
In
Pr
es
s

Received: xxx Accepted: xxx Published: xxx.
DOI. xxxxxxx
xxx Volume xxx, Issue xxx, (1-28)
Research Article

Control and Optimization in
Applied Mathematics - COAM

Open
Access

Designing a New Continuous Quantum Evolutionary Algorithm for
Nonlinear Optimization and Efficiency Frontier Evaluation

Tahereh Azizpour , Majid Yarahmadi�

Department of Mathematics and
Computer Science, Lorestan
University, Lorestan, 68151-
44316, Iran.

� Correspondence:
Majid Yarahmadi
E-mail:
yarahmadi.m@lu.ac.ir

How to Cite
Azizpour, T., Yarahmadi, M.
(2025). “Designing a New
Continuous Quantum Evolu-
tionary Algorithm for Nonlinear
Optimization and Efficiency
Frontier Evaluation”, Control
and Optimization in Applied
Mathematics, 10(): 1-28, doi:
10.30473/coam.2025.74960.1316.

Abstract. In this paper, we introduce a new continuous quantum
evolutionary optimization algorithm designed for optimizing nonlinear
convex functions, non-convex functions, and efficiency evaluation
problems using quantum computing principles. Traditional quantum
evolutionary algorithms have primarily been implemented for discrete
and binary decision variables. The proposed method has been designed
as a novel continuous quantum evolutionary optimization algorithm
tailored to problems with continuous decision variables. To assess
the algorithm’s performance, several numerical experiments are
conducted, and the simulated results are compared with the Grey
Wolf Optimizer and Magnet Fish Optimization search algorithm.
The simulation results indicate that the proposed algorithm can ap-
proximate the optimal solution better than the two compared algorithms.

Keywords. Convex optimization, Non-Convex optimization, Evolution
algorithm, Quantum evolution algorithm, Efficient frontier, Markowitz
efficient frontier.

MSC. 81Q93; 62P05; 68W50.

©2026 by the authors. Lisensee PNU, Tehran, Iran. This article is an open access article distributed
under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY4.0)
(http:/creativecommons.org/licenses/by/4.0)

https://mathco.journals.pnu.ac.ir

https://orcid.org/0009-0004-4879-5065
https://orcid.org/0000-0003-1286-7464


In
Pr
es
s

2 Designing a New Continuous Quantum Evolutionary Algorithm ...

1 Introduction

An algorithm is a set of instructions and structures that we can use to solve complex problems.
Since soft computing methods require specific structures to solve complex problems, design-
ing efficient algorithms is very important [27]. One type of the most popular algorithms in
this area is the evolutionary algorithms or EA [3]. The evolutionary algorithms are a kind of
computational algorithm in artificial intelligence that it draws inspiration from the principles of
evolution and natural selection in organisms to solve the complex problems. These algorithms
find optimal solutions to complex problems through continuous and dynamic repetition [19].

Generally, the evolution algorithms are based on exploration and they are used to solve
problems that can not be solved in polynomial time. Such as classically hard problems of de-
gree NP−Hard and other problems that take too long to complete [6]. However, evolutionary
genetic algorithms are often used together with other methods to serve as a quick solution to
find an optimal starting point for other algorithms [22].

A compact MLCP-based projection recurrent neural network model to solve shortest path
problem is designed [10]. This paper guarantees convergence to the global optimumby focusing
on optimization problems with nonlinear, non-convex, and constrained constraints.

There are many interpretations of the risk concept, there is risk or danger in any activity
that does not have a 100% chance of success. Today, most researchers associate the risk of an
investment with changes in the ”rate of return”; that is, the greater the changes in an invest-
ment’s return, the higher the risk [26]. While there is no complete agreement in this field, most
analysts agree that the risk should be calculated according to the return changes and the stan-
dard deviation of the return rate [25]. In fact, risk is defined as the possible changes or standard
deviation of the portfolio’s expected return.

In the real world, increasing the number of stocks in an investment portfolio reduces its risk,
but adding a large number of securities does not completely eliminate risk; a certain amount of
risk always remains [5].

The most important concepts in investment decisions (in the portfolio) are return and risk.
The relationship between return and risk is a ”direct” relationship [12]. This is the reason
why different portfolio selection models and risk measurement criteria have been presented
by financial experts who seek to find achievable and efficient optimal points according to the
portfolio’s return and risk. These optimal portfolios are located, as some points, on the efficient
frontier [13]. This is where the concept of ”risk management” comes from. Risk management is
the same process through which an organization or investor reacts to various risks in an optimal
approach. From a mathematical point of view, risk management is the process of shaping a
loss distribution [23]. When making investment decisions, investors simultaneously consider
the risk and return of different options. Risk and return, if not the only influential dimensions
in the field of investment decisions, are without a doubt the most important ones [5]. In the
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financial and economic literature, it is clearly stated that a wise person is someone who seeks to
achieve a certain level of return by bearing the minimum possible risk. Also, some investments
want to achieve the maximum return at a certain level of risk. Therefore, risk is an inseparable
part of return and we cannot talk about investment return without considering the associated
risk [5]. In 1952, Harry Markowitz proposed the concept of optimal portfolio and showed that
it is possible to form thousands of different portfolios with different levels of risk and return
at the same time [20]. It is up to the investor to decide how much risk he can tolerate and
diversify his portfolio risk in such a way that he gets the highest possible return. Experts have
introduced different metrics to measure risk, each of which refers to an aspect of the category
of uncertainty, and sometimes they complement each other. Risk measurement criteria were
first determined by studying statistical dispersion indices (such as variance, standard deviation,
range). After that, newer measures such as duration, beta coefficient, and value at risk were
developed [28].

