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1 Introduction

Integer-order differential equations fail to model numerous phenomena, including aspects of statistical
mechanics, nonlinear earthquake vibrations, and continuum and fluid-dynamic transport, e.g., [2, 8, 19].
Although the concept of fractional calculus dates back to Newton and Leibniz, it has attracted substantial
renewed attention in recent years. A notable advantage of fractional derivatives in dynamic systems is
their nonlocality, meaning that the current state depends on the entire history of the system [9].

Transport dynamics and anomalous diffusion are ubiquitous. In nature, many complex-system phe-
nomena have been effectively described using enhanced fractional differential equations. Samko and
Ross introduced the theory of variable-order operators through Fourier-transform methods and the no-
tion of variable order [22]. The variable-order fractional (VOF) derivative offers a robust mathematical
framework for modeling complex dynamics in porous and heterogeneous environments and encom-
passes multiple definitions depending on the context [13, 18]. Research on VOF partial differential
equations is still in its early stages, and numerical approximation methods for these equations are ac-
tively being developed.

A new set of equations, the advection-dispersion equations, is obtained by combining the advection
and diffusion processes. The mobile–immobile model is a special case of this formulation. These equa-
tions are used to model pollutant transport, energy transfer, and subsurface/river flows in the subsurface
and in deep river systems [4, 6, 7, 15].

Significant progress has been made in approximating VOF mobile-immobile advection-dispersion
equations. For example, some numerical methods for two-dimensional arbitrary domains have been
introduced, including reproducing kernel theory and collocation method (RKM) [14], the approximate
implicit Euler method [27], the Chebyshev wavelets method [11], a meshless MLS-based approach [24],
and the shifted Jacobi Gauss-Radau spectral method expressed in the Coimbra sense for time-variant
fractional derivatives [17].

In the present study, we apply the Ritz-approximation method using Shifted Legendre polynomials
to solve the VOF mobile-immobile advection-dispersion equations. These equations are formed by
incorporating the time VOF derivative in the Caputo sense, with 0 < α(x, t) ≤ 1, into the standard
advection-dispersion equation [20], which models solute transport and total concentration in watershed
catchments and rivers. The governing equation under consideration has the following form:

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C vxx(x, t) = g(x, t), (x, t) ∈ [0, a]× [0, b], (1)

under the following initial and boundary conditions:v(x, 0) = ϕ(x), x ∈ [0, a],

v(0, t) = ψ1(t), v(b, t) = ψ2(t), t ∈ [0, b],

where η1, η2 ≥ 0, B > 0, C > 0, and cDα(x,t)
t denotes the Caputo variable-order fractional derivative

with respect to time. ϕ(x), ψ1(t), ψ2(t) are enough smooth functions that are given and v(x, t), is the
unknown function to be determind.

This paper is organized as follows: in Section 2 several preliminaries of the VOF derivative and
SLP are represented. In Section 3, function approximation is described. In Section 4, the error bound is
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estimated and in Section 5, the Ritz method is defined. In Section 6, several numerical examples have
been solved by the stated method, and results are shown. Finally, conclusion is made in Section 7.

2 Preliminaries and Definitions

In this section, we present several essential preliminaries and definitions related to the VOF derivative
and SLPs, which provide the foundational tools for the proposed method.

2.1 Fractional Variable-Order Derivative

The definitions of left and right VO Riemann-Liouville integrals with hiding memory are then proposed
as [3]

aI
α(x,t)
t f(t) =

t∫
a

1

Γ(α(x, t))
(t−s)α(x,t)−1f(s)ds,

and

tI
α(x,t)
b f(t) =

b∫
t

1

Γ(α(x, t))
(s−t)α(x,t)−1f(s)ds.

The left-side and right-side VO Riemann-Liouville fractional derivatives are stated as [5]

RL
a D

α(t)
t f(t) =

1

Γ(n− α(t))
dn

dtn

t∫
a

(t−s)n−α(s)−1f(s)ds, n− 1 < α(t) < n,

and

RL
t D

α(t)
b f(t) =

(−1)n

Γ(n− α(t))
dn

dtn

b∫
t

(s−t)n−α(s)−1f(s)ds, n− 1 < α(t) < n.

Meanwhile, the left Riemann-Liouville fractional derivative of order α(s, t) is defined as [16].

RL
a D

α(x,t)
t f(t) =

dn

dtn
(

1

Γ(n− α(s, t))

t∫
a

(t−s)n−α(x,t)−1f(s)ds).

The right Riemann-Liouville fractional derivative of order α(x, t) is stated as

RL
t D

α(x,t)
b f(t) =

dn

dtn
(

(−1)n

Γ(n− α(s, t))

b∫
t

(s−t)n−α(x,t)−1f(s)ds).

Because the initial conditions for the FDEs with the Caputo derivatives are the same as the integer order
differential equations, Caputo type definition is extremely useful in many application fields.

