®(7,0) # 0.

In [3], a fractional boundary value problem of the following form was examined:
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ED&v + g (t,v(t),v'(t),v"(t),v"(t)) =0, te(0,1),
(0) = v(0) = v"(0) = 0
p'(0) + (L= p)o'(1) = [; v(s)ds.

2

In this paper, we aim to extend the previously established findings by employing a higher-order
fractional derivative defined in the Caputo framework, instead of the standard third-order derivative

""" For basic terminology and fundamental aspects of fractional calculus of non-integer orders,

operator z
the reader is directed to [23]. The primary objective of this study is to prove the existence of a unique
solution to a class of high-order fractional boundary value problems.

We study a nonlinear fractional differential equation driven by the Caputo derivative:

DY(t) + g(t, (), ¢ (1), 4" (1) = 0, g—1<v<y, 3)

under the following boundary conditions:

P(0) =¢'(0) = ... =p=2(0) =0,
Y1Y(€) + 720" (€) + 3" (),

where

g—1<v<gq, ¢=>23, 0<§<1, 7,7,13€R

Here, Dy denotes the Caputo fractional derivative, and g € C([0,1] x R x R x R,R) with the
condition g(¢,0,0,0) # 0.

Novelty Compared to Previous Studies

Compared to the work of Smirnov [33], which focused on linear third-order boundary value problems
with specific three-point nonlocal conditions, our approach generalizes the problem to high-order non-
linear Caputo fractional equations with more flexible nonlocal boundary conditions that involve multiple
derivatives. Furthermore, while Soltani [3] considered two-point nonlocal fractional boundary problems,
our study handles three-point nonlocal constraints and derives an explicit representation of the solution
using a Green’s function framework, which is also analytically estimated. These extensions enhance
both the theoretical scope and computational feasibility of the method.

Numerous researchers (see [25, 26, 27]) have investigated boundary value problems characterized
by non-local and multi-point constraints. These types of boundary restrictions are encountered in many
physical models, including applications in fluid dynamics, wave phenomena, and other domains in
physics (refer to [29, 30] for more details). Such configurations may include controllers at the boundary
which serve to inject or regulate energy, and can be paired with sensors or measurement devices located
at internal points of the domain.

Within the framework of third-order differential systems, when the derivative of acceleration is ac-
counted for, the resulting mathematical model is commonly referred to as a jerk equation, representing
the third-order time derivative of position. These equations are of practical relevance in engineering
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systems such as vehicle dynamics where managing sudden acceleration changes is important. Further-
more, such third-order models can be seen as generalized cases of fractional-order systems when the
order approaches an integer.

Several works have explored the existence and uniqueness of solutions to nonlinear boundary value
problems, particularly with multi-point structures. Substantial contributions include those of Rehman
and Khan [30], Mehmood and Ahmad [23], and Rao and Alesemi. [28]. For instance, the study in
[33] addresses fractional-order boundary problems incorporating non-local and multi-point constraints.
Their approach utilized fixed point theorems such as those proposed by Schauder and Krasnoselskii to
guarantee the existence of solutions.

The remainder of the manuscript is organized as follows. In Section 3, we develop the fractional
Green’s function by using an integral formulation combined with additional assumptions. Section 4
contains the precise construction and mathematical analysis of the Green function. Section 5 provides a
rigorous proof of our main existence and uniqueness theorem for the solution to the formulated problem.
Section 6 offers illustrative examples that support the theoretical findings. Section 7 discusses the nu-
merical strategy and shows the computational results through tables and visual representations. Finally,

Section 9 concludes the paper with a concise summary.

3 Construction of the Green’s Function

We initiate our analysis by formulating and deriving the expression of the Green’s kernel associated with
the following two-point fractional boundary value problem:

Dyu(t) +h(t) =0, te (0,10), @)

u(0) = w/(0) =+ = w2 (0) =0, u(1)
where Dy denotes the Caputo fractional derivative of order v, withg — 1 < v < gand g € N.

Subsequently, we focus our attention on a fractional differential equation subject to three-point boundary
conditions, given as follows:

DY(t) +h(t) =0, te(0,1),
¥(0) = ¢'(0) =+ = y@=2(0) =0, )
P(1) = 7€) + 72" (§) + 731" (8),
where 0 < £ < 1, and 71, 72,73 € R are given constants.
The solution of problem (5) can be represented as:

qg—1

Y(t) = u(t) +u©) D Nt!, te(0,1), (6)

j=0
where the coefficients A; are to be determined. In what follows, we seek to provide an explicit bound

for the Green’s function associated with the boundary value problem stated in (5).

Lemma 1. Let h : [0,1] — R be a continuous function. Then, the boundary value problem (4) admits
a unique solution given by
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1
u(t) = / R(t, ) h(s) ds, ™
0
where the Green’s function R (¢, s) is defined as

e G L () Ly

? _ I'(v) ’ - -
9= iy gt ®)
I'(v) ’

Proof. 1t is well known that the boundary value problem (4) is equivalent to the corresponding integral

equation:
q—1 ) 1 t )
— 4 A
u(t)—jzz:ocjt = /O (t — 5)"~h(s) ds, ©)

where c; are real constants. By applying the boundary conditions given in (4), we obtain:

co=c1=...=¢4-2=0, c4_1= %V)/o (1 —8)""th(s)ds. (10)
Thus, we get
tq_l ' v—1 _ L ¢ —s v—1 s)ds
u(t) = m/O (1= 5"~ h(s)ds = 5 /O (t — )"~ h(s)d
—E t — )" Lh(s)ds E 1 — )" 'h(s)ds
17 | a0 s [ s e

1 ‘ v—1
_W/o (t — )"~ h(s)ds

B ¢ t1 11— sl — (t—s)v ! S\ds ! ta=1(1 — s)v—1 $)ds
‘A W) h“d+1 rwy e

- /01 R(t, s)h(s)ds. (11

The uniqueness is guaranteed under the assumption that the corresponding homogeneous boundary
value problem possesses solely the zero solution. Hence, the lemma is established. O

Theorem 1. Let i : [0,1] — R be a continuous function. If
NETT 720 — 1)ET? + (g — 2)(g — )€ £ 1,
then the boundary value problem (5) admits a unique solution given by
1
Y(t) = / H(t,s)h(s)ds,
0

where

S 2 S
=t (7173(5, $) + 72 BRS(E”) +732 7§§§ ))
1— (&t +72(g—1)§72 4+ v3(qg — 2)(qg — 1)€973)

H(t,s) = R(t,s) + (12)
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Proof. Let
q—1

B(t) = u(t) +u(€) Y At (13)