A convex optimization problem finds the minimum of the convex functions (or the maxi-
mum of the concave function) in the convex set [1, 15]. The most important advantage of this
type of optimization problem is that every local optimal solution is also a global optimal so-
lution and every optimization algorithm that finds a local optimal solution has actually found
a global optimal point. Many important practical problems are non-convex, and most non-
convex problems are hard (if not impossible) to solve exactly in a reasonable time [21]. Indeed,
most non-convex problems suffer from the ‘‘curse’’ of local minimum, which may trap algo-
rithms into a spurious solution. In [29], Tuy is proposed a mathematical programming problem
to solve a non-convex optimization problem. This method separates nonconvex variables into
two groups: x = (x1, ..., xn) and y = (y1, ..., yn), such that the objective function and any
constraint function is a sum of a convex function of (x, y) jointly and a nonconvex function of
x alone. Henrion in [14] shows how GloptiPoly can solve challenging nonconvex optimization
problems in robust nonlinear control. GloptiPoly is a general-purpose software with a user-
friendly interface.

In the field of non-convex optimization, novel technologies such as quantum computing
and quantum-inspired algorithms have provided new possibilities for exploring the solution
space. Research on integrating quantum computing with evolutionary algorithms began in the
late 1990s, and recently, Quantum-Inspired Evolutionary Algorithms (QEA) have been intro-
duced, which have a better ability to explore the search space [17]. These algorithms can play an
effective role in solving difficult optimization problems, including non-convex problems, and
significantly help in finding global optimal solutions [16]. In this paper, the idea is to use of
QEA approach to solve convex and non-convex optimization problems. QEA is a global opti-
mization method. Therefore, it is a good approach to solve non-convex optimization problems.
Firstly, we design QEA to determine Markowitz’s efficient frontier, then by changing this al-
gorithm, it can be used for other convex and non-convex optimization problems. Therefore, we
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want to use Markowitz’s risk management model to form optimal portfolios. For this purpose,
the standard deviation is considered as the risk measure criterion. On the other hand, to ob-
tain Markowitz’s efficient frontier, a constrained optimality problem must be solved so that the
optimal portfolio with given risks has the maximum expected return. To solve the constrained
optimality problem, a quantum evolutionary algorithm is proposed, where the proposed ap-
proach is inspired by quantum computing. To better search in the search space of optimization
problems, the proposed approach uses the concepts of quantum computing [18].

After designing the QEA algorithm to determine Markowitz’s efficient frontier, the ob-
server operation is modified to use this algorithm to solve other examples. In example one
(constrained and convex), we consider a portfolio consisting of three stocks. The results show
that the proposed algorithm can design an optimal portfolio, well. In example two, two non-
convex functions are optimized using QEA. According to the real solutions, QEA can approx-
imate the optimal solution, as well. Also, in the following, various optimization problems are
solved by this algorithm.

The paper is organized as follows: The continuous quantum-inspired evolutionary algo-
rithm is described in Section 2. In Section 3, the components of risk management, optimization
ofMarkowitz risk, and theMarkowitz efficient frontier are presented. In Section 4, the quantum
evolution algorithm to determine the Markowitz efficient frontier is presented. Examples and
case studies simulations are also given in Section 5. In Section 6, test optimization functions
are presented. Also, the sensitivity analysis of the proposed algorithm is discussed in Section
7. Finally, the paper’s conclusion is presented in Section 8.

2 Designing of quantum evolutionary algorithm

The Quantum Evolution Algorithm (QEA) uses a new representation that is based on the con-
cept of a qubit. The smallest unit of stored information in a quantum computer is called a qubit.
A qubit can be on the state ”0”, state ”1” or a superposition of them. The state of a qubit can be
expressed as follows:

|ψ⟩ = α|0⟩+ β|1⟩, s.t. |α|2 + |β|2 = 1. (1)

Where α and β are complex numbers such that |α|2 and |β|2 represent the probabilities of the
qubit being in states |0⟩ and |1⟩, respectively. In QEA, an individual qubit is the string of m
qubits and can be described as follows [11]:[

α1 | α2 | ... | αm

β1 | β2 | ... | βm

]
, s.t. |αi|2 + |βi|2 = 1, i = 1, 2, ...,m. (2)
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This representation indicates a base vector for linear combination of any states. Suppose that
the following matrix represents the quantum state corresponding to x = (x1, x2, x3):[

1√
2

1 1
2

1√
2

0
√
3
2

]
, (3)

the first column of the matrix corresponds to the first qubit (corresponding to x1), the second
column corresponds to the second qubit (corresponding tox2), and the third column corresponds
to the third qubit (corresponding to x3). In other words:[

α1

β1

]
=

[
1√
2
1√
2

]
,

[
α2

β2

]
=

[
1

0

]
,

[
α3

β3

]
=

[
1
2√
3
2

]
. (4)

The overall state of the system is expressed in terms of eight basic states:

{|000⟩, |001⟩, |010⟩, |100⟩, |011⟩, |101⟩, |110⟩, |111⟩}.

To determine this state, the coefficients c|ijk⟩ of the basic states must be specified:

|ijk⟩ = |i⟩ ⊗ |j⟩ ⊗ |k⟩, c|ijk⟩ = c|i⟩ × c|j⟩ × c|k⟩; i, j, k ∈ {0, 1}. (5)

For example:

|000⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩, c|000⟩ = c|0⟩ × c|0⟩ × c|0⟩ =
1√
2
× 1×

√
3

2
=

√
3

2
√
2
. (6)

Therefore, the state of the system is expressed as follows:

1

2
√
2
|000⟩+

√
3

2
√
2
|001⟩+ 1

2
√
2
|100⟩+

√
3

2
√
2
|101⟩, (7)

this demonstrates that the probability observation of states |000⟩, |001⟩, |100⟩ and |101⟩ are 1
8 ,

