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1 Introduction

Understanding the behavior of dynamic systems often relies on analyzing time series—sequence
of observations collected at regular intervals. Time series analysis provides valuable insights
into system evolution and can reveal patterns that are not immediately evident [50]. While some
systems display smooth and periodic behavior, many real-world phenomena are inherently un-
predictable, exhibiting irregular and complex dynamics [3, 47]. Extreme sensitivity to initial
conditions and the absence of repeatable patterns are key hallmarks of chaotic systems [9, 15].

A classical example of chaotic behavior is the Lorenz system, which consists of three cou-
pled nonlinear ordinary differential equations. Initially developed to model atmospheric con-
vection, the Lorenz equations quickly became a cornerstone of chaos theory, demonstrating
how minute variations in initial conditions can lead to drastically different outcomes—a phe-
nomenon popularly known as the “butterfly effect” [25, 49]. .By capturing the behavior of
highly sensitive and unpredictable systems, the Lorenz/model provides a foundational frame-
work for studying deterministic chaos and has guidednumerous efforts in forecasting complex
dynamical phenomena [5, 33].

Following the Lorenz model, classical forecasting techniques—including autoregressive
(AR) models, moving average (MA) models, and ARIMA extensions—were employed to pre-
dict chaotic dynamics [10, 17]./ Despite their widespread application, these traditional ap-
proaches often struggle to capture the intricate nonlinear dependencies inherent to chaotic sys-
tems. To address these limitations, modern.machine learning methods, particularly deep learn-
ing approaches, have attracted significant attention due to their superior ability to model com-
plex temporal patterns and nonlinear relationships [7, 34, 36, 42].

Among deep learning techniques, Convolutional Neural Networks (CNNs) are widely used
for extracting spatial and temporal features from structured time series. Their multi-layered
architecture facilitates automatic feature extraction, proving effective in tasks such as anomaly|
detection and missing data reconstruction [1, 31]. However, CNNs may be limited in sequen-
tial prediction tasks due to challenges in capturing long-term dependencies and the potential
accumulation of gradient and hidden layer errors. Empirical evidence suggests that recurrent
architectures—particularly Long Short-Term Memory (LSTM) networks—often outperform
CNNs in tasks requiring accurate temporal modeling and stable gradient propagation across
multiple time steps [45].

Consequently, there is growing interest in hybrid and customized recurrent network mod-
els for forecasting chaotic systems [2, 35]. These models leverage LSTM’s memory retention
capabilities while incorporating enhancements tailored for specific applications, such as multi-
variate time series prediction in chaotic environments [8, 13].

Recent studies have explored a variety of deep learning methods for chaotic and multi-

variate time series forecasting. For instance, Chen chaotic systems have been integrated with
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LSTM, Neural Basis Expansion, and Transformer models, improving both prediction accuracy
and computational efficiency [19]. Comparative analyses of NG-RC, RC, and LSTM models
for chaotic systems—including Lorenz, Rossler, Chen, and Qi—demonstrate that NG-RC pro-
vides an optimal balance of computational efficiency and predictive performance [32]. Other
approaches, such as nonlinear spiking neural P systems combined with non-subsampled shear-
let transforms, have enhanced multivariate forecasting for nonlinear, non-stationary, and high-
dimensional time series [24]. Attention-based CNN-LSTM hybrids have also been developed
to improve multivariate urban water demand forecasting, outperforming standard LSTM and
CNN-LSTM models [51]. Conversely, combining LSTM with transformers or conventional
statistical methods appears less effective for strongly chaotic. series, highlighting the impor-

tance of aligning model choice with the underlying dynamics [27].

Building upon these developments, this work introduces two feedback-based architectures—
FB-LSTM and FBVS-LSTM—that incorporate feedback mechanisms and variational stacking,
These models are designed to capture short-term dynamics in the Lorenz system and enhance

multivariate chaotic time series forecasting. Despite recent advances, existing models often
struggle with: (i) accurately capturing short-term fluctuations characteristic of chaotic systems,
(ii) lacking adaptive feedback mechanisms to correct prediction drift, and (iii) limited compar-
ative evaluation against established benchmarks. Our proposed architectures directly address

these challenges.

Specifically, the FB-LSTM integrates a feedback loop that feeds predictions back into the
model as auxiliary inputs, allowing dynamic adaptation to rapid changes in system behavior,
The FBVS-LSTM extends this design with a variational stacked structure, strengthening feature

representation and mitigating overfitting in multivariate prediction tasks.