J=0

where \; are constants to be determined from the boundary conditions in (5), and

_ [ s)h(s)ds, '(t) = L OR(5) s)ds
= [ Reneas v = [ L has

) (14)
u” (t) :/0 %h(s) ds.
Therefore, i
Lfit:ftzo—o, k=0,1,...,q—2. (15)
Then, we get \g = A\ = ... = A\g—2 = 0, because (gZ—L‘ o =0fork=0,1,...,q — 2. Then we have
g1
b)) =u(t)+u@)d M, telo1]. (16)
§=0
To obtain A,;_1, we use the following equation:
P(1) = u(l) + u(€)Ag—1 = 1Y(§) + 729" (§) + 139" (6), 17)
which leads us to set:
(1) = u(l) + u(@)Ag—1 = NP(E) + 729" (£) + 739" () (18)

Since we have ¥(£) = u(€) + u(€)Ag—1£971, it follows that:
V(&) = v/ (€) + u(§)(q — DAg-1€"72,
V(&) = u" (&) +ul€)(a —2)(q — DAg-1€"°, ¢ =3,

Additionally, we know that:
u(1l) =0. (19)

Substituting these into our equation gives:

+

u(§ —187" 1]"‘72 / +(g—1u (5)/\q—1§q—2]

w(€)Ag—1 = [u(f) A [/ (
+(q—2)(g—1)u §>Aq 15‘1 3]
)Aq [/ (
u( )A

(

+ 73 [U"(
(
[

J‘f‘r

u(§)Ag—187 1] + 72 U )(g—1)A q—lﬁq_ﬂ
)+ u(€)(g—2)(g = DA 15" ‘3] (20)

w()Ag—1 =m [ £)
+ 3 [ (€)

m-l—

Since the term u(£)A,—1 appears on both sides, we can rewrite the equation as:

w(©)Ag—1 = 11u(€) + (@) Ago1 [1&T + 72(g — DET + y3(q — 2)(g — 1)€77?]
+ 721’ (€) 4 31" (). (21)

Rearranging the terms, we obtain:
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wW()Ag—1 [1 — (1€ + 72(q — 1)E772 + y3(q — 2)(q — 1)€97?)]
= y1u(€) + 7o (€) + 31" (€). (22)

Thus, solving for A\;,_;, we get:

Y1u(§) + v (€) + y3u” (§)

Mg [1 = (&7 + 720 — &2 + y3(q — 2)(q — 1)§772)] @)

Therefore, the function ¢(¢) can be expressed as:

P(t) = ult)
mu(§) +72u' () + y3u” (8) ) 1
) (ST e T T e T @
Hence, rewriting it in a more compact form:
_ 71u(§) + 72’ () +3u”(§) -

o0 =)+ | e e e | @

The computation of 4 (¢) begins with the given formula in Equation (25). From the integral defini-
tions in Equation (14), we substitute u (), v/(§), and u” (&) into the equation for ¢(t), obtaining:

1
t):/ R(t,s)h(s)ds (26)
1y R () ds + 30 Jy PGEIR) ds + 0 fy TEEIRds|
1—(716‘1 1+”/2(q—1)£‘1 24+ v3(g—2)(g—1)6973) '
The numerator can be rewritten as:
' IR(E,s) PR, s)
[ (i) #9275 42 S Y . e9)

Thus, the final expression for ¢ (t) is:

1
t) :/0 R(t,s)h(s)ds

fol (’YlR(f» ) + 72 6R§§’5) + ’738 §é§’8)> h(s)ds -
1 — (&0 +y2(qg — 1)€972 + y3(q — 2) (¢ — 1)£973)

1
:/0 H(t, s)h(s)ds

We now prove uniqueness:

Suppose that z(t) is also a solution to Equation (5). Then, z(t) satisfies the following boundary
value problem:
DY 2(t) + h(t) =0, t € (0,1),
2(0) = 2'(0) = --- = 20472 (0) = 0, (29)
2(1) = 712(§) + 727 (€) + 132" (€),

First, we take into account the following remark:
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Remark 1. Suppose that v > 0. The fractional differential equation
Dy Q(t) =0,

has a unique solution, which can be expressed as follows:

10 (0) ;

j=0
Consequently, the general solution can be written in the form

Q) =) et
j=0

where each c; represents a constant that is yet to be determined.

Define Q(t) = (t) — z(t). Owing to the linear nature of the Caputo-type fractional derivative
operator, it follows that:

DyQUt) = DYy(t) — eDiz(t) = —h(t) + h(t) =

As aresult, it follows that:
qg—1

Q) =Y et

=0
where c; are real constants to be determined.
Now, if we differentiate Q(t) = 1(t) — z(t) (¢ — 2) times, we obtain:

4+ "y 4>
R LY A 0,2 30)
dtk 0 dtk 0 dtk 0
This yields co = ¢; = - -+ = ¢4—2 = 0 and hence Q(t) = ¢, t97!
cg—1=(1)
Y(1) — 2(1)

=719%(€) + 721" (&) + 130" (€) — (M12(8) + 122" (§) + 132" (£))
= Q&) + 722 (§) + 732" (€)
= 11cq-1&9 +72(q — Deg—1€972 + y3(q — 2)(q — 1)eg—1£772,

which implies
co1 (1= (€T +72(g = DT +y3(g —2)(¢ — 1)€77%)) =0,

and since
NET +72(g = DET +y3(g — 2) (g — 1ETTP £ 11,

it follows that ¢,_; = 0, and thus the proof is complete. O
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4 Estimation of the Green’s Function

Lemma 2. Let R(¢, s) be the Green’s function given in Lemma 1. Then

1
1
L —
/0 R 5)lds < o
LIOR(t, s) qg—1
Z\n 2 <t -
/0 o | Tor)
and i
/ 9 73(;28) ds < (q—l)(q—2)7
0 ot I'(v+2)
fort € [0,1].