3
8 ,

1
8 and 3

8 , respectively. It is clear, that the 3−qubit system (3) contains the information of
8−states. Therefore, it is observed that the quantum evolutionary computations can demon-
strate a better diversity of the population than classical version. Let Q(t) be a population of
states, where t represents the generation. Then we have:

Q(t) = {qt1, qt2, ..., qtn}, qtj =

[
αtj1 | αtj2 | ... | αtjm
βtj1 | βtj2 | ... | βtjm

]
, j = 1, ..., n, (8)

and, n is the population size. TheQEA process for the binary problem is presented in following
box [17]:
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Algorithm 1 Procedure of QEA
Begin t← 0.
i. Initialization: Initialize Q(t).
ii. Observation and evaluation: Form P (t) by observing the states of Q(t).
iii. Evaluate P (t).
iv. Storage: Store the best solutions among P (t) into B(t).
v.

while not termination condition do
t← t+ 1.
vi. Form P (t) by observing the states of Q(t− 1).
vii. Evaluate P (t).
viii. Update Q(t) using U -gates.
ix. Store the best solutions among B(t− 1) and P (t) into B(t).
x. IF (Migration condition) THEN Migrate b or btj to B(t) globally or locally.

end while
xi. return the best found solution(s) in B(t).

In step (i), q0j = qtj |t=0, j = 1, 2, ..., n is initialized with 1√
2
. That is, the individual qubit

q0j is the linear superposition of all states with same probability.
Step (ii) creates binary solutions in generation t = 0, i.e.,P (0) = {x01, x02, ..., x0n}, by observing
Q(0) states. A binary solution x0j , j = 1, 2, ..., n will be obtained by a binary observing 0 or 1
for each bit according to |αi|2 or |βi|2.
In step (iii), any binary solution x0j will be evaluated.
In step (iv), the best solutions among the binary solutions are stored in B(0) = {b01, b02, ..., b0n}.
Also, b0j = (btj |t=0) is the same as x0j in the initial generation.
In step (v), run QEA in the while loop until the terminal condition be satisfied.
In steps (vi) and (vii) for steps while loop, the binary solutions are generated by observing
Q(t− 1) same as the step (ii), and any binary solution is evaluated.
In step (viii) The individual qubits are updated by applying the rotation gate on them as follows:

U(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, (9)

where θ is the rotation angle that is designed to designer view point and tuned based on a given
tuning law. The details of this step will be explained later.
In (ix) and (x) steps, the best solutions are selected according to B(t− 1) and P (t) and stored
in B(t). If the best solution stored in B(t) is more suitable than the stored solution b, then the
stored solution b is replaced by the new solution.
(xi) If the terminal condition is satisfied, the best solution b is transferred to B(t).
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2.1 Updating of individual qubit

In QEA, the individual qubit must be updated in a new generation to evolve to an optimal indi-
vidual. This can be achieved by quantum gate operation. In the theory of quantum mechanics,
the common gates are: Hadamard gate, rotation gate, NOT gate and controlled NOT gate. The
most commonly used quantum gate in QEA is the rotation gate. Quantum rotation gates can
be designed according to the practical problems and usually can be defined as Equation (9).
Where θ is rotation gate angle. For each of its state vectors [αi, βi]⊤, its update can be obtained
as follows: [

α
′
i

β
′
i

]
= U(θ)

[
αi

βi

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

][
αi

βi

]
. (10)

The updating of a qubit state vector is illustrated in Figure 1.

Figure 1: Polar plot of qubit state vector updating in QEA.

Updating all the qubit state vectors, generates a new individual qubit q′ expressed as:

q′ =

[
α

′
1 | α

′
2 | ... | α

′
m

β
′
1 | β

′
2 | ... | β

′
m

]
. (11)

Assume qgj denotes j−th individual qubit in g−th generation which can be shown as

qgj = [αgji, β
g
ji]

⊤, (12)

the rotation parameter corresponding to qgj is denoted by θ
g
ji, which is calculated via following

relation [30]:

θgji = sgji∆θ
g
ji, (13)

where sgji is the direction indicator of the rotation. In the quantum evolution algorithm, the
value and sign of ∆θ is determined by the regulation strategy, and the rotation of the qubits is
done in a direction that moves the current state to the optimal state, which is presented in Table
1. xgi is the i−th bit of the current individual (g-th generation); best i is the i−th element of the
current optimal individual. Also, f(x) is the fitness function; s(αgji, β

g
ji) is the direction of the

rotating angle;∆θgji is the value of the rotating angle.
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Table 1: Adjustment strategy of rotating angle [2, 30].

s(αg
ji, β

g
ji)

xgi best∗i f(x) ≥ f(best) αg
jiβ

g
ji > 0 αg

jiβ
g
ji < 0 αg

ji = 0 βg
ji = 0 ∆θgji

0 0 false 0 0 0 0 0
0 0 true 0 0 0 0 0
0 1 false 0 0 0 0 0
0 1 true -1 +1 ±1 0 0.05π
1 0 false -1 +1 ±1 0 0.01π
1 0 true +1 -1 0 ±1 0.025π
1 1 false +1 -1 0 ±1 0.005π
1 1 true +1 -1 0 ±1 0.0025π

Conventional quantum evolutionary algorithms address only discrete and binary decision
variable problems, and they are unable to solve optimization problems involving continuous
decision variables. To address this challenge, this paper presents a new quantum evolutionary
optimization algorithm. Table 2 outlines the primary approaches and innovative ideas proposed
in this paper to overcome these issues and challenges.