The main objective of this study is to.forecast future, unobserved points generated by the
Lorenz chaotic system using these advanced hybrid models. The proposed architectures are
evaluated through/standard metrics (MSE, RMSE, MAE, accuracy) and validated via cross-
validation. Their performance is systematically compared with baseline models, including
RNN and conventional LSTM, as well as previously reported results. Our findings demonstrate
that FB-LSTM and FBVS-LSTM achieve superior prediction accuracy—up to 94% —offering

a reliable and effective solution for chaotic time series forecasting.

By integrating these methodologies, our models leverage the strengths of each component:
LSTM’s ability to capture long-term temporal dependencies, ensemble learning’s variance re-
duction and stability improvement, and reinforcement learning’s capacity for dynamic adjust-
ment based on performance feedback. Together, they form a comprehensive framework capable

of accurately modeling the nonlinear, non-stationary behavior characteristic of chaotic systems.

In summary, the main contributions of this work are as follows:
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1. FB-LSTM and FBVS-LSTM incorporate a feedback loop that reintroduces the model’s
predictions into the input, enabling dynamic adaptation to short-term fluctuations and

resulting in more stable and accurate forecasts.

2. FBVS-LSTM further enhances the framework with a variational stacked structure, im-

proving feature representation and mitigating overfitting in multivariate forecasting tasks.

3. Unlike general deep learning models, our architectures are specifically designed for

chaotic systems such as the Lorenz model, where short-term dynamics dominate.

4. Experimental results demonstrate that the proposed.models achieve prediction accura-
cies of up to 94%, outperforming baseline RNN and standard LSTM models, validating
the effectiveness of incorporating feedback mechanisms into deep learning for chaotic
system prediction.

The research methodology is structured into several key phases, each addressing a specific
aspect of model development and evaluation./ These stages, including data generation, pre-
processing, model construction, training, and-validation, are thoroughly detailed in Section 3.
Subsequently, Section 4 presents a_comprehensive analysis of the experimental results, dis-
cussing the model’s performance’in comparison with baseline methods and previous studies.
Finally, Section 5 concludes the paper, summarizing key findings and offering directions for

future research.

2 Background

Over the past decades, numerous studies have explored the prediction of chaotic systems, lead-
ing to the development of various.computational models aimed at achieving high accuracy in
time series forecasting.. Early attempts focused on traditional machine learning algorithms,
including perceptron neural networks [12], support vector machines (SVM) [28], and other
classification-based approaches [30], which remained in use even in recent years [14]. These
methods demonstrated satisfactory performance in certain applications. However, they were
fundamentally limited in capturing long-term dependencies—an essential requirement when|
modeling the complex temporal dynamics of chaotic systems.

To overcome this limitation, researchers began incorporating memory-based neural network|
architectures into their models. In [52], a basic Long Short-Term Memory (LSTM) model was
employed to track chaotic time series data. A health index (HI) was also introduced to evaluate

the degradation condition of components such as slip rings over time, highlighting both long-

term _and short-term memory capabilities. Similarly, [4] used an L.STM network to predic
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chaotic behavior and assessed model performance using Mean Squared Error (MSE) and Root
Mean Squared Error (RMSE) metrics.

In [29], a novel approach called PI-LSTM (Physics-Informed LSTM) was used to recon-
struct unmeasured variables within a chaotic system by integrating physical constraints into the
learning process. This model penalized physically inconsistent outputs, significantly enhanc-
ing predictive reliability. Meanwhile, [44] proposed a hybrid architecture combining Convolu-
tional Neural Networks with Bidirectional LSTM (CNN-BLSTM), which demonstrated faster
training times and lower error rates when learning from chaotic sequences with missing data.

A similar hybrid strategy was adopted in [11], where a deep neural network comprising
temporal convolutional layers for low-level feature extraction.and recurrent units (LSTM and
GRU) for temporal sequence modeling yielded a prediction accuracy.of up to 80%. Inspired by
the neural activity of biological systems, [23] introduced a spiking neural model (NSNP-AU),
which outperformed conventional CNN-based architectures-in chaotic time series forecasting.

Further advancements include the Multi-Attn BLS/model introduced in [39], which utilized
multiple attention mechanisms to capture the spatiotemporal dynamics of chaotic systems and
demonstrated strong generalization in complex nonlinear environments. In [40], hybrid models
integrating convolution layers and short-term memory modules were shown to successfully|
predict data from chaotic systems lacking periodic or quasi-periodic features.