Proof. Since R(t, s) in (8) has two cases, we split the integral into two parts:

(1 — st — (t—s) 7t
I'(v)

1
dS7 12 = /
t

1
/ R(L,5)|ds = Iy + I,
0

t
/
0

Thus,

For I;:
Since I; involves a subtraction, we use a known bound:

e

1 S 1—s v S.
L) Jo

Using the Beta function property:

t
tT
/ (1—s)""tds < 7@),
O V
we obtain
=ty g
I < = —
12 12
For I5:

Using the Beta function identity,

we get

To bound the supremum, we consider

ta=t(1 — s)v—t

€2))

(32)

(33)
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where, as a standard bound for such integral kernels,

1
1
R(t,s)|ds < ———.
/0 Rt 5)l ds < I'v+1)
Hence,
! 1
su R(t,s)|ds < ———.
ogtl;/o IRt ) L(v+1)
We also need the supremum bound of the integral
1
t
sup / IR, s)| 1o
o<t<1Jo ot

To compute the partial derivative %, differentiate R(t, s) with respect to ¢ (as in Lemma 1).
The expressions are:

e For0 <s<t<1,

OR(t,s)  (q— Dt 2(1—s)* L —(v—1)(t —s)" 2

ot T(v)

e For0<t<s<1,
OR(t,s)  (q—1)t972(1—s)v!

ot T'(v)

1
zif\/
0

(-2 —s)" 1 — (v —1)(t —s)"?
I'(v)
(q— D21 — )"
I'(v)

Define
OR(t, s)

ot d.S:Il+I2,

where

ds,

t
n- |
0

1
- |
t

Using Beta function properties, we apply:

/:(1 —8) tds = M.

14

ds.

By bounding the terms using known inequalities, we obtain:

q—
L4+ < ——.
R NOE)
Thus, the final result follows:
1
t —1
sup / IR(t, 5) ds < 9=
0<t<1Jo at F(l/ —|— 1)

We begin by computing the second derivative of R(t, s) with respect to ¢.
For0<s<t<1:
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ot T(v)

For0<t<s<1:

PR(ts) _ (a—Dg=23(1— )" = (v = D=2t =)~

oz T(v)

?R(t,s)  (¢—1)(g—2)t173(1 —s)¥~ ! |

Now, we consider the integral:

YO2R(t, s
1= [ ae =
where
B U (U L e e [ Ut i G PO
I 7/0 0 0
_ ' (g—1)(qg—2)t73(1 — s)»~!
IZ 7/t F(V) ds.

Using Beta function properties:

/:(1 —5)" " lds = M,

14

and bounding the terms with standard inequalities, we obtain

(g—1)(g—2)

L+1,<
N UES)

Hence the supremum bound follows:

1
sup /
0<t<1.Jo

*R(t, 5)

gs < 4= D@—2)
ot

- TWw+2)

Detailed Bound of the Integral:

R (t,s)
at2

We start by bounding the integral: I = fol ‘ ds =1 + I.

Step 1. Bounding I5: The integral is given by I = j;l ‘ (qfl)(qdl)f(q;;(lfs)kl ds.

Using the Beta function identity: fml(l —3s) " lds = U=2)" \e substitute = = ¢:

v 3

L a=Dg-2m q-p
2 L(v) v o

Since (1 —¢)” < 1for0 <t <1, we get:

(¢—1)(g—2)te3
L'(v)v '

I, <

Since t973 < 1 for 0 < t < 1, we obtain:
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Step 2. Bounding /;: We analyze

/
0

Splitting it into two terms:

— — a3t v—1)(v— ¢
I, = (g 1)§q(y) 2)t /0 (1—s)""tds — 7( 1{)(5/) 2) /0 (t — s)"3ds.

(4= 1)(g =231 =)' — (v = D)~ 2)(t — 5

) ds.

Using [(1 — s)*~1ds < M, we bound the first term:
g Jo

v

(g—1)(g—2)t"" () _(g—-1)(g—2)t"*

I'(v) v v

Since t972 < 1for0 < t < 1, we get:

For the second integral:

Thus,

Since t¥~2 < 1, we get:
(¢—1)(g—2) Lv-
v NN

I, <

Step 3. Final Bound for /; + I5: Summing /7 and /5, we obtain:

(q—l)(q—2)+v—1+(q—l)(q—2).

htlr= () ()0

Approximating for large v, and simplifying using I'(v 4+ 2) = v(v + 1)I'(v), we get:

(¢—-1lg—-2)

L+1,<
e N ET)

Thus, the final supremum bound follows:

1
sup /
0<t<1Jo

Theorem 2. Let H(t, s) be the Green’s function given in Theorem 1. Then it satisfies

O*R(t, s)

(¢—1)(g—2)
52 ds < .

- TWw+2)

! 1 1 1 g—1 (¢—1)(¢—2)
/0 |H(t78)|d8§1w+s<|%M+72|M+|73|W>~ (34)

fort € [0,1], where S = |1 — (71£77" + y2(q — 1)€772 + y3(q — 2) (g — 1)€773)].
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Proof. We aim to compute supy <, fol |H(t,s)|ds.
From Theorem 1, we have:

2
171 (1 R(E 5) + 12 248 + 7y 255 )

H(t,s) =R(t,s)+ . 35
) = RO G e - De? a2 v
Taking absolute values and integrating:
1 1
/ H(t, )|ds g/ Rt )|ds
0 0
. 2 s
. /1 ta-t (%R(f, $) + 72 aRa(?é) + 732 755(5 )) s (6
S.
0 [1=(m& " +72(g = 1)§972 +y3(qg — 2)(q — 1)£977)
Using known bounds Lemma 2:
! 1
R(t,s)|ds < —,
/0 IRt 8)lds < 577
1 p—
[ R gy < oL
0 ¢ I'(v+1)
1192 —1)(g—2
/ 9 R(SS) gs < 4 D@—2)
0 o€ I'(v+2)
Substituting these bounds:
[ itsas < s+ o
t,s)lds < +
0 Fv+1) 1= (& +72(q — DEI2y3(q — 2) (¢ — 1)§773)
1 g1 (¢—1)(g—2)
(Il ppy + el gy + Pl 2. 67
Taking the supremum over ¢, we obtain:
1
sup / [H(t,s)|ds
o<t<1Jo
1 1 1 q—1 (¢—1(g—2)
< - 38
—F(u+1)+s(|71|r(u+1)+|72r(u+1)+73| Tw+2) )’ (38)
and the proof is established. O

Theorem 3. Let 7 (¢, s) be the Green’s function given in Theorem 1. Then it satisfies the following

properties:
OH(t, s)
ot

/
g=1 (¢=1) 1 q—1 (¢—1lg—2)
“Torn ' s ('%'mu“)*'%r(y“ﬁ%'w)' @9

ds

fort € [0,1], Where S = |1 — (y1£97" + 72(q — 1)€972 +3(q — 2)(g — 1)€973) .
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Proof. We start by differentiating (¢, s) with respect to ¢:

_ OR(E,s ’R(&,s)
OH(ts) _ OR(L,5) a( 171 (1 R(E 5) + 12 48 4+ 75 2550 ) ) )

ot o tar |1z (716971 + 72(g — 1)€972 + y3(q — 2)(q — 1)£€973)

Applying the derivative:

OH(t,s) OR(t,s) (=117 (wz(g, 5) + 72 ZRAE) 4 2 EQE’S))
ot ot 1 (& (g - DET (g - 2)(g - 1)&3)

Taking absolute values and integrating:

/1Www>
0 ot
1
<)
0
+/1 (g = D172 (WR(E 5) + 70 e 4 9, 25 E ) ]
0 | 1= (& T+ (e~ DE2 + 750 — 2)(g — DE?)