Table 2: The novelties and contributions of this paper.
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3 Measurement of return and risk

The two basic indices of portfolio management are return and risk, and a trade off between them
is an optimal objective. Consider n shares with their prices at any time, as follows [25]:

Pi(t), i = 1, 2, ..., n, t = 1, 2, ..., T, (14)

the return of i stock is defined as follows:

ri(t) =
Pi(t)− Pi(t− 1)

Pi(t− 1)
. (15)

Let X be the total wealth and let wi be the portion of the total wealth for buying or holding i
stock. Then

n∑
i=1

wi = X, or

n∑
i=1

wi ≤ X. (16)

Wewant to assign the total wealth betweenn stocks. The amount of exact wealth isn’t important
for portfolio design. The decision key variable is what proportion of this budget is invested in
each stock. This approach action removesX from the equations. For this purpose, one can use
weight in calculations (total wealth is considered as one unit):

xi =
wi
X

=
wi∑n
i=1wi

⇒


∑n

i=1 xi = 1,

0 ≤ xi ≤ 1,
(17)

where xi is the invested weight, in other words, what proportion of the wealth is invested in i
stocks. The return of stock at any time is obtained as follows:

RP (t) =

n∑
i=1

xiri(t), (18)

that ri(t) is the return of stock i at time t. Also, the expected return of the portfolio is calculated
as follows:

µp = E(RP (t)) =
n∑
i=1

E(ri(t))xi =
n∑
i=1

µixi, (19)

where µi is the expected return on stock i. Here, the risk of the portfolio is measured by variance
or standard deviation, in other words:

σ2P = var(RP (t)) =

n∑
i=1

σ2i x
2
i +

n∑
i=1

n∑
j=1

σijxixj , → σ2P = xT
∑

x ≥ 0, (20)

σ2i is the variance of the return of stock i, σij is the covariance between stocks i and j,
∑

is the
variance -covariance matrix, and σ2P is the variance of the portfolio return.
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3.1 Optimization of Markowitz risk

According to the Markowitz model, risk is related to return fluctuations, and these fluctuations
are measured by return variance. The rate of return of a portfolio, consisting of different as-
sets, is obtained from the weighted average of the returns of the individual assets that make up
that portfolio. To optimize the portfolio based on the Markowitz risk management model, the
following non-linear programming model must be solved [20]:

Mean− variance model:


max µP

min σ2P

s.t.
∑n

i=1 xi = 1, xi ≥ 0.

(21)

Optimization problem (21) is a bi-objective problem. This problem can be reformulated in two
simpler forms:

max µP =
n∑
i=1

µixi

s.t.

σ2P =
n∑
i=1

σ2i x
2
i +

n∑
i=1

n∑
j=1

σijxixj ≤ σ2P0
= v (22)

n∑
i=1

xi = 1, xi ≥ 0.

min σ2P =

n∑
i=1

σ2i x
2
i +

n∑
i=1

n∑
j=1

σijxixj

s.t.

µP =

n∑
i=1

µixi ≥ µ2P0
= R, (23)

n∑
i=1

xi = 1, xi ≥ 0.

3.2 Efficient frontier

Definition 1. A stock portfolio x is called efficient if it has the highest expected return among
all portfolios with the same variance or it has the lowest variance among all portfolios with a
certain expected return.
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The set of efficient portfolios makes the efficient frontier. The efficient frontier is displayed
as a curve in a two-dimensional graph, where the coordinates of a point correspond to the
expected return and return deviation of the efficient portfolio. In Figure 2, the curveAB shows
the efficient frontier. This efficient set on the curve AB has priority on all of the curve internal

Figure 2: Efficient frontier.

portfolios. Due to the specific risk, they have a higher expected return, or their risk is the least
for a given expected return. For example, consider portfolios X and Y on the AB frontier
curve. Although both portfolios have the same risk, the expected return of X is greater than
that of Y , therefore X will be preferred.

4 The CQEA to determine Markowitz’s efficient frontier

In Section 2, the quantum evolutionary algorithm was presented for the binary optimization
problems. The application of this algorithm is limited to optimization problems whose variables
are in the set {0, 1}, e.g., the knapsack problem. But there are many optimization problems
that have continuous variables. In this section, we will present modifications to the QEA
algorithm for the optimization of continuous problem, and evaluate the Markowitz efficient
frontier, especially.

Suppose we have a portfolio that containsm stocks. Wewant to determine the percentage of
investment on each stock to reached the maximum expected return while bearing the minimum
risk v. In other words, let µi and σi be the expected return and risk of stock i, respectively. Ad-
ditionally, the amount of investment on this stock is indicated with xi. Mathematical modeling
of the Markowitz efficient frontier problem, is considered as nonlinear optimization problem
as follows:

max
m∑
i=1

µixi
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s.t.

xTRx ≤ v, xT = [x1, ..., xm],
m∑
i=1

xi = 1, x1, ..., xm ∈ [0, 1]. (24)

In optimization problem (24), the matrix R represents the covariance-variance matrix. As
shown, each xi belongs to the interval [0, 1]; hence, the decision variables are continuous.
Consequently, we need to modify the previous quantum evolution algorithm. First, to enhance
diversity in the population, we employ the chaotic approach [11] instead of the approach based
on the uniform selection strategy.

4.1 Population initialization based on the chaotic approach

Consider a chaos state variable generated by the following mathematical model:

ϕk+1 = µϕk(1− ϕk), ϕk ∈ [0, 1], µ = 4. (25)

The chaos variable ϕk is obtained by solving Equation (25). The quantum population initial-
ization is as follows [11]:

1. i = 1.

2. Generatem random numbers ϕ0j , (j = 1, 2, . . . ,m) in the interval (0, 1).

3. Calculate ϕij , (j = 1, 2, . . . ,m) using iteration Equation (25):

ϕij = µϕij(1− ϕij). (26)

4. Create a population member
[
αij βij

]T
, j = 1, . . . ,m where αij = cos(2ϕijπ) and

βij = sin(2ϕijπ).

5. Provide am− qubit cell

[
αi1 | αi2 | ... | αim
βi1 | βi2 | ... | βim

]
.

6. i = i+ 1.

