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2 Fractional BVPs Subject to General Non-Local Multi-Point Conditions

1 Introduction

Fractional calculus, which generalizes classical calculus to non-integer order derivatives and
integrals, has attracted significant attention due to its ability to capture memory and hereditary|
properties inherent in various complex systems. This mathematical framework has been ef-
fectively applied to model phenomena in a wide range of disciplines such as fluid dynamics,
bioengineering, anomalous diffusion, population dynamics, and control theory [3, 12, 14, 16,
17,21, 31]. For instance, anomalous diffusion processes, which deviate from classical Brow-
nian motion, are elegantly described using fractional-order;models [1, 2]. Similarly, fractional
models have enhanced our understanding of heat transport in biological tissues, particularly in
the human head [12, 13, 28].

Furthermore, fractional models have been successfully applied in epidemiological and bio-
logical systems, showcasing their effectiveness in capturing complex interactions. For example,
fractional-order models have been used to study the dynamics of the Zika virus with mutation|
[4], gyrotactic microorganism transport in Maxwell nanofluids [36], and the spread of Hepati-
tis B with asymptomatic carriers incorporating the Atangana—Baleanu fractional operator [20],
These studies highlight the flexibility of fractional operators in modeling real-world biological
scenarios with memory and nonlocal effects.

The mathematical modeling of boundary value problems (BVPs) involving fractional derivar
tives has become a major area of interest. Particularly, nonlocal and multi-point BVPs governed
by Caputo fractional derivatives have shown remarkable applications in describing systems with
spatial memory and distributed effects [8, 18, 21, 22]. Several recent works have focused on|
analyzing the solvability of such problems under various boundary conditions. For example,
Smirnov [33] utilized Green’s function techniques to address third-order nonlocal BVPs, while
Plotnikov et al. [26] developed existence results for Volterra-Hammerstein integral equations

with set-valued mappings.

A central tool in establishing the existence and uniqueness of solutions to such fractional
BVPs is the theory of fixed points. Various fixed point theorems, including those of Banach
and Schauder, have been employed to prove the solvability of nonlinear fractional problems
[5, 6, 7,9, 10, 11, 24, 26]. For instance, the references [8, 12, 25, 32] proposed a parallel
LS-SVM approach for simulating fractional population models, demonstrating the computa-
tional effectiveness of such methods. Additionally, Rehman and Khan [30] investigated multi-

point boundary conditions for fractional differential equations, offering sufficient conditions

for unique solvability
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2 Preliminaries

This section presents the foundational definitions and the specific problem studied in this work,

In [33], the following boundary value problem was considered:

2"+ ®(r,2(1)) =0, 7€(0,1),
z(0) = 2'(0) = 0, z(1) = Bz(¢),

where 0 < £ < 1, 8 € R,and ® € C([0,1] x R, R) with ®(7,0) % 0.

In [3], a fractional boundary value problem of the following form was examined:

(1)

CDgv + g (t,v(t),v'(t),v (t) v"'(t)) =0, t€(0;1),
v(0) = v"(0) =" (0) = (2)
' (0) + (1 = p)o'(1) = fo

In this paper, we aim to extend the previously established findings by employing a higher-

order fractional derivative defined in the Caputo framework, instead of the standard third-order

"

derivative operator z"’. For basic terminology and fundamental aspects of fractional calculus of

non-integer orders, the reader is directed to [23]. The primary objective of this study is to prove
the existence of a unique solution to a class of high-order fractional boundary value problems.

We study a nonlinear fractional differential equation driven by the Caputo derivative:

DYP(t) + g(t, (1), ' (1), 4" (t)) = O, ¢—1<v<g, Q)

under the following boundary conditions:
P(0) =v'(0) = ... =92(0) =0,
P(1) =q(€) + 12 () + 139" (€),

where

q_1<VSQ7 QZ37 0<£<1a 71772)’736]:&-

Here, . D} 1) denotes the Caputo fractional derivative, and g € C([0, 1] x R x R x R, R) with
the condition g(¢,0,0,0) # 0.

Novelty Compared to Previous Studies

Compared to the work of Smirnov [33], which focused on linear third-order boundary value

problems with specific three-point nonlocal conditions, our approach generalizes the proble
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to high-order nonlinear Caputo fractional equations with more flexible nonlocal boundary con-
ditions that involve multiple derivatives. Furthermore, while Soltani [3] considered two-point
nonlocal fractional boundary problems, our study handles three-point nonlocal constraints and
derives an explicit representation of the solution using a Green’s function framework, which is
also analytically estimated. These extensions enhance both the theoretical scope and computa-
tional feasibility of the method.

Numerous researchers (see [25, 26, 27]) have investigated boundary value problems char-
acterized by non-local and multi-point constraints. These types of boundary restrictions are
encountered in many physical models, including applications in fluid-dynamics, wave phe-
nomena, and other domains in physics (refer to [29, 30] for more details). Such configurations
may include controllers at the boundary which serve to inject or regulate energy, and can be

paired with sensors or measurement devices located at internal points of the domain.

Within the framework of third-order differential systems, when the derivative of accelera-
tion is accounted for, the resulting mathematical model is commonly referred to as a jerk equa-
tion, representing the third-order time derivative of position. These equations are of practical
relevance in engineering systems such as vehicle dynamics where managing sudden acceler-
ation changes is important. Furthermore, such third-order models can be seen as generalized

cases of fractional-order systems when the order approaches an integer.

Several works have explored the existence and uniqueness of solutions to nonlinear bound-
ary value problems, particularly with multi-point structures. Substantial contributions include
those of Rehman and Khan [30], Mehmood and Ahmad [23], and Rao and Alesemi. [28]. For
instance, the study in [33] addresses fractional-order boundary problems incorporating non-
local and multi-point constraints. Their approach utilized fixed point theorems such as those
proposed by Schauder and Krasnoselskii to guarantee the existence of solutions.

The remainder of the manuscript is organized as follows. In Section 3, we develop the
fractional Green’s function by using an integral formulation combined with additional assump-
tions. Section 4 contains the precise construction and mathematical analysis of the Green func-
tion. Section 5 provides a rigorous proof of our main existence and uniqueness theorem for]
the solution to the formulated problem. Section 6 offers illustrative examples that support the
theoretical findings. Section 7 discusses the numerical strategy and shows the computational

results through tables and visual representations. Finally, Section 9 concludes the paper with a

concise summary.
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3 Construction of the Green’s Function

'We initiate our analysis by formulating and deriving the expression of the Green’s kernel asso-
ciated with the following two-point fractional boundary value problem:

DYu(t) + h(t) =0, t e (0,1),
(4)
u(0) = v/ (0) = --- = ul@=2(0) =0, u(l) =0,

where D} denotes the Caputo fractional derivative of order v, withg — 1L <~ < gand ¢ € N.
Subsequently, we focus our attention on a fractional differential equation subject to three-point

boundary conditions, given as follows:

DY(t) +h(t) =0, te (0,1);
¥(0) = ¢'(0) = - = 2(0) =0, )
(1) = (&) + 720 (§) + 91" (£),
where 0 < £ < 1, and 71, 72,73 € R are given constants.
The solution of problem (5) can be represented as:

q—1

D(t) = u(d) +u(@) Yy Nt!, te(0,1), (6)

0

<

where the coefficients \; are to be determined. In what follows, we seek to provide an explicit
bound for the Green’s function associated with the boundary value problem stated in (5).