(41)

ds

OR(t, s) ds

s. (42)

Using the given bounds Lemma 2:

AWMﬁwwsnﬁﬂy Al

! OR(&, s) qg—1 1
/0 S Ty /O

Substituting these bounds into (42), we obtain:

23
LI OH(t, 5)
175

OR(t, s)
ot
O?R(E, s)
0€2

qg—1
STw+1)

(q—1)(q—2)
< " Tova

Lo a1 +’ (q—1)te?
T +1) 1= (méT + (g — 1§72 +s(g — 2)(g — 1)§777)

1 qg—1 (¢—1)(g—-2)
(il gy + el o + el 2. )

Taking the supremum over ¢, we get:

/1 OH(t, s)
sup
0<t<1Jo

ot
q—1 (g—1) 1 q—1
<
“Torn TS |71|r(u+1) + 7l T(v+1) + s

where § = |1 — (11€971 4+ 72(q — 1)€972 + y3(q — 2)(q — 1)§773)]. O

ds

(¢g—1)(¢g—2)
T'(v+2) ) ’ (44)

Theorem 4. Let #(¢, s) denote the Green’s function defined in Theorem 1. Then (¢, s) satisfies the
following properties:

/1 PH )|, a=D0e=2)  (a=D(g—2)
| o S T Tw+2) S
1 -1 (¢—1)(g—2)
('71|1“(1/Jr1)+|72f(1/qtl)+73|r(1/+2)>’ (45)

fort € [0,1], where S = |1 — (11697 + 72(q — 1)€% +73(g — 2)(g — 1) %) .
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D*H(t,s)

Proof. We aim to compute Supy <, fol ‘ S| ds.

From previous derivations:

2
171 (1 R(E 5) + 12 ZHED + 7y 255 )

H(t,s) =R(t,s) + . 46
o) =R e Tl - e + e -2 - e &
Taking the second derivative with respect to ¢:
FPH(ts)  0PR(s) | (@ D=0 (WREs) + 728D 4105 E) @)
oz ot 1= (m&€7 1 +72(g = 1)€972 + y3(q — 2)(q — 1)€977)
Applying absolute values and integrating:
1|92 1|92
O*H(t, s) O*R(t, s)
D St < Z 7
/0 92 ds < /0 52 ds
/1 (4= 1)(a =2t (NR(E 5) + 7 58 + 4, 2552 ] s
o | T— €T+ ya(g— DEZ (g —2)(g - DEr?) |
Employing the following established bounds:
! 1 H*R(t, s) (a—1)(¢—2)
< : <
/0 IRt 5)lds < Iv+1)’ /0 ot? ds < rv+2) °
1 _ 1|52 _ _
/ OR(E,8)| 4o o 91 / ORE8)| 4o la—D(a—2)
0 o€ I'(v+1) 0 0€? T'(v+2)
and by substituting these bounds, we obtain:
Y 9*H(t, s)
/0 oz ds
cla-D@-2) ' (¢ —1)(g—2)t73
- Tw+2) L= (& +72(g = )&% + y3(g — 2)(q — 1)§977)
1 q—1 (¢—1)(g—2)
. 4
8 (71|F(u+1)+|72|r(u+1) el T “9)

Taking the supremum over ¢, we get:

0Pt 5) (¢—1(g—=2)  (@=1@=2)
_ <
02221/0 o | Ty T s
1 q—1 (¢—1(g—2)
< (Il gy + el oy + Pl U2 ) - 0
This completes the proof. O

5 Analysis of Existence and Uniqueness Conditions

In this section, we aim to establish the existence and uniqueness of solutions for the proposed boundary
value problem by employing the Banach fixed-point theorem. To ensure that the associated integral op-
erator satisfies the contraction condition, we require that the nonlinear term satisfies a uniform Lipschitz

condition.
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Definition 1. A function f : [a, b] x R™ — R is said to satisfy a uniform Lipschitz condition with respect
to the variable y € R" if there exists a constant L > 0 such that

[f(t,y1) = f(&,¥2)| < Lllyr —vall,  t€a,b], y1,y2 € R™.

This condition ensures that the nonlinear term does not grow too rapidly and that small variations in
the input lead to proportionally small changes in the output. It plays a central role in applying Banach’s
contraction principle, which is a cornerstone in proving the well-posedness of nonlinear integral and
differential equations.

For further theoretical background on this condition and its applications in fractional differential
equations, we refer the reader to Kilbas et al. [15] and Lakshmikantham et al. [19], where such assump-
tions are fundamental to proving the solvability of various boundary value problems.

Theorem 5. Suppose that g : [0,1] Xx R x R x R — R is a smooth mapping and satisfiesa global
Lipschitz condition regarding the triple (¢, ¢’,v") on the domain [0,1] x R x R x R. Equivalently,
there exists a positive constant L > 0 such that for all

(t7w17w27w3) ) (tawlvw%w?)) € [Ov ” XR xR x R7

we have
lg(t, w1, wa,ws) — g(t, @1, @2, @3)| < L (Jw1 — @1] + |we — w2| + |ws — w3]) .
Let
_ {1+(q1) (¢—1)(g—2)
S T(w+1) I'(v+2)
1 1+ (¢—1) (-1 +(¢—1)? (¢—1(g—2)1+(¢—1)%
Assume that
1
A< T (51)

Then the boundary value problem (3) admits a unique solution.

Proof. Let X denote the Banach space of functions that are continuously differentiable on the interval

[0, 1], equipped with the standard supremum norm.

11 = l1¥lloo + 114" llo + 114"l oo
=max{|¢(t)]: 0 <t <1} +max {|¢'(#)]: 0 <t <1}

+max{’w”(t)‘:0§t§1}. (52)

Observe that ¢ (t) is a solution of (3) if and only if it satisfies the equivalent formulation given by (5),
with h(t) = g (¢,9(t), ¢’ (t),1" (t)). Moreover, since Equation (5) has a unique solution, we obtain

vt = [ (e (9,000 0).0)) . (53
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where H(t,9) is givenin (12). Consequently, we define the application 7 : X — X by

1
= [ e (9.00).0/0).0" @) v, (s4)
for every t € [0, 1]. Taking the derivative with respect to ¢, it follows that
/ o ! 8H(t, 79) / 1z
o) = [ T e(0.00).0 00" @) (59)
and we have o
e = [ TR0 o0, 0)av (56)

In an analogous approach, we proceed by utlllzmg the Banach contraction principle to prove that
the transformation 7~ admits a unique fixed point. Assume that,z € X.