7. If i > Npop then Npop has been obtained, otherwise go to Step 3.
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4.2 Observability

EveryP (t) = {xt1, xt2, . . . , xtn}wherextj = [xtj1, x
t
j2, . . . , x

t
jm], andj = 1, 2, . . . , n, is a classi-

cal solution by using an observation ofQ(t). Now, we need to define the appropriate observable
operator.

Let Γ1, Γ2 and Γ3 operators are as follows:

Γ1 : R2×m → R1×m

Γ1(q
t
j) :=

[
⟨O⟩|ψt

j1⟩, ..., ⟨O⟩|ψt
jm⟩

]
=
[
⟨ψtj1|O|ψtj1⟩, ..., ⟨ψtjm|O|ψtjm⟩

]
, (27)

where O = diag([a, b]), 1 < a < b and |ψtji⟩ =
[
αtji βtji

]⊤
. Note that O is a diagonal

Hermitian operator, therefore, one can obtain:

a ≤ ⟨ψtji|O|ψtji⟩ ≤ b. (28)

Now, by considering ztj = Γ1(q
t
j) where ztj =

[
ztj1, ..., z

t
jm

]
, Γ2 is defined as follows:

Γ2 : R1×m → R1×m

Γ2(z
t
j) :=

1

b− a
ztj +

a

a− b
. (29)

Considering ytj = Γ2(z
t
j), we define Γ3 as follows:

Γ3 : R1×m → R1×m

Γ3(y
t
j) :=

1∑m
i=1 y

t
ji

ytj . (30)

Finally, Γ is defined as the following relations:

Γ : R1×m → R1×m

Γ(qtj) := Γ3

(
Γ2(Γ1(q

t
j))
)
. (31)

Now, the population at generation t in real space is calculated as follows:

P (t) =
{
xt1, ..., x

t
j

}
=
{
Γ(qt1), ...,Γ(q

t
n)
}
. (32)

According to the operator Γ, the constraints xi ∈ [0, 1] and
∑m

i=1 xi = 1 can be removed
from the optimization problem (24). In next, the proposed Continuous Quantum Evolutionary
Algorithm (CQEA) is designed to determine the Markowitz efficient frontier.
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Algorithm 2 CQEA to determine the Markowitz efficient frontier

Input: Parameters Npop, T , θ and a termination condition
Output: The set of optimal solutions on the Markowitz frontier

Initialization
Step 1. Choose Npop, T, θ and define a termination condition.
Step 2. Initialize Q(t) using a chaotic approach.

Main loop
Step 3. Choose 1 ≤ a < b and form the diagonal matrix O = diag([a, b]).
Step 4. Define for each j, Γ1(q

t
j) =

[
⟨ψtj1 | O | ψtj1⟩, . . . , ⟨ψtjm | O | ψtjm⟩

]
.

Step 5. Define for each j, Γ2(z
t
j) =

1
b−a z

t
j +

a
a−b .

Step 6. Define for each j, Γ3(y
t
j) =

ytj∑m
i=1 y

t
ji
.

Step 7. Composite transformation: Γ(qtj) = Γ3

(
Γ2

(
Γ1(q

t
j)
))
.

Step 8. Population update: xtj = Γ(qtj), P (t) = {xt1, . . . , xtj} = {Γ(qt1), . . . ,Γ(qtn)}.
Step 9. Evaluation: Compute the fitness/objective for the new population P (t).
Step 10. Store the optimal solution of (24) in B(t).
Step 11. Examine termination condition.
Step 12. If the termination condition is satisfied then B(t) is final optimal
solutions (24), else go to Step 13.
Step 13. Update Q(t) by U -gate (9) and go to Step 4.

Remark 1. The time complexity of this algorithm is

O
(
T ·Npop ·m

)
.

If the algorithm optimizes a more complex objective function f(x), its time complexity
becomes

O
(
T ·Npop ·

(
m+ cost(f(x))

))
.

Theorem 1. Suppose that x∗ is the minimum of continuous function f(x) and {xt} is the se-
quence generated by Algorithm 2, then {f(xt)} converges in mean to f(x∗).

Proof. Let f(x∗) = minx∈[a,b] f(x), where xt = {xt1, xt2, . . . , xtN} and xtj is the j-th person of
the t-th generation. Obviously, for each j = 1, . . . , Npop:

f(xtj) ≥ f(x∗),
Npop∑
j=1

f(xtj) ≥ Npopf(x
∗). (33)
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Hence,

E
[
f(xt)

]
≥ f(x∗). (34)

According to Step 13 of Algorithm 2, Subsection 2.1, and [2], one can infer that:

E
[
f(xt+1)

]
≤ E

[
f(xt)

]
. (35)

Therefore, the sequence {
E[f(xt)]

}T
t=1

, (36)

is monotone non- increasing and bounded sequence. Therefore, this sequence is a convergent
sequence.

Let E[f(xt)] → f̂∗. From (33), it immediately follows that f̂∗ ≥ f(x∗). If f̂∗ = f(x∗),
in this case, proof was completed. Otherwise, suppose that f̂∗ > f(x∗). This implies that in
none of the generations produced by the algorithm does the optimal solution x∗ occur. Since
the process xt is a Markov process, and according to Algorithm 2 (where each generation is
produced solely based on the preceding generation in an optimally manner), the probability of
obtaining the optimal solution x∗ in any generation is non-zero [8]. Therefore:

P
(
xt+1
k = x∗

∣∣xt) ≥ p > 0. (37)

Let:

At =
{
xtj
∣∣P (xtj ̸= x∗

)
= p1

}
, 0 < p1 < 1. (38)

From (37) and (38), using conditional probability, we have:

P (At+1) ≤ P (At)(1− p). (39)

With a same and repetitive process, it can be inferred that:

P (At+1) ≤ P (A1)(1− p)t. (40)

Consequently,

lim
t→∞

P (At+1) = 0, (41)

since 0 < P (A1) < 1 and 0 < 1 − p < 1. Therefore, the probability that x∗ is not produced
by the algorithm in any generation is zero. Furthermore, from Equation (34) and since the
sequence {E[f(xt)]} ismonotone and bounded below, it follows that f̂∗ = f(x∗). Equivalently,
the sequence generated by the proposed algorithm converges in mean, which completes the
proof.