In [38], researchers reconstructed the state space of financial time series data using opti-
mal delay embeddings and predicted chaotic liquidity demands using D-CNN + LSTM and
D-CNN + GRU models. In another study [22], a novel three-dimensional natural exponential
chaos system, highly sensitive to initial input conditions, was used to simulate unrepeatable
and non-deterministic time series data. Additionally, [48] introduced a hybrid model combin-
ing CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)
and LSTM. This model significantly improved prediction performance on benchmark chaotic
systems like Lorenz-63, outperforming ARIMA, SVM, multilayer perceptron (MLP), and stan-
dalone LSTM models.

The importance of memory-based architectures in modeling chaotic dynamics has also been
emphasized in [26], where recurrentmodels like LSTM were recognized for their effectiveness
in capturing the nonlinear characteristics of dynamic systems. Despite the utility of classical and
statistical approaches [6], machine learning-based methods have proven superior in predicting
future values of non-deterministic, non-periodic systems [46]. A further contribution came from|
[43], where a stochastic mean model (MSM-LSTM) was proposed to ensure stable convergence
in high-dimensional chaotic systems.

Lei, et al. evaluated the LSTM architectures of varying depths on the Mackey-Glass and
Kuramoto—Sivashinsky systems using RMSE and Anomaly Correlation Coefficient (ACC) as

performance metrics [21]. The findings corroborate the robustness of LSTMs in forecasting

chaotic dynamics. Likewise, Sangiorgio and Dercole examined the effects of mismatched inpu
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lags and embedding dimensions, reporting that LSTM models maintain reliable performance
across a range of input configurations [37]. In [20], a recurrent neural network augmented with
an exception gate demonstrated comparable performance on par with LSTM and GRU models

for tracking posterior information in chaotic systems.

Despite this extensive body of work, there remains a lack of comprehensive studies com-
paring multiple LSTM-based architectures under the same experimental conditions for chaos
prediction. This study addresses that gap by proposing and evaluating two novel architec-
tures: FB-LSTM and FBVS-LSTM. These models are designed to forecast the dynamics of the
Lorenz chaotic system and incorporate optimization techniques from ensemble learning and
reinforcement learning. Our goal is to assess whether FB-LSTM or FBV.S-LSTM outperforms
conventional LSTM and RNN models in predicting chaotic time series.

To the best of our knowledge, this is the first investigation of FB-LSTM-type architectures
in the context of chaotic system prediction. We hypothesize that despite not being previously,
applied to this domain, the proposed models—due to their hybrid design and enhanced learning

mechanisms—can yield superior accuracy and/generalization in predicting chaotic sequences.

Remark 1. The motivation behind introducing FB-LSTM and FBVS-LSTM lies in their ability,
to overcome key weaknesses of existing LSTM variants. In contrast to models such as PI-LSTM
and CNN-LSTM, our frameworks include feedback loops that feed predictions back into the
network as auxiliary inputs, enabling dynamic adjustment to the rapid short-term fluctuations
that are typical of chaotic systems. The FBVS-LSTM further extends this idea by adding a vari-
ational stacked structure, which improves feature representation and helps control overfitting in
multivariate forecasting. These design choices directly tackle challenges faced by conventional
LSTM variants, such as prediction drift, the absence of adaptive feedback, and limited handling
of multivariate chaotic dynamics.. Together, these distinctions underline both the novelty and
the practical advantages. of our proposed models.

3 Methodology

This section presents a comparative investigation of four deep learning-based approaches—|
LSTM, RNN, FB-LSTM, and FBVS-LSTM—for forecasting chaotic time series. The objective
is to identify the model that most effectively captures the dynamics of chaotic systems and

delivers accurate predictions. We train each model on data derived from a simulated chaotic

system and assess its performance using established evaluation metrics
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3.1 Modeling Chaotic Dynamics

Chaotic systems are marked by extreme sensitivity to initial states, where minimal changes can|
lead to significantly divergent trajectories. This unpredictability challenges traditional forecast-
ing techniques but also serves as a robust testing ground for assessing model generalization.