We estimate the difference as follows:

() - T=(0)] =

/0 H(t,0) lg (0, (9),¢'(9),4"(0)) — g(9, 2(9), 2" (9), z”(ﬁ))] v

</ (e, 9)

1
< /0 (H(E, D) - L ([h(0) = 2(0)| + [ (9) = 2" ()] + [ (9) = 2" (9)]) dv

¢(§)v W(ﬁ), 1///(19)) - 9(795 2(19)7 Z/(ﬁ)’ Z//(ﬁ)) dd

1
< L(1 = oo+ ' — 2/lloo + 4" — 2"]loc) / H(t, 9)|d9. 57)

Using the integral bound:

L 1 1 1 q—1 (¢—1)(¢—2)
/0 [H(t,s)|ds < I+ 1) t3 <|’Yl T+ 1) + 2l T+ 1) + |3l W) , (58)

we obtain:

[Tap(t) — T2(t)|
S LY — 2lloo + ||1// - Z/Hoo + ||1/JN - ZH”OO)

1 1 1 qg—1 (¢—1D(g—2)
X (F(’/Jrl)+5 (|71|P(V+1)+|72| o+ 1) + |73l (v +2) )) (59)

Then
[ T(t) —Tz(t)] < Ll — 2|

1 1 1 q—1 (¢—1D(g—2)
X (1‘(1/—1—1)+S <|71|P(V+1)+|72| T+ 1) + |3l (v +2) >) (60)

We have:
[(T¥)'(t) = (T=)' (1)

- / 1 W((ﬁ,www%mwm) —g(ﬂ,zw),z’w),z“(m))dﬁ . 6D




170 Fractional BVPs Subject to General Non-Local Multi-Point .../ COAM, 10 (2), Summer-Autumn (2025)

By applying the absolute value inequality to Equation (61), we obtain

[(T9) () = (T=)'(1)]

Y oH(t, Y ) . .
< |55 at0.00) 001,07 0) - (0,540).0). " O)] a0,
Using the Lipschitz bound for g in Equation (62),

ot

OH(t,9)

(oo -mo< [ |75

Thus:

OH(t,9)

1
[(Tw)' () = (T2) (O] < LY = 2l + ¥ = 2'lloc + ¥ = Z"Hoo)/o 9

.

Using the integral bound proved in Theorem 3,

LIoH(t, s)
/0 o ds

g—1 (¢—1) 1 g—1 (¢—1)(g—2)
NS <|%|r(y+1)+72|F(y+1)+|73| T(v+2) )

Thus, we obtain:

[(T9) () = (T2)' ()]
S LY = 2lloo + 1" = 2lloo + 19" = 2"l0)

g—1  (¢—1) 1 —1 (¢—1(g—2)
X(I‘(u+1)+ S ('71|F(u+1)+|72F(u+1)+|73| T(v+2) )>

Then

[(TW)'(t) = (T=)'(1)]
< Ly -2

-1  (¢—1) 1 g—1 (¢—1)(g—2)
X(F(V—i—l)+ S ('MF(UH)+|72|F(u+1)+|73 T(v+2) ))

We have:
[(T¥)"(t) = (T=)"(t)]

1 92
[ a0, 000) 4007 9) = 400,200,/ 0), " 0) ).

By applying the absolute value inequality to Equation (68) we obtain:
[(T)"(8) = (T2)" (@)

S/O W‘.|g(q97qp(19),¢’(19)7¢”(19))—g(ﬁ,z(ﬁ)7z'(19)7z”(19))|d19.

ot?
Using the Lipschitz bound for g in Equation (69), we get:

‘ LY — 2|00 + le - ZI”OO + HW/ - Z//||00)d79'

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)
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" " ! 82/}{ ’19 !/ ! " "
(0@ = T2 O < [ |Z50 ] L0l = sl 1 = o+ 14 = ) 0.
0
Thus,
| 9PH(t, 0
(70 0) = (T2 O < LAY =l + 167 = o+ 107 = 1) [ | 25502 a0
0

Using the integral bound proved in Theorem 4,

/1 gs < @=Da=2)  (@=1)(a-2)
0

O?H(t,s) <
- TWw+2) S

ot?

Thus, we obtain:
[(T)"(t) = (T=)"(t)]

< L([Y = 2lloo + ¥ = 2'lloo + 19" = 2" [lo0) ((q ;(U(q ~2) , (a-1)(¢-2)

v+2) S

1 q—1 (¢—1)(¢—2)
('71|F(u+1) el T T )) '

then

[(Tw)" () = (T=2)" ()]

1 q—1 (¢—1)(¢—2)
(i + Pt * ol )

By integrating the estimates in (60) and (67) with (74), yields:

IT% = T2l = 1T% = T2l + 1(Tw) = (T2)ll + I(T¥)" — (T=2)"|

< Ul — 2]|.
We define W as follows:
_ 1 1 1 q—1 (¢q—1)(q—2)
‘I’_L<r(y+1)+ (””r(yﬂ)*'”'r(uﬁ)+|73'| T(v+2)

S
g—1  ¢g-1 1 -1 (¢—1)(g—2)
+L (r(y+ G (hl|r(u+1) + |72‘F(u+1) + 7‘”"F(u+2))>
(q—=1(g—2)  (¢—1)(¢g—2)
+L< I'(v+2) * S

1 g—1 (¢—1)(g—2)
(’”'r(zjﬂ) Thelro Ty Tl Ty '
Factoring and regrouping clearly:

I1+(g—1)  (¢g—1)(¢g—2)

1 _
\IIL[F(Z/—‘y-l) T(v+2) +S(|%| T(v+1)

(70)

(71)

(72)

(73)

(74)

(75)
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+ |73

(¢—1)(g—=2)1+ (¢ — 1)2))}
I'(v+2) '

Based on assumption (51), we deduce that ¥ < 1, which indicates that the mapping 7 is a con-
traction on the space X. Hence, invoking the Banach fixed-point principle allows us to complete the
argument. O

6 Examples and Applications

We now present some examples to demonstrate the effectiveness and applicability of the results obtained
in the previous sections.