Note that the CQEA is prescribed for the determination of the Markowitz efficient frontier.
Now, if the same algorithm is applied to other optimization problems, it is typically unnecessary
to choose a > 1; in fact, a may be a negative. Moreover, the operations Γ2 and Γ3 are often
chosen as identity mappings in such general settings.
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5 Examples and case studies simulations

In the following, we want to implement the proposed algorithm for different types of opti-
mization problems, including convex and non-convex optimization and non-convex constrained
nonlinear optimization problems. To implement the simulations, MATLAB 2023a on an Intel
Core-i5 1.7 GHz Turbo 3.4 GHz PC.

Example 1. Consider a portfolio consisting of three stocks S1, S2 and S3. The mean and
covariance-variance matrix of stocks are listed in Tables 3 and 4.

Table 3: Mean of stock.

S1 S2 S3
Mean of Return 0.1206 0.0785 0.0632

Table 4: Covariance-Variance matrix.

S1 S2 S3
S1 0.0284 0.0040 0.0002
S2 0.0040 0.0114 -0.0002
S3 0.0002 -0.0002 0.0012

Now, we want to implement the presented continuous quantum evolution algorithm. In this
example, the population size, namely Npop = 200 and the number of generation T = 100 are
considered.

By implementing the proposed algorithm risk values, the expected return of the portfolio
and the weight of stocks are presented in Table 5. For example, if we allocate about 71% of the
budget to stock 1, about 27% to stock 2, and about 2% to stock 3, we expect a maximum return
of 10.83% with risk of 13%.

Figure 3 indicates the mean-variance efficient frontier obtained by implementing the pro-
posed CQEA algorithm.
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Figure 3: Efficient frontiers with CQEA and Genetic algo-
rithms.
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Figure 4: CPU time for CQEA and Genetic algo-
rithms.

To evaluate the accuracy and efficiency of the proposed algorithm, the results obtained from
its implementation were compared with the results obtained from the genetic algorithm. The



In
Pr
es
s

Azizpour & Yarahmadi 17

Table 5: Expected return, standard deviation and corresponding weight to each stock for optimal portfolios based
on mean-variance model by using CQEA.

Expected Return Risk(var) x1 x2 x3
0.0680 0.033 0.0513 0.1192 0.8294
0.0736 0.04 0.1453 0.1377 0.7170
0.0785 0.05 0.2350 0.1163 0.6487
0.0828 0.06 0.2959 0.1699 0.5342
0.0867 0.07 0.3621 0.1775 0.4604
0.0905 0.08 0.4302 0.1686 0.4012
0.0941 0.09 0.4752 0.2383 0.2865
0.0977 0.1 0.5375 0.2391 0.2234
0.1048 0.12 0.6704 0.2056 0.1239
0.1084 0.13 0.7167 0.2624 0.02090
0.1118 0.14 0.7926 0.2007 0.0067
0.1150 0.15 0.8676 0.1315 0.0009
0.1181 0.16 0.9399 0.0589 0.0011
0.1206 0.17 1.0000 0.0000 0.0000

agreement between the results of both methods confirms the accuracy of the proposed algo-
rithm. In addition, the comparison of the CPU Time execution time in both algorithms shows
that the proposed algorithm always spends less time on solving the problem, which is a signifi-
cant advantage in practical applications. These results confirm that the proposed algorithm has
a relative advantage not only in terms of accuracy, but also in terms of efficiency (See Figure 4).
Additionally, at the 5% significance level (α = 0.05), the test results showed that the t−value
is−3.34 and the p−value is 0.0087. Since the p-value is less than α, the results are statistically
significant. Therefore, it can be concluded that the difference under study is significant.

Example 2. In Example 1, we had a convex optimization problem, but in the following, we
present two functions that are non-convex. We want to minimize them by the proposed contin-
uous quantum evolutionary algorithm. Here, it is sufficient that put Γ = Γ1. The shapes of the
functions are shown in Figures 5 and 7, respectively. Now, let:

f1(x) = A+ x2 −Acos(2πx), A = 10, x ∈ [−5.12, 5.12], (42)

f2(x) = −xsin(
√
|x|), x ∈ [−300, 500]. (43)

As Figures 6 and 8 indicate, the proposed method converges all solutions to the minima
of the underlying functions. Moreover, the errors between the exact solutions (for example,
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Figure 5: The function f1(x) = A+x2−Acos(2πx).
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Figure 7: The function f2(x) = −xsin(
√

|x|).
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Figure 8: The convergence behavior of fCQEA
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min f1(x) = 0,min f2(x) = −418.9826) and the approximate solutions are reported in Table
6.

To solve optimization problems (42) and (43), two additional algorithms, namely MFO
(Magnet Fish Optimization) and GWO (Gray Wolf Optimizer), are implemented; their results
are demonstrated in Tables 6 and 7. As Table 6 demonstrates, the presented method converges
to optimal solutions with substantially higher accuracy, while incurring only a modest and ac-
ceptable increase in CPU time compared to the other methods.
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Table 6: Results of different algorithms for Example 2 (T = Npop = 100).