Lemma 1. Let h : [0, 1] — R be a continuous function. Then, the boundary value problem (4)

admits a unique solution given/by

1
u(t) :/ R(t,s) h(s)ds, (7)
0
where the Green’s function R (¢, s) is defined as
tq_l(l _ S)I/*l _ (t _ 8)1/71
I'(v) oo T T

ta=1(1 — s)v 1
I'(v) ’

R(t,s) = (8)

\Proof. It is well known that the boundary value problem (4) is equivalent to the corresponding

integral equation:

. 1/t o
u(t) :Z:cjtﬂ _r(y)/o (t — s)" " h(s)ds, )

where c; are real constants. By applying the boundary conditions given in (4), we obtain:




6 Fractional BVPs Subject to General Non-Local Multi-Point Conditions

1 1
co=c1=...=¢-2=0, ¢4-1= F(V)/ (1- S)Vilh(S)dS. (10)
0

Thus, we get

a1

— ' — s ih(s)ds — 1 t — 5)" " Lh(s)ds
ut) = g [ =9 b - s [ =9 hs)a

t L g—1 ol »
/0 (1 —3s)"""h(s)ds + o) /t (1 —s)"""h(s)ds

!
- T)

Ll s
w5 | =t

B t tq_l(l o S)l/—l - (t - 8)1/—1 \ds 1 tq_l(l o S)u—l s
- Iw) s P

= /1 R(t,s)h(s)ds. (11)
0

The uniqueness is guaranteed under the assumption that the corresponding homogeneous

boundary value problem possesses solely the zero solution.-Hence, the lemma is established.

O
Theorem 1. Let & : [0,1] — R be acontinuous function. If
NET (e DET + (g —2)(g — DETE # 1,
then the boundary value problem (5) admits a unique solution given by
1
wlt) = [ Atons) ds,
0
where
S 2 S
H(t,s) 2 R(L, s) + v <71R(§’ )+ 1275 + 75 )) (12)
,8) = , S .
L— (€71 +72(g — D)2 +43(g — 2) (¢ — 1)§773)
\Proof. Let
q—1
() = ult) +u(€) Y At (13)
§=0
where \; are constants to be determined from the boundary conditions in (5), and
1 LoR(t, s)
u(t) = / R(t,s)h(s)ds, u'(t)= / ~—~ h(s) ds,
0 o Ot (14)

LO?R(t, s)
i o I
u'(t) = o h(s)ds.

Therefore
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dFe)
— = k=0,1,...,q9 — 2. 15
dtk t:0 07 0’ ) 7q ( )
Then, we get \g = A1 = ... = A\j—2 = 0, because % = Ofork=0,1,...,q — 2. Then
we have a
q—1
() =u(t)+u(§) ) M/, te][01]. (16)
§j=0
To obtain \,_1, we use the following equation:
(1) = u(1) + u(€)Ag—1 = Y (E) +72¢'(€) + 139" (E), (17)
which leads us to set:
P(1) = u(1) + u(€)Ag—1 = 11Y(E) + 7€) + 130"(£). (18)

Since we have ¥(€) = u(€) + u(£)A;—1£971, it follows that:

V(&) = () + u(§)(g — DAg1%5,
V(&) = u"(€) + u(€)(g — 2)(a ~ DA€, g =3
Additionally, we know that:
u(1) = 0. (19)

Substituting these into our equation gives:

w(©)Ag-1 =7 (&) + w(€)Ag 1677 a2 [0/ (€) + (¢ — Du(€)Ag-1677]
+ 3 [u”(€) + (g — 2)(g — Da(§)Ag1877%] .
w(€)Ag—1 =71 [u(€) + w@Ag—1&""] + 72 [0/(§) + u(€) (g — 1)Ag—16777]
+ 73 [W”(€) + w(E)(g=2)(q — DAg-177] . (20)

+

~

Since the term u(§)Ag—1 appears on both sides, we can rewrite the equation as:

w(€)Ag—1 = 11u(€) + w@Ng—1 [11E7" +72(q — DET 2 + y3(g — 2) (¢ — 1)€777]
+ o’ (&) + y3u" (£). (21)

Rearranging the terms, we obtain:

W Ag—1 [1— (1€ + v2(g — 1)E97% + y3(q — 2)(g — 1)€77%)]
= y1u() + you'(€) 4+ y3u”(€). (22)

Thus, solving for A\,_1, we get:

(23)
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Therefore, the function v (¢) can be expressed as:

yu(§) + vou'(§) + y3u” (§) 4
+uld) (u(@ = (€0 T ol — €02 F73(q — 2)(g = 1>5q3>]) H @)

Hence, rewriting it in a more compact form:

Y1u() + 120’ (§) + v3u”(§) tq—l] (25)
L— (&7 +72(g — 1)€972 +3(q — 2)(¢ — 1)§773)

The computation of ¢(¢) begins with the given formula in Equation (25). From the integral
definitions in Equation (14), we substitute u(&), u/(§), andw” (§) into-the equation for v (¢),

obtaining:

w0 = (o) + |

1
w(t) = /O R(t, 5)h(s) ds (26)
" fol R(E, s)h(s)ds + o 01 %?s)h(s) ds 43 01 %h(s) ds a1

L— (18971 +72(g — 1)§972 +93(g = 2) (¢ — 1)£773)

(27)
The numerator can be rewritten as:
! IR(E, PRI,

/ (vm(s, R L 5)) h(s)ds. (28)

Thus, the final expression for ¢(t) is:

1
W(t) = /0 R(t, s)h(s)ds

S 2 S
fol (7173(5, s) + ’7287%9(? ) 4 32 ?5(5 )) h(s)ds
1= (1€ +72(q — 1)E972 4+ 73(q — 2)(g — 1)€973)

a1

_l’_

= /1 H(t,s)h(s) ds.

We now prove uniqueness:
Suppose that z(t) is also a solution to Equation (5). Then, z(t) satisfies the following

boundary value problem:
DY 2(t) + h(t) = 0, t € (0,1),
2(0) = 2/(0) = - - - = 2(e=2)(0) = 0, (29)
(1) = m2(§) + 722" (§) + 132" (§),

First, we take into account the following remark:
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Remark 1. Suppose that v > 0. The fractional differential equation
D; Q(t) =0,
has a unique solution, which can be expressed as follows:

M a6y
Qt) = Z L jj!(o) .