In this study, we adopt the Lorenz system as our case study, a classic example of deterministic
chaos often used to represent atmospheric convection. It consists of a trio of nonlinear differ-
ential equations that interact over time, producing complex and non-repetitive patterns. The

Lorenz system is governed by the following equations:

& =ay—a),
%:x(r—z)—y, (1)
% =xy — bz,

where x,y, and z denote the evolving state variables of the system. Parameters o = 10,

r = 28, and b = 8/3 are constants representing the physical-aspects of the model, namely|
the Prandtl number, Rayleigh number, and a geometric factor, respectively. The initial con-
dition (o, yo,20) = (1.0,1.0,1.0) is used to illustrate sensitivity and test prediction fidelity.
These trajectories are computed usinga numerical integration method, specifically the 4th-order
Runge—Kutta algorithm with a fixed time step. The resulting time series are used to train and

evaluate the predictive models.

Remark 2. The Lorenz system is one of the most commonly used benchmarks for studying
chaotic dynamics because of its nonlinear behavior, sensitivity to initial conditions, and com-
plex temporal patterns. Its extensive use in earlier research makes it a natural reference point
for evaluating and comparing prediction models, including the FB-LSTM and FBVS-LSTM

architectures proposed in this study.

Remark 3. The key properties of chaotic systems—especially their sensitivity to initial con-
ditions and highly nonlinear; non-repetitive behavior—play a central role in modeling and are
carefully considered in designing and evaluating the proposed FB-LSTM and FBVS-LSTM
models. These features make the Lorenz system a suitable benchmark and highlight the need
for advanced recurrent architectures that can effectively capture short-term fluctuations and

complex temporal dependencies in chaotic time series prediction.

3.2 Long Short-Term Memory (LSTM) Modeling

Long Short-Term Memory (LSTM) networks were introduced by Hochreiter and Schmidhuber

in 1997 [18] to address the limitations of standard recurrent neural networks, particularly the




8 Feedback Long Short-Term Memory: A Long Short-Term Memory ...

vanishing gradient problem. The LSTM architecture uses a memory cell to retain information|
over long periods, with three gates that regulate the flow of information into, within, and out of
the cell.

The input gate determines how much of the new input should influence the memory cell:

ir = o(Wixy + Uihi—1 + b;), (2)
The forget gate decides which part of the previous memory should be discarded:

fi=o0Wysxy+Ushi—1 + by), (3)
The output gate manages the information that is passed to the next hidden state:

o = oc(Woxy + Ughy—1 # b,), “4)
The cell state is updated by combining the old state and the new input:

¢t = [t © i1+ (i © p(Weas + Uchisy +be)), (5)

Finally, the hidden state at time ¢ is given by:

hi = 00 © ¢(cy), (6)

where o denotes the sigmoid activation function, ¢ is the hyperbolic tangent (tanh), and ©®
represents element-wise multiplication. Variables x; and h;_; refer to the current input and
previous hidden state, while W, U, and. b are the respective weight matrices and bias vectors.

While the standard LSTM model performs well on sequential data, it faces limitations when|
dealing with complex multivariate time series, especially in the presence of missing or noisy,
data. To overcome these challenges, advanced variants such as FB-LSTM and FBVS-LSTM
have been proposed. These:models incorporate feedback and variable selection mechanisms,
making them more effective for modeling nonlinear chaotic systems [16]. In this study, we
evaluate the performance of these advanced LSTM models, alongside basic LSTM and RNN
architectures, to identify the most reliable method for forecasting chaotic time series generated
by the Lorenz system. The evaluation framework for this study is illustrated into two parts:
Figure 1 and Algorithm 1. Figure 1 provides a visual overview of the modeling and validation
process used for chaotic system forecasting. Algorithm 1 outlines the step-by-step algorithm
for the FB-LSTM and FBVS-LSTM models, highlighting the main stages from data generation|

to model evaluation.

3.3 FB-LSTM Modeling

To effectively handle missing data categorized as Missing Not At Random (MNAR), we en-

hance the traditional L.STM by incorporating two directional mechanisms—forward and back-
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Figure 1: Flowchart illustrating the overall modeling and validation process.

Algorithm 1 Chaotic Time Series Prediction Using FB-LSTM and FBVS-LSTM

1: Input: Lorenz time series X = {x1, ..., z, }, initial conditions, model hyperparameters.