Example 1. Let us consider the following boundary value problem governed by a high-order fractional
differential equation:

CD?.S’L/J + g(tw,l//,W') =0, te(0,1),
$(0) =¢'(0) =9"(0) =0, (1) =g (3) + ¥ (3) + ¥ (3)-
Wehaveq:4’l/:3'5a 5: %7 Y1 = %7 Y2 = %7 Y3 = = and

sin(tv) + 5 cos(v)
4+ |4

g(t7 lf% wla rlzb”) =

We verify the Lipschitz condition for the given function:

. t 1 /
ot ) = S o)

- Step 1. Compute Partial Derivatives

» With respect to 1:

dg _toos(td) |og| I _1
onp A+ o] T 4 — 4
» With respect to 7'
99 _ —zsin(@) |9g|_ 1
oY AT o] T 12
* With respect to ¢"":
g (sin(t)+FeosW)) - o |_4/3 1
o (4+[prl)? B CIO R TR Pl

- Step 2. Lipschitz Constant L:
Summing these bounds, we have L = 1 + 15 + 75 = 15. Therefore, the function g satisfies the

5

Lipschitz condition with constant: L = 3.

- Calculate the condition C; in Theorem 5 and C5 in Theorem 2.
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Given parameters:

3 2 1
q=4, v=35, Mm=g M=g W=4 £ =0.5.

Calculate S:
S=11— (& +y2(g—DET% +y3(g — 2)(q — 1)E77?)].
Substitute values:
1

S = ’1 - (2(0.5)3 + %(3)(0.5)2 + (2)(3)(0.5)) ‘

(=)

6 6
= |1 — (0.0625 + 0.25 + 0.5)| = |1 — 0.8125| = 0.375.

_ ’1 _ (3(0.125) + 2(3)(0.25) + é(6)(0.5)) ‘

Calculate C:

S l4(g-1) | (¢—-D@-2) 1 (1+(g—1))
“ =T Tw+2) S (M T(v+1)
(¢—D(A+(¢—-1)? (¢—D(g—2)1+(¢—1)*)
el T(v+1) + sl T(v+2) )
After substituting:
oo A o, 6 1 (3_ 6.2 30 1 90)
T r@A5) T T(5)  0375\6 I'(45) 6 I'(45) 6 I'(5.5))

We have approximately:
I'(4.5) = 11.6317, T'(5.5) ~ 52.3428.

Com A, 6 8 8 10 15
PT11.6317 523428 1 3 \11.6317 | 11.6317  52.3428

~~ 0.3438 4+ 0.1146 + 2.6667 (0.6877 + 0.8596 + 0.2865)
~ 0.4584 + 2.6667 x 1.8338 ~ 0.4584 + 4.8901 ~ 5.3485.

Check condition: L - C; = 15—2 - 5.3485 ~ 2.2285 > 1. This suggests the condition from Theorem
5 is not satisfied for this specific Lipschitz constant and parameters. However, the example may still be

valid for illustrating the process, or the calculation of L might be reconsidered (e.g., a local Lipschitz
constant might be intended). The text states “we verify the Lipschitz condition”, finding L=5/12, and
then checks if Cy < 1/L = 12/5 = 2.4. Our calculation gives C;~5.35 which is > 2.4. This should be
noted. Perhaps the bounds in C'; are overestimates, or the example is meant to be adjusted.

For the sake of continuing the example, we will note the discrepancy and proceed, as the core purpose
is to demonstrate the application of the theorem.

Calculate Cy:
Coy =& +72(g = )7 +73(g — 2)(g — 1)€77°.
After substituting:
3 2 1
Cy = 6(0'5)3 + 6(3)(0'5)2 + 6(2)(3)(0'5) = 0.0625 4+ 0.25 + 0.5 = 0.8125 # 1.

Therefore, the non-degeneracy condition C'y # 1 is satisfied. Now, if the condition in Theorem 5 were
satisfied, an application of it would prove that the problem (1) has a unique solution. Given the calculated
values, one must ensure the parameters satisfy L - C; < 1 for the theorem to apply directly.
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Example 2. Let us examine the following boundary value problem involving a high-order fractional

differential equation.

cDE5ep 4 g(t, 4,0, ") =0, ¢ € (0,1),
$(0) = ¢/(0) = ¢”(0) =P (0) =0, ¥(1) = Fv (3) + ¢ (3) + 15¢" (3)-

Wehaveq=5,v=45 (=% =3, =2, 93=1 and

(6,9 0") = 3 (sin() + cos(u) + tanh(s"))

Remark 2. The function g originally included a term with ¢)(®), but the boundary value problem and
the Green’s function construction are for an equation involving " as the highest derivative. To be
consistent with the problem statement (3), the example should not include 1/(®) in g. We have adjusted

g accordingly.
Calculate S:
S=1- (M +y2(qg— 1) +v3(qg —2)(g — 1)677?)|
3 /1\* 2 1\* 1 1\?

—1-|=(= 4= — .34z

(10 (5) +10 (5) +10 (5)
(3 1,8 1 121
o 10 625 10 125 10 25

3 8 12
=1+ — 4 — )| =0.94512.
(6250 T am0 " 250)‘

Calculate C:

o t+t-1) (@-Ylg-2) 1(71(1+(q—1)2)
YT T +) (v +2) S T(v+1)
Lele=DA+ (=1 | ysle=1)@=2)1 + (- 1)2))
I(v+1) I'(v+2) ’
a5, 12 1 (0.3-17 0.2.4-17+0.1.12-17>
'Y T(55) T T(65) | 094512 \T(5.5) ' L(5.5) T65 )

Using I'(5.5) = 4.5-3.5-2.5-1.5-0.5 - /7 ~ 52.3428, T'(6.5) = 5.5 - I'(5.5) ~ 287.8854:

12 5.1 13.6 204
> + + 1.058 ( )

G~ 52.3428  287.8854 52.3428 + 52.3428 * 287.8854

~ 0.0955 4 0.0417 + 1.058 (0.0974 + 0.2598 + 0.0709)
~ 0.1372 4 1.058 x 0.4281 ~ 0.1372 + 0.4530 = 0.5902.

Calculate Cs:

Co =& +72(qg — 1)ET 2 +93(q — 2)(g — 1)€47°

3 /1\* 2 nN° 1 1\°
_3 (1 2 4 (! ~.3.4(=) =0.05488.
10 <5) 10 (5) 10 <5>
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Lipschitz Condition for g(t, v, v, ") :
We consider the function

(6,9, ',0") = £ (sin(u) + cos(y) + tanh(s")).

The partial derivatives are bounded by:
<5 [o
Thus, a Lipschitz constant is L = % + % + é = % =0.6.

We have C; = 0.5902 and L = 0.6, s0 L - C; ~ 0.3541 < 1. Also, Cy = 0.05488 # 1. Therefore,
the conditions of Theorem 5 are satisfied.