=0
Consequently, the general solution can be written in the form

q—1

Q) =) et

j=0
where each c; represents a constant that is yet to be determined:

Define Q(t) = v (t) — z(t). Owing to the linear nature of the Caputo-type fractional deriva-
tive operator, it follows that:

DYQ(t) = DiY(t) — DY 2(t) = =h(t) + h(t) = 0.
As a result, it follows that:
qg—1
Qt)y=D> ct?,
j=0

where c; are real constants to be determined:
Now, if we differentiate Q(t) = () — 2(¢) (¢ ='2) times, we obtain:

P ke P
—_ = — - — k=01 ....9—2. 30
dtk —o dtk 0 dtk t:07 s Ly » 4 ( )
This yields co = ¢; = - -+ = ¢4—2 = 0 and hence Q(t) = c,_1t97!
cg—1 = Q(1)
P(1) = 2(1)

= (&) F (&) + 130" (€) — (m12(€) + 122 (€) + 132" (€))
= 1) + 728 + 32" (€)
= 71¢q-1€77 +72(q — 1)cqo1677? + v3(q — 2)(q — 1)eg—1€9772,

which implies

g1 (1= (m&T™ +72(g — 1)E72 +93(g — 2)(g — 1)§77%)) = 0,

and since
V1€ +y5(q — 1)ET% +y3(q — 2)(q — 1)ET3 # 1,

it follows that ¢, = 0, and thus the proof'is complete [
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4 Estimation of the Green’s Function

Lemma 2. Let R(¢, s) be the Green’s function given in Lemma 1. Then

1 1
/O IR(t, s)|ds < ORI (31)
LIOR(t, s) g—1
/0 o | Pty (32)
and
HOPR(t, 5) (¢—1(g—2)
/0 B I R VO 33)
for ¢t € [0, 1].

Proof. Since R(t, s) in (8) has two cases, we split theintegral intotwo parts:
t 1

L= / ClS, I, = /

0 t

1
/ Rt 5)|ds =Tyt
0

t7 (1 — s)r=L — (¢ — vt
I'(v)

tq_l(l _ S)V—l

) ds.

Thus,

For I;:

Since I; involves a subtraction, we use a known bound:

n< fa—o1a
1§/ 1—s)"""ds.
I'(v) Jo

Using the Beta function property:
! tr
/(1—S)V1d8§ (V)7
0

v

we obtain

For I5:

Using the Beta function identity,

/1(1 — 5)”_1 ds = M,

14
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(1)
'(v) v

I =
To bound the supremum, we consider

sup (I + I2),
0<t<1

where, as a standard bound for such integral kernels,

! 1
/0 |R(t,s)|ds < T 1)

Hence,
! 1
su R(t,s)|ds < ———.
0<tI<)1/0 Rt s) I'(v+1)
We also need the supremum bound of the integral
1
OR(t
sup / Ls) ds.
o<t<1.Jo ot

To compute the partial derivative 87%(:’8), differentiate R(t,s) with respect to ¢ (as in

Lemma 1). The expressions are:
e For0 <s<t<1,

OR(t,s) (¢— DT 21 —s)" 1 —(v—1)(t—s)¥2
o I'(v) '

e For0<t<s<1,
OR(t,s) (q—1)t172(1—s)r1

at T(v)

1
-
0

(4= D21 =) = (=Dt =)

I'(v) ’

(¢ — )t12(1—s)v !
I'(v)

Define
OR(t
IR(t,s) ds =1 + I,

where

t
n- [
0

1
- [
t

Using Beta function properties, we apply:

/1(1 —s) s = M

1%

ds.

By bounding the terms using known inequalities, we obtain:




12 Fractional BVPs Subject to General Non-Local Multi-Point Conditions

—1
L+, < 7I’(qy—|—1)'
Thus, the final result follows:
1
IR(t, s) g—1
su ds < ————.
0<t1<)1/0 ot T I(v+1)

We begin by computing the second derivative of R (¢, s) with respect to ¢.
For0 <s<t<1:

PR(t,s) _ (- D(g =2t (A —s)" ! — (w—-1)(r —2)(t—s)"*
ot T(v) '

For0 <t <s<1:

o I'(v)

O*R(t,s) _ (a—1)(q— D731 — 57"

INow, we consider the integral:

1
/
0

(—D(g=2)t A =s)" = (v = 1)(r = 2)(t —5)"*
I(v)
(g—D(g =2t (1 — )"
I'(v)

0’R(t,s)

o2 ds =1; + I,

where

ds,

t
n- |
0

1
- |
t

Using Beta function properties:

/1(1 —s5) tds = M,

1%

ds.

and bounding the terms with standard inequalities, we obtain

11+12g@;(}}f2‘)2>.

Hence the supremum bound follows:
/ LIO2R(t, s)
sup
0<t<1Jo

gs < A= Dla—2)
ot? ’

- T'(v+2)
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Detailed Bound of the Integral:

92 R(t,s)
ot?

'We start by bounding the integral: [ = fol )

ds =11 + Is.

Step 1. Bounding I5: The integral is given by I, = ftl ‘ (q_l)(q_?t:yf(l_s)uil ds.
Using the Beta function identity: f;(l —5)V"lds = @, we substitute z = ¢:

(4= D(g—2t® (-1

Iz = I'(v) v

Since (1 —¢)¥ <1for0 <t <1, we get:

(¢ —D(g—2)t7~%

I <

INCAL%
Since t973 < 1 for 0 < t < 1, we obtain:
(¢—1(g—2)
Lh< "= 7
2= INC2L%

Step 2. Bounding /;: We analyze

t
n- [
0

Splitting it into two terms:

_ _ q—3 t v — v— t
I = (g 1)1(:]@) 2)t /0 (1—s)"tdg— r=Dw=2) 13)(1(/) 2) /0 (t — )" 3ds.

(a—1(g =2t (Lm 8)" T = (. 1)(v — 2)(t — 5)" >

) ds.

Using f(f(l —s)¥lds < @, we bound the first term:

(g —1)(q— )12 4P (v) _ (¢ - 1)(q — 2)t7
I'(v) v Py :

Since t972 < 1 for0 <¢.< 1, we get:
—1(g—2
7, < la=Dla=2)

For the second integral:

Thus,
v-1w-2) 2 (v—1)"?
['(v) v—2  T(v)
Since t¥~2 < 1, we get:
(¢—1)(¢—2) -
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Step 3. Final Bound for I; + Is: Summing [; and I, we obtain:

(¢-1@=2) v-1_ (¢-D=2)
v L'(v) vy

L +1 <

Approximating for large v, and simplifying using I'(v + 2) = v(v + 1)I'(v), we get:

(a—1g—2)

L+, <
N OEY)

Thus, the final supremum bound follows:

1
sup /
o<t<1.Jo

Theorem 2. Let H(¢, s) be the Green’s function given in Theorem 1. Then it satisfies

(¢ = 1)(e=2)
I'(r+2)

2

L 1 1 1 q =1 (¢—1(g—2)
t,8)|ds < ———— + — S 1~ M RE =)
/0 Rt )lds < 7775 <’71 NSV SO AL R Vo) >
(34)
for t € [0, 1], where S = |1 — (797" + 72(q = 1)E2473(g — 2)(¢ — 1)E7?)].
Proof. We aim to compute Supg< < fol |H (L, )|ds.
From Theorem 1, we have:
H(t.8) = Rl 5) ! (7173(6, 5) 927 ge ™ + 7 8255(33)) 5
t,s) ="R(t,s)+ . 5
L — (&0 fq2(g — 1772 +y3(g — 2)(¢ — 1)§773)
Taking absolute values and integrating:
1 1
/ |H(t,s)|ds < / |R(t,s)|ds
0 0
/4 (R (e, ) + 12 T5ED + 1255 ) 6
+ S
0 [1=(1€1 ! +2(q — 1)§72 +73(g — 2)(q — 1)§77?)