Algorithm Best Fitness (f1(x)) Best Fitness (f2(x)) Error CPU - Time (sec)

MFO -2.5017e-06 -418.9825974983 Error1 = −2.5017e− 06 CPU1 = 0.0156

Error2 = 0.0185 CPU2 = 0.1719

CQEA 3.3289e-12 -418.98260000000334 Error1 = 3.3289e− 12 CPU1 = 0.9688

Error2 = −1.6435e− 04 CPU2 = 0.2512

GWO 1.4888e-09 -418.9826000014888 Error1 = −3.7771e− 08 CPU1 = 0.2031

Error2 = 0.0378 CPU2 = 0.1875

Table 7 shows the results of the significance test between the algorithms. In the comparison
between the algorithm CQEA and the algorithm MFO (also, CQEA and GWO), the results of
the t-tests showed that the comparison was significant at the 0.05 significance level.

Table 7: Results of significance test between algorithms.

P-Value (Significance Level is 0.05)

CQEA &MFO CQEA &GWO

f1(x) t = −2.59, p = 0.0290 t = −2.38, p = 0.0412

f2(x) t = −2.32, p = 0.0412 t = −2.52, p = 0.0318

Example 3. Consider the following pseudo-convex optimization problem [9]:

min
xTAx+ cTx− 4

dTx+ 2

s.t. x ∈ Ω = {x ∈ R4 | 0 ≤ xi ≤ 10, i = 1, . . . , 4}. (44)

The CQEA algorithm was implemented to solve Example 3 and the results are listed in
Table 8 (T = Npop = 100). Also, the fitness function is plotted in Figure 9.
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Figure 9: Convergence behavior of fitness function for
Example 3.
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for Example 4.
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Table 8: The results of Example 3.

Example 3 x1 x2 x3 x4 f(x1, x2, x3, x4) CPU-Time(sec)

CQEA 0.0002 0.05 0.035 0.0007 -1.9930 18.7188

Neurodynamic Model [9] 0 0.282 0.423 0 -1.7428 -

Example 4. The CQEA algorithm is implemented with T = 100 and Npop = 100 for the
following example [4].

min x0.61 + 2x0.62 − 2x2 + 2x3 − x4
s.t.

x1 + 2x3 ≤ 4,

− 3x1 + x4 ≤ 1,

xi ∈ [0, 4], i = 1, . . . , 4. (45)

Table 9: Results of Example 4.

Example 4 x1 x2 x3 x4 f(x1, x2, x3, x4) f∗ claimed CPU-Time(sec)

CQEA 1.1292 3.8598 0.0134 3.8038 -5.9236 -2.07 0.7188

Example 5. Consider the following convex non-linear program [7]:

min − 2x1 − x2
s.t.

x21 + x22 ≤ 1,

x1 + 2x3 ≤ 2,

xi ∈ [−6, 6], i = 1, . . . , 4. (46)

The exact solution of this problem is f(0.8944, 0.4472) = −2.2360. We use the CQEA algo-
rithm to solve the problem (46) with T = Npop = 100. The results are given in Table 10.

Table 10: The result of Example 5.

Example 5 x1 x2 f(x1, x2) f∗(exact) CPU-Time(sec)

CQEA 0.9019 0.4283 -2.2321 -2.2360 1.2344

Example 6. (Three-bar truss design problem) This problem was first examined by Ray and
Saini [24]. Themain goal is to minimize the weight of bar structures. Three-bar truss problem is
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modeled as the following nonlinear constraint mathematical model. The problem is prescribed
mathematically as follows:

min
x1,x2

f(x) =
(
2
√
2x1 + x2

)
× L

s.t.g1(x) =

√
2x1 + x2√

2x21 + 2x1x2
P − σ ≤ 0,

g2(x) =
x2√

2x21 + 2x1x2
P − σ ≤ 0,

g3(x) =
1

x1 +
√
2x2

P − σ ≤ 0. (47)

where 0 ≤ x1, x2 ≤ 1.

Figure 11: Three bar truss design.
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Figure 12: The convergence behavior of fit-
ness function.

Let L = 100 cm, P = 2KN/cm2 and σ = 2KN/cm. Firstly, we implement CQEA
for T = 500, Npop = 200 and then compare the results obtained with two another algorithms
GWO andMFO. For implementing the proposed algorithm, put Γ = Γ2Γ1. To statistically
analyze the performance of the proposed method in this example, the P-Value index was used,
and its results are shown in Table 11.

Table 11: Comparison of CQEA with the other algorithms for three-bar truss design optimization.

Algorithm x1 x2 f(x) CPU-Time (sec) P-Value
GWO Algorithm 0.7839 0.4227 263.9958 0.6719 CQEA & GWO: t = −2.25, p = 0.0462

MFO Algorithm 0.7908 0.4030 263.9624 0.8594 CQEA & MFO: t = −2.17, p = 0.0486

CQEA Algorithm 0.8004 0.3954 263.9389 1.0025 -

Table 11 compares the performance of CQEA with the GWO and MFO algorithms in
solving the three-bar truss problem. As shown in this table, for the same parameters, the sim-
ulation results show that the proposed algorithm can approximate the optimal solution better
than the other two algorithms. The computational time of applying the optimization of the
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three-bar truss design with CQEA was 1.0025 seconds. This period shows that CQEA is at
an acceptable level in terms of execution time.

5.1 Performance Indexes

Now, we will examine the performance of the proposed algorithm (CQEA). For this aim, we
will implement a CQEA for test functions and then we will compute two performance indices
to show the convergence of this algorithm. Assume, we want to find the minimum of the test
function f(x) based on CQEAmethod. Optimal solutions computed by the presented algorithm
are considered as f∗Q(x).

Let:

Im(f) =
1

m

m∑
i=1

f∗Qi , Jm(f) =

√√√√ 1

m− 1

m∑
i=1

(
f∗
Qi − f∗

)2
, m = 100,

where f∗
Qi is i-th run of CQEA. For more investigation, we also calculated the minimum, max-

imum, and median of the mean value. The results are presented in Table 12. The convergence
plots of test functions are drawn in Figures 13 to 16.