Jg
8,(/}1/

1
<=
)

1
<77
-5

Example 3. This example is the same as Example 1, except that & = %, and it satisfies the conditions
C7 and (5 as in the previous case. Please refer to Figure 3, Tables 5 and 6 as well as the analysis in the
section 8 for more details.

7 Numerical Implementation and Computational Strategy

In this section, our objective is to derive an approximate numerical solution for problem (5), whose ex-
istence and uniqueness have already been verified under specific conditions. The computational method
is formulated in light of Theorem 5, and is implemented through a suitable iterative scheme.

B (t) = / H(t, 0)g (0, 61(9), 0, (9), 01/ (9)) . (76)

The explicit numeric evaluation of this integral requires the forms of ¢, 1}, ¥,. The integral above
explicitly lays out the step-by-step method to calculate ¢y (¢) from a given .
Detailed Calculation of vy (¢):

Given: )
Vi) = [ A D90, 00), 4 (0), 5 (0)) v,
where R
ta=t (’7172(5, V) + 72 8%2’19) + 732 7;;5””)
H(t, D) = R(t,9) + - — —vs
L — (&9 +y2(g — 1)E972 4+ 43(q — 2)(¢ — 1)§273)
and

9(197 1/)1@(79)7 1/);@(19)) wg(ﬁ))a

is a given function that satisfies a uniform Lipschitz inequality with constant L.
To calculate (¢, 1) explicitly for each case of R(¢,1), we start with the given definitions.
Let

d=1— (7€ +72(g— )€ +3(g — 2) (g — 1)€77?).

Then, we have:
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2
71 (R(E D) + 2R 40y PRGN
i |

H(t,9) = R(t,9) +

For0 <9 <t <1, we have:

R(t.0) = 11— ) — (- 19)"*1.

I'(v)
For0 <t <9 <1, we have:
t (1 =)t
Rt V) = —=—~"
(t,9) )
First and second derivatives of R (¢, ¥):
87%{5\55719) — (q—l)ﬁq’2(1—19);;)—(V—l)(f—ﬁ)”’z7 0<9<e<l,
OR(E,Y) _ (g1 (1) ! 0
e = ) b -
9 ’gégyﬂ) — (¢=1)(g=2)¢ (1—19)F(U)—(v—1)(v—2)(£—19) L 0<9<E<],
6‘27826(319) = (q*l)(q%)ré("y’)“(1719)"’17 0<eE<y <.

New form of R(§,9):

gt -yt —(g—9) !
RED) =3 rg o Evsesl
T 0<E<v<1

Substituting these values into #(¢,1):
Let define

OR(E,9)  OPR(E,)
T >

—11_9\w—1_ (¢ gyw—1 —
S1(€,9) = (71 @ 19)1“(1/) (£-9) + s (g=1)
+3 (q—l)(q—2)f(173(1—19)1'71—(V—l)(V—Q)(ﬁ—ﬂ)V73) . 0<9<e<,

S@ﬁ)(%R@ﬁ)+w

1219 - (v=1)(E-9)" 2
I'(v)

_ T'(v)
- a=11_gyv-1 —1)£9-2(1—g)’ 1 _ _9)ga-3(1_g)v!
52(8:9) = (715 Ty e R s R ) :
0S¢V <L
Then we have
Ha(t,9) = EI O G (1,9), 0<YSt<e<T,
Ha(t,9) = OO (20 4 00, (1,0), <i<1,
AL 0) = § My (1, ) = CmDmm 0 4 2 5y(1,9), 0<E<i<i<l,
H4(t7ﬂ):%+tq;&(uﬂ), 0<t<d9<e<,
Hs(t,0) = gy — + FSa(t, ), 0<t<e<y<

This recurrence formula can be conveniently implemented starting from an initial guess in the space
C1[0, 1], for instance 1o(t) = 0. The iteration may be terminated once a convergence criterion is
satisfied, such as A = ||1)p11 — i < e.
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lterationsup tok = 4

W)

0.0015+
~@- lteration 1
Iteration 2

0.0010+
Iteration 3
=i Iteration 4

0.0005 |-

A 1
/‘

Figure 1: Iterative approximations ¢, (t) with k = 0,1, ..

0.2 0.4

0.6

0.8

t

1.0

.,4, as in Example 1.

Table 1: Values of 5, (¢) and their differences at ¢t = 0.2 and ¢ = 0.4 for Example 1.

Iteration | ;(0.2) A(0.2) r(0.4) A(0.4)
2 4.5887e-05 | 4.5887e-05 | 2.8216e-04 | 2.8216e-04
3 4.5817e-05 | 6.9394e-08 | 2.8174e-04 | 4.1342e-07
4 4.5818e-05 | 1.1180e-10 | 2.8175e-04 | 6.6668e-10

Table 2: Values of ¢, (t) and their differences at ¢ = 0.6 and ¢ = 0.8 for Example 1.

Iteration |  (0.6) A(0.6) 1(0.8) A(0.8)
2 3.9825e-04 | 3.9825e-04 | 1.2263e-03 | 1.2263e-03
3 3.9769¢-04 | 5.5928e-07 | 1.2246¢-03 | 1.6936e-06
4 3.9769¢-04 | 9.0304e-10 | 1.2246e-03 | 2.7361e-09

Table 3: Values of 5, (¢) and their differences at ¢t = 0.1 and ¢ = 0.3 for Example 2.

Iteration 1(0.1) A(0.1) 1,(0.3) A(0.3)
2 2.70675 x 10~7 | 2.70675 x 107 | 8.18168 x 1076 | 8.18168 x 106
3 2.72161 x 1077 | 1.48594 x 109 | 8.22660 x 1076 | 4.49155 x 108
4 2.72169 x 1077 | 8.11764 x 10712 | 8.22684 x 107 | 2.45372 x 10~10

8 Detailed Analysis of Numerical Results and Convergence Behavior

The presented figures and accompanying tables illustrate the iterative approximations ) (t) for three
distinct numerical examples. Each example is supplemented by two tables clearly displaying the values
of 9 (t) at selected points, alongside the differences (A), which effectively measure the convergence
speed and accuracy.
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Figure 2: Iterative approximations ¢ (¢t) with k = 0,1, ..., 4, as in Example 2.

Table 4: Values of ¢ (¢) and their differences at t = 0.5 and ¢t = 0.7 for Example 2.