Using known bounds Lemma 2:

! 1
/0 IR(t,s)|ds < ma
/1 87?’(575) q— 1
0

>’ 7 A
g ds
1
/0

“T(v+1)
O*R(E,5)
Substituting these bounds:

(q—1)(q—2)
o2 %S T Tty

1

1
[ e siids < ot +
JU AN +)

L
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(Ml Pl sy ol rer ) 6D

Taking the supremum over ¢, we obtain:
1
sup / |H(t, s)|ds
0
1

0<t<1
1 1 q—1 (q—1)(qg—2)
T+ s (I%I Tw+1) e Tw+1) [l T(v+2) ) - G8)

and the proof is established. 0

Theorem 3. Let #(¢,s) be the Green’s function given in Theorem .. Then it satisfies the

following properties:
OH(t, s)
ot

/1
0
q—1 (¢q—1) 1 g—1 (g—1)(qg—2)
“Tw+D S (MF(VH)H”'r(yﬂ)“%' T(v+2) >'(39)

ds

for t € [0, 1], Where § = [1— (177! +72(q S 1)€? +73(g = 2)(g — D&"?) .

Proof. We start by differentiating # (¢, s) with respect to ¢:

_ OR(E,s) B2R(E,5)
OH(t,s) OR(t,s) a( t 1(71R<£,s)+72 5 135 )

ot ot 9t \ 1= (m&T=Tqa(g~ 1)E72 + 73(q — 2)(g — 1)€773)
(40)
Applying the derivative:
_ 0 ,8 0?2 ]
OH(t,s)  OR(t,s) (¢ — 1)t ? (7173(5,8) + 72 Ra(é Lt s 7§§(§ )> @)
ot ot L= (&0 # 72(g — 1)€172 +3(q — 2)(q¢ — 1)§773)
Taking absolute values and integrating:
1
OH(t,s)
——|ds
|15
1
< / OR(t, s) ds
0 ot
S 2 S
/1 (a= D12 (MR s) + 72 T8 4 9252 ) P
+ S.
0 [1— (& +72(qg — 1)€172 +y3(¢ — 2)(g — 1)§473)

Using the given bounds Lemma 2:

! 1 LoR(t
[ Ritspas < L[|
J0 Ey—+1) i
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1
q—1 /
ds < ,
/0 “Iv+1) 0

Substituting these bounds into (42), we obtain:

/

IR(&, s)
3

HOPR(E, 5)

gs < (4= @—2)
0&? - '

I'(v+2)

OH(t,s)
ot

g 971 ‘ (¢ — 1)t
T+ 1= (mEr (g — 1) +y3(q — 2) (g — 1)€973)

1 g=1)(g—-2)
g )

1 _
<|'Vl| NS R Y OF) L(v+2

(43)

Taking the supremum over ¢, we get:

1
sup /
0<t<1.Jo

g—1  (¢-1) 1 g—1 (¢=1)(g-2)
< it U (il + Pl g + Pl )

OH(t, s)

5 ds

where S = }1 — (& + yo(q — 1)€972 4+ 43(q — 2)(g = 1)5'1_3)‘- [

Theorem 4. Let (¢, s) denote the Green’s function defined in Theorem 1. Then H(t, s) sat-

isfies the following properties:

[ I R N
0 v
(Ml el o + el 52 ) a9

fort € [0, 1], where § = [L =g +92(g = €% + 730 — 2)(g — &%) .

1| 0%H(t,s)

Proof. We aim to compute sup,<;<; g ‘ iz | ds.

From previous derivations:

,S 2 S
1 (7173(5, s) + 8723% ) 432 755(5 ))

H(t,s) =R(,s . 46
(60) =R T T ala - D2 4 (- D - vy @9
Taking the second derivative with respect to ¢:
_ OR(&,s O?R(E,s
P*H(t,5) _ O°R(t,s) (¢ —1)(g—2)t773 (7172(&8) + 72 8(5 ) 65(2 )) w
ot? ot? L= (m&7 +72(g = 1)§772 +y3(q — 2)(g — 1)§973)

Applying absolute values and integrating:

O?H(t,s) ’ ’827%(15,3 ‘
‘ 52 ds < / 52 ds
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S 2 S
/1 (¢ —1)(g—2)te? (%R(S, s) + 1 e + 7y T2 )) ; )
+
o [ T= (& +72(q—1)&97% +y3(q — 2)(¢ — 1)§479)
Employing the following established bounds:
! 1 HO*R(t, 5) (¢—1)(g—2)
< : <
/0 IRt )lds < 7y /0 o2 | T Tuta)
1 _ 1192 _ _
/ ORE )| 4o o a1 7 / 0 R(E,S) gs <MDl —2)
0 o€ Fv+1) 0 o€ v+ 2)
and by substituting these bounds, we obtain:
1[92
/ O“H(t,s) s
0 ot?
cla=1D@-2) +’ (¢ - Dig= 2)t7=°
- T(v+2) L— (M€ +72(q —1)€97% + 3(q — 2)(¢ — 1)€979)
1 g—1 (¢~1)(g=2)
_ . 4
Taking the supremum over ¢, we get:
0P, s) (¢-2)q—-2) (@-1)g—-2)
— 7 ds <
e L e 3
1 q—1 (¢—1)(g—2)
< (Il rmt bl po + ol i o
This completes the proof. 0

S Analysis of Existence and Uniqueness Conditions

In this section, we aim to establish the existence and uniqueness of solutions for the proposed
boundary value problem by employing the Banach fixed-point theorem. To ensure that the
associated integral operator satisfies the contraction condition, we require that the nonlinear

term satisfies a uniform Lipschitz condition.

Definition 1. A function f : [a,b] x R™ — R is said to satisfy a uniform Lipschitz condition|
with respect to the variable y € R" if there exists a constant L > 0 such that

[f(E,y1) = f(ty2)l < Llyr —vall, ¢ €la,b], yi,y2 € R™

This condition ensures that the nonlinear term does not grow too rapidly and that small

variations in the input lead to proportionally small changes in the output. It plays a central
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role in applying Banach’s contraction principle, which is a cornerstone in proving the well-
posedness of nonlinear integral and differential equations.

For further theoretical background on this condition and its applications in fractional dif-
ferential equations, we refer the reader to Kilbas et al. [15] and Lakshmikantham et al. [19],
where such assumptions are fundamental to proving the solvability of various boundary value
problems.