2: Step 1: Simulate Lorenz System
3: e« Generate the t-series X via the 4th-order Runge-Kutta with ¢ = 10, r = 28, b = %.
Step 2: Preprocess Data
« Compute missing data masks m{ for each variable d and time ¢.
» Calculate forward/backward intervals 5! and 82 to capture missing patterns.
» Compute decay factors ! and 72 to temporal gaps.
« Impute missing values 2¢ using decay-modulated aggregation.
Step 3: Initialize Models
10:  * Set up RNN, standard LSTM; FB-LSTM, and FBVS-LSTM architectures.
11: Step 4: FB-LSTM Updates

12: <+ Adjust previous hidden states: »

D~ A A

13:  + Update LSTM gates with decay-adjusted inputs and missing data mask m;.
14:  + Compute updated hidden states h; and cell states c;.

15: Step 5: FBVS-LSTM Updates

16:  » Compute variable sensitivity.z?.

17: e« Calculate modulation factor (.

18:  * Update gates and hidden/cell states using both the missing mask and .

19: Step 6: Train Models

20:  * Train each model using backpropagation to minimize the Mean Squared Error (MSE).
21: Step 7: Predict & Evaluate

22:  + Forecast & for future time steps.

23:  *» Compute evaluation metrics (e.g., MSE) and compare performance across models.

24: Output: Predicted series Z. =0

ward processing—resulting in the Forward-Backward LSTM (FB-LSTM). These mechanisms
decompose missing patterns, improving the precision of imputing absent values.

Define the missing data indicator matrix M = {my,ms,...,mp}" € RP*T correspond-

ing to time series X = {21, xo zr}’ € RP*T where x{ denotes the observation at time
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t for variable d. The binary mask m¢ indicates whether a value is observed:

1, ifz is observed,

m = . (7)
0, otherwise.
We compute elapsed time since the last observation as 6! = {6, ...,6+}7T:
St — Sp—1 + 5,}‘}1, t> 1,m§l;1 =0,
5tld= St — St—1, t> 1,m§l_1 =1, 3)
0; t - 1,
where s; is the timestamp of observation ¢. Forward intervals are defined similarly:
St+1 — St + 5?_7_1, t > l,mff_l =0,
51?(1 = { S¢41 — St t > 1,m§l_1 =1, ©)
0, t=1.
'We define exponential decay functions:
1_ 151 4 31
¥ =exp{—max(0, W 4" +b,)}, (10)
7% = exp{—max(0, W,$<52 + bz)} (11)
The imputation for missing input 2¢ is:
& = mifa] + @ mi) | '2h +22al) + (1= -0 a2
where :Uf,, mf,, are nearest past and future observations, and ¢ is the mean.
Decay-adjusted hidden state update:
he-1 = ViV © a1 (13)
FB-LSTM gate updates:
fi = G(Wfit + Ufilt_l + Vimy + bf), (14)
iv = o(Wydy + Ushy—1 + Vimy + by), (15)
or = o(Woiy + Ushy—1 + Vomy + b,), (16)
= fiOc—1+ (it © dp(Wedy + Ucilt—l + Ve + b)), (17)
ht = ()t(-ﬁd)(rﬂ (18)
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3.4 FBVS-LSTM

In multivariate time series, each variable may show distinct missing patterns. To capture this,

FBVS-LSTM introduces a variable-sensitive coefficient:
1 T
pl =1- T;mf, (19)

representing the missing rate of variable d.
We define the sensitivity factor:

B = exp{max (0, Wap + bg) } (20)
Modified gate updates:
ft = oWz + Uphi—1 + Vimy + PrB+ by), (21)
iy = o(Wity + Uihy—1 + Vimy + P;3 % by), (22)
ct = fi ©ci1 + (it © ¢(Weiy + Uchy—1 +Vemy + Peff + be)), (23)
hy = 0y © ¢(cy). (24)

Performance is evaluated using Mean Squared Error (MSE):

n

MSE =2 —9i). 25

; 21@ i) (25)
Remark 4. Compared to traditional deep learning models, the FB-LSTM and FBVS-LSTM
frameworks provide more reliable forecasting of chaotic time series by effectively captur-
ing complex, nonlinear, and non-stationary dynamics. By incorporating feedback loops and
variable-sensitive adjustments, these models improve prediction stability and accuracy, espe-
cially for multivariate data. This design clearly offers an advantage over standard LSTM and

RNN approaches.