6 Test Optimization Functions

In applied mathematics, the test functions are useful to evaluate characteristics of optimization
algorithms, such as convergence rate, precision, robustness, and general performance. In this
paper, we test the proposed algorithm with the famous test functions. The test functions are
divided into two categories, unimodal and multimodal test functions.

1. “Goldstein-Price’s ” function. The Goldstein-Price function is a global optimization
test function. It has only two variables and is modeled as follows:

f(x1, x2) =
[
1 + (x21 + x22 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

][
30 + (2x1 − 3x2)

2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
]
.

The test area is usually restricted to the square −2 ≤ xi ≤ 2, (i = 1, 2). Its global
minimum value is f(x) = 3 with optimum point (x1, x2) = (0,−1).

2. “Cross-in-Tray ” function. The Cross-in-Tray function has multiple global minima.
The function is usually evaluated on the square xi ∈ [−10, 10], (i = 1, 2).

f(x1, x2) = −0.0001

(
| sin(x1)sin(x2)exp

(
| 100−

√
x21 + x22
π

|

)
| +1

)0.1

.
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Its global minimum value is f(x) = −2.06261 corresponding to the points:

(x1, x2) = (1.3494,−1.3494), (1.3494, 1.3494), (−1.3494, 1.3494), (−1.3494,−1.3494).

Figure 13: Convergence behavior for Goldstein-Prices
test function.

Figure 14: Convergence behavior for Cross-In-Tray
function.

Table 12: Benchmark functions in experiments.

Test Function Im(Mean) Jm(Std) Mim Max Median Exact solution (fmin)

Goldstein-Prices 3.0334 0.0387 3.0220 3.0399 3.0342 3
Cross-In-Tray -2.0625 0.0001 -2.0626 -2.0625 -2.0625 -2.06261

High dimensional test functions

4. De Jong’s1 function. The first De Jong’s function is a continuous, convex and unimodal
test function. This function is defined as follows (for n = 10):

f(x) =
n∑
i=1

x2i .

The test area of this function is usually restricted to the hypercube

−5.12 ≤ xi ≤ 5.12, (i = 1, . . . , n).

Global minimum is f(x) = 0.

5. Rastrigin’s function. Rastrigin’s function is based on the function of De Jong with
the addition of cosine modulation in order to produce frequent local minima. Thus, the
test function is highly multimodal. However, the location of the minima are regularly
distributed. This function is defined as follows (n = 10):
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f(x) = 10n+
n∑
i=1

(
x2i − 10cos(2πxi)

)
.

Test area is usually restricted to hyphercube −5.12 ≤ xi ≤ 5.12 for i = 1, . . . , n. Its
global minimum equal f(x) = 0 is obtainable for xi = 0, (i = 1, . . . , n).

Figure 15: Convergence behavior and boxplot for De
Jong’s1 Function.

Figure 16: Convergence behavior and boxplot for Rast-
rigin’s Function.

Table 13: Benchmark functions in experiments.

Test Function Im(Mean) Jm(Std) Mim Max Median Exact solution (fmin)

De Jongs1 0.0528 0.0016 0.0522 0.05349 0.05286 0
Rastrigin 0 1.3057e-27 0 0 0 0

7 Sensitivity Analysis

In this study, to evaluate the impact of key parameters of the optimization algorithm, sensitivity
analysis on population parameters and number of generations was performed. The aim of this
analysis is to identify the parameters that have the greatest impact on the final performance,
especially the fitness value.

First, the effect of changing the parameter of the number of generations while keeping the
number of populations constant (fixed value 100) was investigated. In this experiment, the
generation was changed in different ranges (30 to 400 for functions f1 andf2 and 30 to 350 for
the Three-bar truss problem) and the results of the error and fitness in each case were recorded.

The results showed that the change in the generation to more than 100 has very little effect
to more than 100 has very little effect on the value of the fitness or error and the trend of
the error reduction was almost descending and finally from one generation onwards the error
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and fitness were constant, which shows that this parameter has little sensitivity to the number
of generations. In the next step, the number of populations was changed in the case where the
generation was kept constant. This experiment was carried out in different ranges (30 to 400 for
functions f1 and f2 and 30 to 350 for the Three-bar truss problem) and the results were recorded
for each case. The results show that increasing the number of populations to more than 100 has
very little effect and produces negligible improvements in error and fitness values. See Figures
17 to 19.
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Figure 17: Sensitivity analysis of the CQEA algorithm
for f1(x).
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Figure 18: Sensitivity analysis of the CQEA algorithm
for f2(x).
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Figure 19: Sensitivity analysis of the CQEA algorithm
for three-bar truss.

Overall, the results show that the algorithm is sensitive to the parameters of the number of
generations and the population size, and changing these parameters significantly affects per-
formance. However, after the parameters reach a certain value, increasing those parameters no
longer causes a significant change in either the error or the fitness, in which case, we say that
the sensitivity in that parameter has decreased and its value no longer has a significant effect
on the error.
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8 Conclusion

Traditional quantum evolutionary algorithms are restricted to problems with discrete and binary
decision variables and are not suited for optimization problems involving continuous decision
variables. To address this limitation , this study presents a novel quantum evolutionary opti-
mization algorithm. The proposed algorithm is constructed around three operators and a quan-
tum gate within a quantum computing framework. To evaluate the algorithm, three representa-
tive problem classes, convex, non-convex and efficiency-evaluation optimization problems are
considered. For each class, three benchmark test functions and two high-dimensional functions
are implemented, all based on the proposed algorithm, and the results are benchmarked against
the Grey Wolf Optimizer (GWO) and Magnet Fish Optimization (MFO) algorithms. The sim-
ulation outcomes indicate that the proposed algorithm yields solutions closer to the optimum
than both comparative methods.
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