Theorem 5. Suppose that g : [0,1] x R x R x R — R is a smooth mapping and satisfiesa
global Lipschitz condition regarding the triple (¢, v’,%") on the domain [0, 1] x R x R x R.
Equivalently, there exists a positive constant L > 0 such that forall

(t7w17w27w3) ) (t>w1aw27w3) € [Oa 1] X R xR x R>
we have

lg(t, w1, w2,w3) — g(t, @1, w2, w3)| < L (Jw1 —oo1| + w2 — w2 + |ws — w3]).

Let
s [1+(q—1) (=g —2)

| T(w+1) I'(v+2)

1 1+ (q—1) (q— DA+ (¢g—1)%) (g—D(g—2)(1+ (¢ —1)*)

*g <|'“| rwen T T(v+1) + sl T(v+2) )

/Assume that
1
Ag 4. (51)

Then the boundary value problem (3) admits a unique solution.

\Proof. Let X denote the Banach space of functions that are continuously differentiable on the

interval [0, 1], equipped with the standard supremum norm.
9T =Mablloe + 119"l + 114"l
=max{[(t) : 0 <t <1} +max {|¢/ ()| : 0 <t <1}
+max{’¢"(t)‘ :ogtgl}. (52)

Observe that ¢(¢) is a solution of (3) if and only if it satisfies the equivalent formulation given
by (5), with h(t) = g (t,%(t),¢'(t),1"(t)). Moreover, since Equation (5) has a unique

solution, we obtain

1
w(t) = [ (e 09 (9,6(0). ' 0),07(9)) . (53)

where H(£,19) is given in (12). Consequently, we define the application 7 : X — X by
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T
Tu(t) = [ 1t 0)g(2.000).0'0),07(0)) a0, (54
for every t € [0, 1]. Taking the derivative with respect to ¢, it follows that
! 9
oy = [ Dy (0,001,000 0))av, (55)
and we have L g2t
o= [ (0,600 0w )av. (56)

In an analogous approach, we proceed by utilizing the Banach contraction principle to prove
that the transformation 7 admits a unique fixed point. Assume that ¢, z '€ X.
We estimate the difference as follows:

ITUe) ~ T=(t)| =

1
/0 H(t, ) [g (9, 9(0),4'(9), (@) — 9(9,2(9), 2’ (9), Z”(ﬂ))] dv

9(9,9(0), ¥’ (@), YU @) =g, 2(9), #'(9), 2" (1)) |dV

1
< /0 #H(t, )] -

1
< /0 #H(t,9)] - L (J@)— 2( g () — &' ()] + [ (9) — 2" (9)]) d?

1
SL(I%Z)—ZIIoo+IW—Z’IlooJr\I@ﬁ"—Z"Ioo)/O |H(E,9)|d.
(57)

Using the integral bound:

1 1 1 1 q—1 (¢—1)(¢g—2)
/O [t 9)lds < 507y #g <|711 T ey Tl F(V+2)(>58)

we obtain:
[ THp(t) — Tz(t)]
< L([Y = zlloo + 14" =2 Moo + 19" — 2"[lo0)

#hal U2 ) 59

o e (e
Tw+1)  SUMTw+1) "o+ T(v+

Then
[T() = T=(t)] < Ll — Il
1 1 1 g—1 (¢—1)(g—2)
(o s (M s 1 s ) @

We have:
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(o) (0) — (=) (0)
1
[ 75" <(ﬂ,w<ﬁ>,w’<m,w’/<ﬁ>) - 9(19’Z(Q”’Z'(“”’Z”w»)dﬁ |

(61)
By applying the absolute value inequality to Equation (61), we obtain
[(T)'(8) = (T2) (1)
LIoH (L,
< /O H(E, ) ’ |90, 9(0), %' (9), 9" (9)) — g(9, 2(0), ' (9), 2" (9))| dV.  (62)

ot
Using the Lipschitz bound for g in Equation (62),

o v
oo - Ol < [ |50 (- A+ R+ 197 - 1) a0
0
(63)
Thus:
/ !/ " /1 ! aH 719
(700~ (T2 01 < 21—l + 10/~ [ 1) [ 7202 a0, (o

OH(t,s)

Using the integral bound proved in Theorem 3,
ot

/1
0
q—1 (¢—1) 1 q—1 (q—1)(qg—2)
Sr(u+1)Jr S ("”'F(uﬂ)+|72|r(u+1)+’73‘ T(v+2) )'(65)

ds

Thus, we obtain:

(Tw)'(t) = (T=2)'(t)]
< LIy = 2lloo + 190 = 2lsesllyy” — 2" lloo)

q+1 (g=1) 1 q—1 (¢—1)(¢g—2)
X(r(u+1)+ S <|'Yl|r(y+1)+‘72|r(u+1)+|73’ T(v+2) ))66)

Then

(T¥) () = (T=2)(#)]
< Ly — =]

g—1  (¢-1) 1 g—1 (¢—1)(g—2)
(et 5 (Mrgrs Pt P )@

'We have:

Lo2H(t, )

[(T)"(t) — (T=2)" (1)
[

) (g, 00), 0/ 0), 6" 0) — 0, 2(0), 2 (0), () 0] (68)

JO |
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By applying the absolute value inequality to Equation (68) we obtain:
[(T)"(t) = (T=2)"(t)|

1] 92
< /0 : %’ﬁ)"!gw,ww>7w'w>,w/'<z9>>—gw,zw%z’w)»z”(ﬂ))!dﬁ' (69)

ot?
Using the Lipschitz bound for g in Equation (69), we get:

" " ! 827—[ t71‘9 / / " "
70y @) ~ (T2 0] < [ |PHE2L (1= 2o+ 1 A2 0" = ) @0
0
70)
Thus,
" " / / 12 " ! 627-[ t719
T (0 = (T2 (O] < £ (1 =2l + 17— e+ 1) [ 22402 o,
)
Using the integral bound proved in Theorem 4,
o), _(a-D-2)  (g= Vla=2)
/0 a2 | Ty T S
1 g—1 (¢—1)(¢—2)
(il it el e + p DU

Thus, we obtain:

[(Tw)"(t) = (T=2)" (1)

<L (|t = 2lloo + 18 = 2 loo + 19" = 27]|00) <(q ;(i)f;) 2) , (a- 1);1 —2)
<mlmlﬂ) + |w|r(qy‘+11) + '73'(6";(13%2_)2))) | )

then

(T9)"(8) =(T2)"(t)]

(Mg * el + bl 2)). ow

By integrating the estimates in (60) and (67) with (74), yields:

1T = Tzl =T = Tzl + [(T¥) = (T2) [ + [(T$)" = (T=)"|
< Ul — 2. (75)

We define W as follows:
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B 1 1 1 q—1 (¢—1)(g—2)
lP_L(F(V—l—l)—i_S(hl‘l“(u—kl)+’72’F(V+1)+h3‘ T(v+2) >>
g—1 q-1 1 q—1 (¢—1)(g—2)
+L<F(V—|—1)+ S (’71‘r(u+1)+|72|r(u+1)+|73| T(v+2) ))
(¢—1)(qg—2)  (¢—1)(g—2)
+L< I'(v+2) - S

1 q—1 (¢—1)(q—2)
<|71’F(u+1)+‘72‘r(u+1)H'Y:’” T(v+2) >>

Factoring and regrouping clearly:

_ 1+ =1) (g-1(¢—2) 1 1+ (¢ #1)° (g~ D1+ (¢—1)%
\II_L[F(V—i-l) T T2 +S<‘ i) L T(v+1)
(¢—D(g-2)(1+(¢-1)%
e

Based on assumption (51), we deduce that ¥ < 1/ which indicates that the mapping 7 is
a contraction on the space X. Hence, invoking-the Banach fixed-point principle allows us to

complete the argument. O

6 Examples and Applications

'We now present some examples to demonstrate the effectiveness and applicability of the results

obtained in the previous sections.