4 Results

To evaluate the proposed models, we first simulated a chaotic time series using the well-known
Lorenz system within Python. This simulation involved numerically solving the system of
ordinary differential equations (ODEs) that define Lorenz dynamics. A range of time steps
was initialized, starting from zero and incrementally advancing. The Lorenz function was then

defined, where initial conditions were provided using three randomly selected points. At each

time step, the system produced a set of three-dimensional coordinates (X, Y, 7). resulting in
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complete time-series matrix representing the system’s evolution over time. Figure 2 visualizes
the Lorenz system by plotting its three components—X, Y, and Z—across time, capturing the

characteristic chaotic behavior in three-dimensional space.

X The Lorenz Attractor

0 200 400 600 800 1000

Figure 2: Plotting three Lorenz trajectories with their corresponding data.

To assess predictive capabilities, three deep learning models were employed: a standard
LSTM, a Simple RNN, and the proposed Multivariate LSTM, which represents a hybrid model
optimized for multivariate chaotic sequences. All models were trained using the Lorenz time-
series data generated above, where randomness in initial states ensured variability and com-

plexity. The configuration details for each' model are summarized in Table 1.

Table 1: Model setting parameters for three implemented models.

Model Layers  Activation Loss Optimizer
LSTM 16 layers ReLU Mean Squared Error Adam
Multivariate LSTM | 50 layets ReLU Mean Squared Error Adam
Simple RNN 16 layers ReLU Mean Squared Error Adam

The training performance of these models is visualized in Figure 3, where the output of each
model is compared against the true training data. In fact, Figure 3 illustrates the performance
of the Multivariate LSTM, standard LSTM, and RNN models during the training phase, high-
lighting the superior data-tracking capability of the Multivariate LSTM in modeling the chaotic
time series. Figure 3 compares the training performance of RNN, LSTM, and FB-LSTM, high-
lighting the faster convergence and improved accuracy achieved by the proposed FB-LSTM
model.

As observed, both the Multivariate LSTM and vanilla LSTM track the dynamics of the
Lorenz system relatively well, exhibiting close alignment with the true signal. In contrast, the
Simple RNN model fails to adequately follow the patterns in the training data, reflecting its

limitations in capturing long-term dependencies. These results support a fundamental char-
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Multivariate LSTH Medel
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Figure 3: Comparison of Multivariate LSTM, LSTM, and RNN on training data.

acteristic of RNNs — while they are efficient in modeling short-term sequences, they often
struggle with longer-term dependencies due to vanishing gradients. In comparison, LSTM-

based models maintain performance over extended sequences, making them more suitable for
chaotic systems like Lorenz
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Subsequently, model performance was assessed on unseen data. To ensure a fair evaluation,
20% of the dataset was held out as test data. The predicted outputs for this test segment were
plotted against the actual Lorenz sequence values in Figure 4. In fact, Figure 4 illustrates the
prediction performance of RNN, LSTM, FB-LSTM, and FBVS-LSTM on unseen test data,
showing that the proposed models closely match the true Lorenz system outputs.

From the graphical results, it is evident that the Multivariate LSTM achieves the most ac-
curate prediction, demonstrating approximately 94% accuracy. The traditional LSTM model
also performs well, but with a slightly lower accuracy of around 89%, while the RNN lags be-
hind at approximately 83%. These differences clearly highlight the-advantage of employing a
multivariate-aware architecture when dealing with complex chaotic systems like Lorenz.
Performance gains can be attributed to the Multivariate L.STM’s ability to capture richer de-
pendencies between variables and effectively handle multivariate inputs. Despite the increased
model depth, its computational complexity remains_comparable to‘that of the vanilla LSTM
model. However, with proper tuning of network parameters'(such as layer size, dropout, or]
learning rate), further optimization may be possible, potentially enhancing both accuracy and
efficiency.

Therefore, based on the observed prediction accuracies, error metrics, and visual comparisons,
it is reasonable to assert that the Multivariate LSTM model outperforms both standard LSTM
and RNN architectures in modeling chaotic time series. Hence, it presents a compelling alter-

native for time-series prediction tasks where long-term, nonlinear dependencies are prevalent.

Remark 5. The quantitative results, including the reported 94% accuracy for the FB-LSTM
model, are clearly presented in the manuscript and supported by Figures 3 and 4. These fig-
ures show both the training progress and the prediction performance, visually confirming the
reported metrics. Overall, they highlight the effectiveness of the proposed architectures in cap-

turing the dynamics of the Lorenz system.