Definition 1. The Caputo VOF derivative of order α(x, t) concerning to t for the assumed function
v(x, t) can be specified as follows [23].
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cDα(x,t)
t v(x, t) =

 1
Γ(k−α(x,t))

∫ t

0

v(k)
µ (x,µ)

(t−µ)α(x,t)−k+1 dµ, k − 1 < α(x, t) < k,

v
(k)
t (x, t), α(x, t) = k,

(2)

that k ∈ N and Γ(·), is the Gamma function. If the value   of α(x, t) is an integer, the VOF Caputo
derivative can be defined identically with the integer-order derivative.

In the following, we represent some general properties of the VOF Caputo derivative. The linearity
is the common property between the fractional derivative and the integer-order derivative.

Dα(x,t)(λ1 v(x, t) + λ2 v(x, t)) = λ1 Dα(x,t)v(x, t) + λ2 Dα(x,t)v(x, t),

Where the value of λ1, and λ2, are constant and Dα(x,t) is in the range k− 1 < α(x, , t) ≤ k, meets the
property given below:

Dα(x,t)
t C = 0 (C is a constant),

Dα(x,t)
t tm =

0, m = 0, · · · , k − 1,
Γ(m+1)

Γ(m+1−α(x,t)) t
m−α(x,t), m = k, k + 1, . . . .

2.2 Notation for Two Dimensional Shifted Legendre Polynomials

The Legendre polynomials are a well-known family of orthogonal polynomials on the interval [−1, 1].
They can be defined using Rodrigues’ formula as follows:

Pm(y) =
1

(2mm!)
· d

m(y2 − 1)m

dym
, m = 0, 1, 2, · · · .

The first few Legendre polynomials are: P0(y) = 1, P1(y) = y. To define these polynomials on
x ∈ [c, d], we perform a change of variable y = 1

d−c [2x− (d+ c)], the SLPs P ∗
m(x) are obtained.

The Two dimensional Shifted Legendre polynomials constructed by taking the product of one-
dimensional SLPs in each direction. For Ω = [0, a]× [0, b], we define:

P ∗
mn(x, t) = P ∗

m(x) · P ∗
n(t)

= Pm(
a

2
(y + 1)).Pn(

b

2
(s+ 1)), m, n = 0, 1, . . . .

We cosider these polynomials in the space L2(Ω) equipped with the following inner product and
norm:

⟨v(x, t), u(x, t)⟩ =
∫ b

0

∫ a

0

v(x, t).u(x, t)dxdt, (3)

∥v(x, t)∥2 = ⟨v(x, t), v(x, t)⟩. (4)

These polynomials in L2(Ω) form a complete system with the orthogonality property∫ a

0

∫ b

0

P ∗
mn(x, t).P

∗
ij(x, t)dtdx =

a.b

(2m+ 1)(2n+ 1)
δmn,

form = i, n = j and δmn indicate the Kronecker delta function.



Sheykhi, et al./ COAM, 11 (1), Winter-Spring (2026) 105

3 Function Approximation

Any function v(x, t) ∈ L2(Ω) admits an infinite expansion in terms of two-dimensional SLPs:

v(x, t) ∼=
∞∑

m=0

∞∑
n=0

cmnP
∗
mn(x, t),

where the coefficients cmn are uniquely determined by the inner product:

cmn = (
2

a
n− 1)(

2

b
m− 1)

∫ a

0

∫ b

0

P ∗
mn(x, t).v(x, t)dtdx.

Let H = span{P ∗
mn}rm,n=0 ⊂ L2(Ω). For v(x, t) ∈ L2(Ω), the best approximation from H is ṽ(x, t)

[12], such that for each u ∈ H,
∥v − ṽ∥ ≤ ∥v − u∥.

Since H is finite dimensional, the best approximation ṽ(x, t) can be expressed as a finite sum

ṽ(x, t) =

r∑
m=0

r∑
n=0

cmnP
∗
mn(x, t), (5)

and the coefficients are given by the orthogonality:

cmn =
⟨ṽ(x, t), P ∗

mn(x, t)⟩
∥P ∗

mn(x, t)∥2
.

4 Estimate the Error Bound

Theorem 1. Let v(x) ∈ Cm+1[0, L] and let X = span{P ∗
0 (x), · · · , P ∗

m(x)} be a finite-dimensional
space. If ṽ(x) is the best approximation to v(x) in X , then

∥v(x)− ṽ(x)∥2 ≤
Um.R

2m+3
2

(m+ 1)!
√
2m+ 3

, x ∈ [xi, xi + 1] ⊆ [0, L],

where R = max[xi, xi + 1], Um = max
x∈[0,L]

|v(m+1)(x)|.

Proof. See [1].

Theorem 2. Let v(x, t) ∈ Cm+1(Ω) and let ṽ(x, t) ∈ H be the best approximation defined in Equation
(5). Then the error satisfies the following bound.

∥v(x, t)− ṽ(x, t)∥2 ≤
2.M(Kx +Kt)

m+2

(m+ 1)!
√

(2m+ 3)(2m+ 4)
.