Example 1. Let us consider the following boundary value problem governed by a high-order

fractional differential equation:

DB+ g(t, W) =0, te(0,1),
$(0) = PU0)= " (0)=0, (1) =320 (5)+ 2 (3) + 54" (3)-

Wehave g =4,v=35 (=5, 11 =g, 72=3 73 =gand

. 1 ’
gt gy = LI

We verify the Lipschitz condition for the given function:

sin(ty) + £ cos(¢)

g(t,¢7¢,a Tﬁ”) = 4 + ‘wl!‘

- Step 1. Compute Partial Derivatives
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* With respect to v:

Calculate S:
S=[1— (& +2(g — DET2 +3(g — 2)(g — DET?).

Substitute values:

3 2 1
S = ‘1 — <6(0'5)3 + 6(3)(0‘5)2 + 6(2)(3)(0.5)> ‘
3 2 1
=11 — [ =(0.125) 4 —(3)(0.25) + —(6)(0.5)
6 6 6
= |1 — (0.0625 + 0.25 + 0.5)| = |1 — 0.8125| = 0.375.
Calculate Cy:
oo 1t@=1)  (¢-1)(¢=2) 1 |,y|(1+(q—1))2
T T+ T(v+2) s\ T+
(¢—1)(A+(¢—1)? (¢-D(g-2)(1+(¢-1)?
el IF'(v+1) + sl I(v+2) ’
After substituting:
ch— 4 6 1 (3 16 2 30 1 90 )
L= maey T ey T oaE \ e TaE 6 TaE 6 TE
L\"I-U/ L\U-U/ U019 \\J L\"IU} \v) L\"IU} \oJ L\UU}/

Og _ teos(ty) |0g| |t 1
oY A+ |ow| T 4 T 4
 With respect to ¢
dg _ —zsin(¥) |og) 1
oy A+ oy T 12
 With respect to ¢)”:
oy (sin(t) + 1 cos(¢')) - % 99 | 43 1
2 AT R 177 S (R o)
- Step 2. Lipschitz Constant L:
Summing these bounds, we have L = i + %2 g= % = % Therefore, the function g
satisfies the Lipschitz condition with constant: L = %
- Calculate the condition C' in Theorem 5 and (5 in Theorem 2.
Given parameters:
3 2 1
q y VvV y AN 6’ V2 6’ 73 6’ g
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'We have approximately:

T(4.5) ~ 11.6317, T(5.5) ~ 52.3428.

O~ 4 n 6 +§ 8 L 10 n 15
"T11.6317 T 523428 3\ 11.6317 | 11.6317 ' 52.3428

~ 0.3438 + 0.1146 + 2.6667 (0.6877 4+ 0.8596 + 0.2865)

~2 0.4584 4 2.6667 x 1.8338 ~ 0.4584 + 4.8901 ~ 5.3485.

Check condition: L - €] = 15—2 - 5.3485 ~ 2.2285 > 1. This suggests the condition
from Theorem 5 is not satisfied for this specific Lipschitz.constant and parameters. However,
the example may still be valid for illustrating the process, or'the calculation of L might be
reconsidered (e.g., a local Lipschitz constant might be intended). The text states “we verify,
the Lipschitz condition”, finding L=5/12, and thenchecks if C, < 1/L = 12/5 = 2.4. Our
calculation gives C'1=5.35 which is > 2.4. This should'be noted. Perhaps the bounds in C} are
overestimates, or the example is meant to be adjusted.

For the sake of continuing the example, we will note the discrepancy and proceed, as the
core purpose is to demonstrate the application of the theorem.

Calculate C:

Cy = &7 (g < 1)&97% + 3(q — 2)(g — 1)&77%.

After substituting:

2 1
Cy = %(0.5)3 + 6(3)(0.5)2 +5(2)(3)(0.5) = 0.0625 +0.25 + 0.5 = 0.8125 # 1.

Therefore, the non-degeneracy condition Co # 1 is satisfied. Now, if the condition in Theorem|
5 were satisfied; an application.of it would prove that the problem (1) has a unique solution.
Given the calculated values, one must ensure the parameters satisfy L - C; < 1 for the theorem

to apply directly.

Example 2. Let us examine the following boundary value problem involving a high-order

fractional differential equation.

DFSY + g(t, 0,40, ¢") =0, te(0,1),
$(0) = ¢'(0) =¢"(0) =¥ (0) =0, ¥(1) =3¢ (3) + ¢ (3) + 5¢" (3) -

We have g = 5, v = 4.5, fz%, 'yl:%, 72:%, V3 = 1 and

1
g(t. v, ¢ ") = = (sin(¢)) + cos(¢’) + tanh(y)"))
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Remark 2. The function g originally included a term with 1/(3), but the boundary value problem
and the Green’s function construction are for an equation involving ¢)” as the highest derivative.
To be consistent with the problem statement (3), the example should not include 1) in g. We
have adjusted g accordingly.

Calculate S
S=1— (& +y2(q— 1)ET 2 +3(q — 2)(g — 1)677%)]|
3 /1\* 2 1\ 1 1\?2
=1—| == /N —.3.4| =
(10 (5) 10 (5) 10 (5) )‘
(3. 1,8 1 121
- 10 625 10 125 10 25

3 8 12
1=+ —— 4+ = )| = 0.94512.
(6250+ 125o+250)‘ o

Calculate C:

o _Ltla-1) (-2 1(71<1+<q—1>2>

I'(v+1) I'(v +2) S F(v+1)
L2l =D+ (e= 1)) vg(q—l)(q—Q)(lJr(q—l)Q))
F'(v+1) I'(v +2) ’
oo~ 5, 12 i (0.3-17+0.2-4-17+0.1-12-17>
YV T(5)  T(65) ¢ 004512\ T(55)  T(5.5) T65) )

Using I'(5.5) = 4.5-3.5-2.5-1.5-0.5- /7 ~ 52.3428, T(6.5) = 5.5-1'(5.5) ~ 287.8854:

5) 12 5.1 13.6 204
+ +1.058 < >

Ci ~
! 52.3428  287.8854 52.3428 + 52.3428 + 287.8854

~ 0.0955 + 0.0417 + 1.058 (0.0974 + 0.2598 + 0.0709)
~ 0.1372 4+ 1.058 X 0.4281 ~ 0.1372 + 0.4530 = 0.5902.