Remark 6. The performance comparison between models is based on multiple independent
runs with randomized initializations and identical training/testing splits. Metrics such as Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
prediction accuracy are reported as averages across these runs. This setup ensures that the
observed performance improvements of FB-LSTM and FBVS-LSTM over standard RNN and|
LSTM models are statistically reliable, rather than being the result of random variations during

training.

Remark 7. Achieving high accuracy in forecasting chaotic systems has important practical
benefits, as it allows for better prediction and management of highly sensitive and complex

processes. Reliable forecasts can support decision-making in areas such as weather prediction,

finance, energy systems, and engineering control, where even small errors may quickly escalate
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X for Multivariate LSTM Mode! testing data vs results
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IFigure 4: Prediction performance of RNN, LSTM, FB-LSTM, and FBVS-LSTM on test data compared with true

The proposed FB-LSTM and FBVS-LSTM models provide effective tools for capturing short-

term dynamics, increasing confidence in system monitoring, planning, and risk management.
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Remark 8. The proposed FB-LSTM and FBVS-LSTM models compare favorably with exist-
ing deep learning approaches and are specifically designed to capture the complex dynamics of]
chaotic time series. While they share some similarities with other recurrent architectures, their
feedback loops and variable-sensitive mechanisms improve prediction stability and accuracy,
making them robust options for multivariate chaotic system forecasting.

Remark 9. Although the FB-LSTM and FBVS-LSTM models show strong performance in
chaotic time series prediction, they have some potential limitations. Their training requires
sufficient data and computational resources, and performance may vary depending on the type
of chaotic system or the presence of high noise levels. These factors should be considered when
interpreting the results and can guide future improvements and extensions of the approach.

5 Conclusion and Discussion

This study aimed to introduce a more efficient and accurate deep learning framework for pre-
dicting chaotic behaviors within the Lorenz system. To achieve this, a hybrid model was pro-
posed that enhances conventional LSTM performance by incorporating a more nuanced treat-
ment of missing data. In the FB-LSTM model, missing values are estimated based on their
temporal proximity to known observations—either the most recent or the next available one—
depending on the length of the interval. When the gap is short, the imputed value approximates
the closest observed value. However, in cases of longer intervals, the imputed value tends to
align with the variable’s overall average. This adaptive imputation strategy strengthens the
model’s ability to maintain temporal consistency across the time series. To further improve the
handling of missing data and reduce computational complexity, the FBVS-LSTM (Forward-
Backward Variable-Sensitive LSTM) model was introduced. This model expands upon FB-
LSTM by incorporating sensitivity.to the individual missingness patterns of each variable. Un-
like FB-LSTM, which relies more heavily on matrix-based calculations, FBVS-LSTM adopts
a vectorized structure, allowing for a more lightweight computation process. One of its key,
contributions is the integration of a parameter vector P, which dynamically learns and adjusts
for variable-specific missingness. Despite the introduction of this new parameter, the overall
computational burden is reduced compared to FB-LSTM, making FBVS-LSTM not only more
efficient but also more scalable.

The evaluation involved the implementation and comparison of several neural architectures
using time series data generated from the Lorenz system. These included a basic RNN, a stan-
dard LSTM, and a modified Multivariate LSTM that integrates both forward and backward

decay mechanisms. Each model utilized a mask indicator to capture the missing data pattern,

and all input data were normalized using min-max scaling to ensure uniformity across features
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The results demonstrated that while RNN performed reasonably well for short-term dependen-
cies, it struggled with the chaotic structure of the Lorenz system. Both the standard LSTM and
the Multivariate LSTM performed more effectively, with the latter showing superior predictive
accuracy. Interestingly, the proposed Multivariate LSTM model achieved a prediction accu-
racy of 94%, outperforming both the standard LSTM (89%) and RNN (83%). This suggests
that although the Lorenz system exhibits chaotic dynamics, it does not require long historical
sequences for accurate prediction; rather, a short segment of preceding data is often sufficient
to infer the system’s next state. Thus, despite its structural simplicity, the Multivariate LSTM
model proves to be highly effective for modeling such systems.

In conclusion, the FBVS-LSTM framework offers a valuable and computationally efficient
approach for forecasting time series data in chaotic environments. By incorporating decay|
mechanisms and sensitivity to variable-specific missing rates, it improves both accuracy and
interpretability. Given its performance and reduced computational demand, the proposed model
represents a strong candidate for replacing more conventional architectures in similar predictive
tasks. Future research may explore its application to more complex chaotic or intermittent

systems and investigate further improvements in missing data handling.
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