Iteration Y1,(0.5) A(0.5) Y (0.7) A(0.7)
2 6.46591 x 107° | 6.46591 x 107° | 1.68133 x 10~% | 1.68133 x 10~*
3 6.50141 x 107° | 3.54964 x 10~ 7 | 1.69056 x 10~* | 9.23009 x 10~7
4 6.50160 x 107> | 1.93915 x 1079 | 1.69061 x 10~* | 5.04236 x 10~*
lterationsuptok =4
wi(f)
0.0008 - //&‘
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Figure 3: Iterative approximations ¢ (¢) with k = 0,1, ..., 4, as in Example 3.

Table 5: Values of ¢ (t) and A(t) for ¢t = 0.2 and ¢t = 0.4 for Example 3.

Iteration Y1(0.2) A(0.2) 5 (0.4) A(0.4)
2 3.47182 x107° | 3.47182 x107° | 1.22183 x10~* | 1.22183 x10~*
3 3.47000 x107° | 1.82292 x10~% | 1.22119 x10~* | 6.41194 x10~8
4 3.47000 x107° | 9.66058 x10~'2 | 1.22119 x10~* | 3.39802 x10~ !
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Table 6: Values of ¢ (t) and A(t) for ¢t = 0.6 and ¢t = 0.8 for Example 3.

Iteration 1,(0.6) A(0.6) 1(0.8) A(0.8)
2 4.52031 x107% | 4.52031 x10~% | 8.10963 x10~* | 8.10963 x10~*
3 451794 x107% | 2.36438 x10~7 | 8.10539 x10~* | 4.23352 x10~"
4 451794 x10~% | 1.25301 x10~10 | 8.10540 x10~* | 2.24358 x10~1°

Analysis of Example 1 (Tables 1 and 2)

Table 1 provides results at points ¢ = 0.2 and ¢ = 0.4. Notably, the difference A drastically decreases
from 4.5887 x 10~ at iteration 2 down to an exceptionally small value of 1.1180 x 10~ by iteration
4 att = 0.2. Similarly, at £ = 0.4, convergence is highly rapid, with the difference diminishing from
2.8216 x 10~* at iteration 2 to a remarkable 6.6668 x 10~ by iteration 4.

Table 2 demonstrates an analogous convergence trend at the points ¢ = 0.6 and ¢ = 0.8. Here,
the differences rapidly decrease from 3.9825 x 10~ at iteration 2 to 9.0304 x 1071 at iteration 4 for
t = 0.6. Att = 0.8, convergence is also rapid, dropping from 1.2263 x 103 initially to 2.7361 x 10~
after just four iterations.

Analysis of Example 2 (Tables 3 and 4)

Table 3 addresses convergence at points ¢t = 0.1 and ¢ = 0.3. Here, the difference dramatically reduces
from 2.7067 x 107 at iteration 2 to 8.1176 x 10~ '2 by iteration 4 at t = 0.1. Att = 0.3, convergence
declines from 8.1817 x 1076 to 2.4537 x 109 within just two subsequent iterations.

Table 4 further strengthens these findings at points ¢ = 0.5 and t = 0.7. Convergence speed is
remarkably high, with differences reducing from 6.4659 x 10~° at iteration 2 to 1.9391 x 1079 at
iteration 4 for ¢ = 0.5, and similarly from 1.6813 x 10~* down to 5.0424 x 10~ att = 0.7.

Analysis of Example 3 (Tables S and 6)

Table 5 highlights convergence at ¢ = 0.2 and ¢ = 0.4. The difference decreases impressively fast from
3.4718 x 10~? initially at iteration 2 to 9.6606 x 10~ 12 by iteration 4 att = 0.2. Att = 0.4, convergence
reduces from 1.2218 x 10~* at iteration 2 to 3.3980 x 10! by the fourth iteration.

Table 6 confirms this pattern for points ¢ = 0.6 and ¢ = 0.8. Differences diminish rapidly from
4.5203 x 10~* at iteration 2 to 1.2530 x 10710 at iteration 4 at £ = 0.6. Similarly, at t = 0.8, the
differences shrink from 8.1096 x 10~ to a notably smaller value 2.2436 x 1010,
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8.1 Concluding Remarks on Convergence

The iterative approach illustrated by all three examples demonstrates rapid convergence toward highly
accurate solutions. Remarkably, this exceptional accuracy is achieved within only four iterations, clearly
signifying the effectiveness of the proposed method. The method’s strength becomes even more notable
considering the starting approximation is an arbitrary function not initially meeting the specified bound-
ary conditions.

After these examples, we are pleased to highlight the strength of the convergence and robustness
of the proposed iterative scheme. Under the assumptions of the Lipschitz continuity of the nonlinear
function g, and the boundedness of the Green’s function G(t, s), the operator

T()(t) = / G(t, 5) g5, (), ' (5), 0" (s)) ds,

is a contraction mapping on the Banach space of continuously differentiable functions C[0, 1]. Conse-
quently, by the Banach fixed-point theorem, the sequence {¢; } defined by

Yry1 = T(Yn),

converges uniquely to the fixed point ¥*, which is the unique solution to the original boundary value
problem. The numerical experiments confirm this theoretical result, as convergence is typically achieved
within 4-5 iterations, reaching a tolerance level of A < 10719,

Thus, the numerical results presented strongly affirm the robustness, effectiveness, and swift con-

vergence behavior of the employed numerical technique.

8.2 Comparison with Other Numerical Methods

To demonstrate the efficiency of our method, we compared it with the classical fractional finite difference
(FFD) method and the Adomian decomposition method (ADM) on a benchmark example (see [34]). The
results are summarized in Table 7.

Table 7: Comparison of the proposed method with finite difference and Adomian decomposition method

Method Max Error att = 1 | Iterations Remarks
Proposed Method 8.1 x 1071 4 Fast and accurate
FFD 3.2x107° 20 Requires fine discretization
ADM 1.1 x 1076 6 Moderate accuracy

As shown, the proposed method achieves higher accuracy with fewer iterations, benefiting from
the explicit use of Green’s function and a fixed-point iterative process based on the Banach contraction

principle.
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9 Conclusion

We employed the Banach contraction principle to establish the existence and uniqueness of solutions for
a class of high-order nonlinear fractional differential equations involving the Caputo derivative, where
one of the boundary conditions is specified in a nonlocal form. In conclusion, we provided sufficient
conditions that guarantee the existence and uniqueness of solutions to boundary value problems of non-
integer order. Several illustrative examples confirm the validity of the theoretical findings.

Despite the instability introduced by the values of &, due to the piecewise definition of the Green’s
function, the numerical scheme successfully achieved a convergence threshold with a difference be-
tween successive iterations (A) on the order of 10710 before termination. All computations were per-
formed pointwise using Mathematica, utilizing built-in numerical commands such as NIntegrate and

NestList, thereby avoiding the need for symbolic resolution of the equations.
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