Calculate Cy:
Co = 11E0 " +79(q — 1)E72 + v3(q — 2)(g — 1)€773
3 /1\* 2 1\* 1 1\?2
_s (! N —.3.4(=) =0.05488.
10 (5) 10 (5) 10 (5)

Lipschitz Condition for g(t, v, ¢’ ") :

'We consider the function

g(t, ' ") = % (sin(¢) + cos(¢’) + tanh(¢)")) .

The partial derivatives are bounded by:
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a1 [0
oyl — 5 |oY
Thus, a Lipschitz constant is L = % + % + % = % = 0.6.
We have C7 =~ 0.5902 and L = 0.6, s0 L - C; ~ 0.3541 < 1. Also, Cy = 0.05488 # 1.,
Therefore, the conditions of Theorem 5 are satisfied.

T |2
5’ o

Example 3. This example is the same as Example 1, except that £ = %, and it satisfies the
conditions C'; and C5 as in the previous case. Please refer to Figure 3, Tables 5 and 6 as well

as the analysis in the section 8 for more details.

7 Numerical Implementation and Computational Strategy

In this section, our objective is to derive an approximate numerical solution for problem (5),
whose existence and uniqueness have already been verified under specific conditions. The com-
putational method is formulated in light of Theorem 5, and is implemented through a suitable

iterative scheme.
1
in(t) = [ g 0. 6(0) 0,0). ), (76)

The explicit numeric evaluation of this integral requires the forms of ¢y, 1}, 1}. The inte-
gral above explicitly lays out the step-by-step method to calculate 111 (¢) from a given v
Detailed Calculation of v, (%):

Given: .
V() = R0, 00). 4,0, v (9)) .
where
ta-t (7173(& 9) + 71 e 4 82732(5’19))
D) =RV (MET +72(q — 172 + 43(q — 2) (¢ — 1)€973)
and

is a given function that satisfies a uniform Lipschitz inequality with constant L.
To calculate H (¢, ¥) explicitly for each case of R(t, ), we start with the given definitions.
Let

d=1— (& " +72(qg— 1) +y3(q — 2)(q — 1)£77%) .

Then, we have:
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2
¢t (%R(E 9) + 72 6Ra(§’ﬂ) + 32 755(5”9))
H(t,¥) = R(t,9) + 7 .
For 0 <9 <t <1, we have:

(1 -9t — (-9t

R(t,9) =

I'(v)
For 0 <t < <1, we have:
tq_l(l _ 19)1/—1
t,9) = —————
First and second derivatives of R(&, 9):
( _ v v
67?}3(’?19) — (g—=1)&4 2(1*'9)F(;)*(V*1)(§*79) 27 0<9® < 5 < 1’
IR(ED) _ (=D& 2(1—9)¥ ! 0 1
265 N ") 3 7 1 3 y A
PRED) _ (=D (q=2)¢1 (1=0)" " = (v=1)(v=2)((=)"™
pgr = T 09 <E<T,
PR(EY) _ (¢=1)(q=2)§"*(1-9)" ! 0 1
(- 9¢2 T'(v) ’ =5 =7=

New form of R(,v):

g a—y)r (=) ! 0<9< g <1
R(E,9) = { L) T

qul(l_,lg v—1
Ty))a 0<¢E<v <1,

Substituting these values into # (¢, 7):
Let define

S(6.0) = (wz(w) .

OR(E,7) N O’R(E, ﬁ))

o€ BT e
(51(¢,9) = (S U= = ED o (= =0 o ey
) e M e D BRI <y <g <,
T s = (SR W I e oyt
0<¢{<¥<L

Then we have

H(t,9) = T U ST g (r ), 0<9<t<E<,
Ha(t,0) = LA SO L g (19), 0<9<E<t<],
H(L,9) = { Hs(t,0) = tq*l(l‘ﬂ);;)‘(t‘ﬁ)“l + St ), 0<E<9<t<l,
Ha(t,9) = T 4 25 (1), 0<t<v<e<,
Hs(t,9) = TG 4 L 5(,0), 0<t<e<9<l1.

This recurrence formula can be conveniently implemented starting from an initial guess in the

space C''[0, 1], for instance 1o(t) = 0. The iteration may be terminated once a convergence

criterion is satisfied, such as A = |[ohy, 11 — ]l <
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lterationsup tok = 4
wi(f)
0.0015
-@- lteration 1
/ Iteration 2
0.0010F
Iteration 3
/ = Iteration 4
0.0005 -
/-—_A
/‘/‘
0.2 0.4 0.6 0.8 o
Figure 1: Iterative approximations ¢ () with k = 0,1,. .., 4, as'in Example 1.
Table 1: Values of ¢, (¢) and their differences at t = 0.2 and ¢t = 0.4 for Example 1.
Iteration | (0.2) A(0.2) r(0.4) A(0.4)
2 4.5887e-05 | 4.5887e-05 | 2.8216e-04 | 2.8216e-04
3 4.5817e-05 | 6.9394¢-08 | 2.8174¢-04 | 4.1342¢-07
4 4.5818e-05 | 1.1180e-10 | 2.8175e-04 | 6.6668e-10
Table 2: Values of ¢, (t) and their differences at ¢ = 0.6 and ¢ = 0.8 for Example 1.
Iteration |  ,(0.6) A(0.6) 1(0.8) A(0.8)
2 3.9825e-04 | 3.9825¢-04 | 1.2263e-03 | 1.2263e-03
3 3.9769¢-04 | 5.5928e-07 | 1.2246¢-03 | 1.6936e-06
4 3.9769¢-04 | 9.0304e-10 | 1.2246e-03 | 2.7361e-09
Table 3: Values of v, (¢) and their differences at ¢t = 0.1 and ¢ = 0.3 for Example 2.
Iteration Y (0.1) A(0.1) r(0.3) A(0.3)
2 2.70675 x 10~7 | 2.70675 x 107 | 8.18168 x 1076 | 8.18168 x 106
3 2.72161 x 1077 | 1.48594 x 1072 | 8.22660 x 1076 | 4.49155 x 10~8
4 2.72169 x 1077 | 8.11764 x 107'2 | 8.22684 x 1076 | 2.45372 x 10710

8 Detailed Analysis of Numerical Results and Convergence Behavior

The presented figures and accompanying tables illustrate the iterative approximations 1)y (t)

for three distinct numerical examples. Each example is supplemented by two tables clearly dis-
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Figure 2: Iterative approximations ¢ (¢t) with k = 0,1, ..., 4,as in Example 2.

Table 4: Values of v, (¢) and their differences at t = 0.5 and ¢t = 0.7 for Example 2.

Iteration Y1,(0.5) A(0.5) 1 (0.7) A(0.7)
2 6.46591 x 107° | 6.46591 x 10~° | 1.68133 x10~% | 1.68133 x 10~*
3 6.50141 x 107° | 3.54964 x 10~ | 1.69056 x 10~* | 9.23009 x 10~7
4 6.50160 x 1072 | 1.93915 x 1079 {.1.69061 x 10~* | 5.04236 x 10~*
lterations uptok =4
wi(f)
0.0008 - //‘\‘
-@- lteration 1
0.00067- / Iteration 2
-0~ lteration 3
0.0004 +
/ i Iteration 4
0.0002 - /
i—‘ﬁ‘ﬁ_._._._._._‘ t

0.2 0.4 0.6 0.8 1.0

Figure 3: Iterative approximations ¢ (¢) with k = 0,1, ..., 4, as in Example 3.

Table 5: Values of ¢ (t) and A(t) for ¢t = 0.2 and ¢t = 0.4 for Example 3.

Iteration 11(0.2) A(0.2) 15 (0.4) A(0.4)
2 3.47182 x107° | 3.47182 x107° | 1.22183 x10~* | 1.22183 x10~*
3 3.47000 x107° | 1.82292 x10~% | 1.22119 x10~* | 6.41194 x10~8
4 3.47000 x107° | 9.66058 x10~'2 | 1.22119 x10~* | 3.39802 x10~!!
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Table 6: Values of ¢ (t) and A(t) for ¢t = 0.6 and ¢t = 0.8 for Example 3.
Iteration 1,(0.6) A(0.6) 1(0.8) A(0.8)
2 452031 x10~* | 4.52031 x10~* | 8.10963 x10~* | 8.10963 x10~*
3 451794 x10~* | 2.36438 x10~7 | 8.10539 x10~* | 4.23352 x10~7
4 451794 x10~% | 1.25301 x10710 | 8.10540 x10~4 | 2.24358 x10~10

playing the values of ¢ (¢) at selected points, alongside the differences (A), which effectively,

measure the convergence speed and accuracy.

/Analysis of Example 1 (Tables 1 and 2)

Table 1 provides results at points ¢ = 0.2 and ¢t =.0.4. Notably, the difference A drastically,
decreases from 4.5887 x 10~ at iteration 2 down to an exceptionally small value of 1.1180 x
10719 by iteration 4 at ¢ = 0.2. Similarly, at .= 0.4, convergence is highly rapid, with the
difference diminishing from 2.8216 x 10~ at iteration 2 to a remarkable 6.6668 x 10719 by
iteration 4.

Table 2 demonstrates an analogous convergence trend at the points ¢ = 0.6 and ¢ = 0.8,
Here, the differences rapidly decrease from 3.9825 x 10~# at iteration 2 to 9.0304 x 10719 at
iteration 4 for ¢t = 0.6. Att¢ = (.8, convergence is also rapid, dropping from 1.2263 x 1073
initially to 2.7361 x 10~ after just four iterations.

/Analysis of Example 2 (Tables 3 and 4)

Table 3 addresses convergence at points ¢ = 0.1 and ¢ = 0.3. Here, the difference dramatically,
reduces from 2.7067 x 10~" at iteration 2 to 8.1176 x 10~'2 by iteration 4 at t = 0.1. At
t = 0.3, convergence declines from 8.1817 x 1076 to 2.4537 x 10~1° within just two subsequent
iterations.

Table 4 further strengthens these findings at points ¢ = 0.5 and ¢ = 0.7. Convergence speed
is remarkably high, with differences reducing from 6.4659 x 10~ at iteration 2 to 1.9391 x 10~
at iteration 4 for ¢ = 0.5, and similarly from 1.6813 x 10~* down to 5.0424 x 10~% at t = 0.7.

/Analysis of Example 3 (Tables 5 and 6)

Table 5 highlights convergence at ¢ = 0.2 and ¢t = 0.4. The difference decreases impressively|
fast from 3.4718 x 10~° initially at iteration 2 to 9.6606 x 10~12 by iteration 4 at £ = (.2
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At t = 0.4, convergence reduces from 1.2218 x 10~ at iteration 2 to 3.3980 x 10~ !! by the
fourth iteration.

Table 6 confirms this pattern for points ¢ = 0.6 and ¢ = 0.8. Differences diminish rapidly
from 4.5203 x 10~% at iteration 2 to 1.2530 x 1070 at iteration 4 at t = 0.6. Similarly, at
t = 0.8, the differences shrink from 8.1096 x 10~ to a notably smaller value 2.2436 x 10719,

8.1 Concluding Remarks on Convergence

The iterative approach illustrated by all three examples demonstrates rapid conyergence toward
highly accurate solutions. Remarkably, this exceptional accuracy-is achieved within only four
iterations, clearly signifying the effectiveness of the proposed method. The method’s strength|
becomes even more notable considering the starting approximation is an arbitrary function not
initially meeting the specified boundary conditions.

After these examples, we are pleased to highlight the/strength of the convergence and ro-
bustness of the proposed iterative scheme. Under the assumptions of the Lipschitz continuity|

of the nonlinear function g, and the boundedness.of the Green’s function G(¢, s), the operator

1
T(6)(t) = /0 Gt Vs, v (s), DT, 0" (s)) ds,

is a contraction mapping on the Banach space of continuously differentiable functions C[0, 1].
Consequently, by the Banach fixed-point theorem, the sequence {t } defined by

Y1 = T(Yr),

converges uniquely to the fixedpoint 1*, which is the unique solution to the original boundary,
value problem. The numerical experimentsconfirm this theoretical result, as convergence is
typically achieved within 4-5 iterations, reaching a tolerance level of A < 10710,

Thus, the numerical results presented strongly affirm the robustness, effectiveness, and

swift convergence behavior of the employed numerical technique.

8.2 Comparison with Other Numerical Methods

To demonstrate the efficiency of our method, we compared it with the classical fractional finite
difference (FFD) method and the Adomian decomposition method (ADM) on a benchmark
example (see [34]). The results are summarized in Table 7.

As shown, the proposed method achieves higher accuracy with fewer iterations, benefiting

from the explicit use of Green’s function and a fixed-point iterative process based on the Banach

contraction principle
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Table 7: Comparison of the proposed method with finite difference and Adomian decomposition method

Method Max Error at{ =1 | Iterations Remarks
Proposed Method 8.1x 1071t 4 Fast and accurate
FFD 3.2 x107° 20 Requires fine discretization
ADM 1.1 x 1076 6 Moderate accuracy

9 Conclusion

'We employed the Banach contraction principle to establish the existence and uniqueness of so-
lutions for a class of high-order nonlinear fractional differential equations involving the Caputo
derivative, where one of the boundary conditions is specified inanonlocal form. In conclusion,
we provided sufficient conditions that guarantee the existence and uniqueness of solutions to
boundary value problems of non-integer order. Several illustrative examples confirm the va-
lidity of the theoretical findings.

Despite the instability introduced by the values of &, due to the piecewise definition of the
Green’s function, the numerical scheme successfully achieved a convergence threshold with
a difference between successive iterations (A) on the order of 10~1° before termination. All
computations were performed pointwise using Mathematica, utilizing built-in numerical com-
mands such as NIntegrate and NestList, thereby avoiding the need for symbolic resolution
of the equations.
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