Proof. We recall the two variable Taylor’s series expansion of v(x, t)

v(x, t) =

m+1∑
p=0

1

p!

p∑
r=0

(
p

r

)
∆xr.∆tp−r ∂

pv(x, t)

∂xr∂tp−r
. (6)
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Since ṽ(x, t) ∈ H , its Taylor’s series expansion is

ṽ(x, t) =

m+1∑
p=0

1

p!

p∑
r=0

(
p

r

)
∆xr.∆tp−r ∂

pv(x, t)

∂xr∂tp−r
. (7)

By considering that the all of partial derivatives of v(x, t) up to order m + 1 are bounded byM , thus
the difference of two equations (6) and (7) give the following result:

|v(x, t)− ṽ(x, t)| = 1

(m+ 1)!

∣∣∣∣∣
m+1∑
r=0

(
m+ 1

r

)
∆xr.∆tm+1−r ∂

m+1v(x, t)

∂xr∂tm+1−r

∣∣∣∣∣
≤ M

(m+ 1)!
(|∆x|+ |∆t|)m+1

.

Regarding the norm as defined in Equation (3), we deduce that

∥v(x, t)− ṽ(x, t)∥22 =

∫ a

0

∫ b

0

|v(x, t)− ṽ(x, t)|2dtdx

≤
∫ a

0

∫ b

0

( M

(m+ 1)!
(|∆x|+ |∆t|)m+1

)2
dtdx

=
M2

((m+ 1)!)
2

∫ a

0

∫ b

0

(|∆x|+ |∆t|)2m+2 dtdx

≤ 4M2(Kx +Kt)
2m+4

((m+ 1)!)
2
(2m+ 3)(2m+ 4)

,

whereKx = max |∆x|,Kt = max |∆t|. By taking square root from two side the result is obtained.

5 Description of the Method

In 1908, Ritz introduced a simple and effective scheme for solving initial and boundary value prob-
lems. In this method, the approximate solution is expressed as a truncated series, and the continuous
problem is converted into a discrete algebraic system. Since the resulting system is relatively small, the
computational effort is significantly reduced.

We estimate the v(x, t) in Equation (1) as the following form

v(x, t) ∼= ṽ(x, t) =

n∑
i=0

n∑
j=0

cijκ(x, t)P
∗
ij(x, t) + w(x, t), (x, t) ∈ Ω, (8)

which P ∗
ij is the SLPs used as basis functions and κ(x, t) is a function that satisfies the homogeneous

part of the initial and boundary conditions.

κ(x, t) = (x− 1)xt.

The function w(x, t), called the satisfier function,is chosen to satisfy initial and boundary conditions
[26]. It is usually constructed based on the known data of the problem. Experience shows that selecting
w(x, t) to be close to the exact solution improves the efficiency of the computation [25]. A practical and
effective choice for w(x, t)
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w(x, t) = ϕ(x) + (1− x)(ψ1(t)− ψ1(0)) + x(ψ2(t)− ψ2(0)). (9)

We use the Equations (8) - (9) and substituting them in Equation (1)

η1 ṽt(x, t) + η2
cD

α(x,t)
t ṽ(x, t) +B ṽx(x, t)− C ṽxx(x, t) = g(x, t). (10)

To approximate ṽ(x, t), we evaluate Equation (10) at the roots of Legendre polynomials, leading to a
nonlinear algebraic system. This system is solved numerically using Mathematica 10, and the unknown
coefficients cij are determined accordingly.

6 Illustrative Examples

In this section, the suggested method is employed for solving several test problems. The outcomes
showed that this method is precise and efficient. On the other hand, since the small number terms of the
series are used to approximate the solution, this method has high computational value. The error in the
examples is calculated as follow

En = |u(xi, b)− un(xi, b)|,

where n is degree of SLPs. In all examples, for computing cij we consider n = 2. The figures and tables
presented below correspond to Theorems 1 and 2 in the examples section. According to these results, the
error generated by this method decreases progressively as the number of sentences increases, stabilizes
at a negligible level, and ultimately approaches a well-defined bound.

Example 1. Consider the VOF mobile-immobile equation such as was defined in Equation (1) [21]:

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C v(x, t) = g(x, t), (11)

regarding the following initial and boundary conditionsv(x, 0) = 10x2(1− x)2, x ∈ [0, 1],

v(0, t) = v(1, t) = 0, t ∈ [0, b],

where (x, t) ∈ [0, 1]× [0, b] and

g(x, t) = 10(1− x)2x2 + 10x2(1− x)2t1−α(x,t)

Γ(2− α(x, t))
+ 10(t+ 1)(2x− 6x2 + 4x3)

− 10(1 + t)(12x2 − 12x+ 2),

and its exact solution is v(x, t) = 10x2(1− x)2(1 + t).
The values of parameters are η1 = η2 = B = C = 1 and α(x, t) = 1 − 1

2e
−xt. The satisfier function

regarding Equation (9) is calculated as

w(x, t) = 10x2(1− x)2.

Substituting this into Equation (11) and solving the resulting algebraic system, the coefficients cij are
obtained as
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c00 = −1.6667, c01 = 4.0214× 10−15, c02 = −1.373× 10−15,

c10 = −8.1824× 10−15, c11 = 7.9319× 10−15, c12 = −4.1486× 10−15,

c20 = 1.6667, c21 = 2.7589× 10−15, c22 = −1.5775× 10−15.

The absolute error of the presented method (PM) is shown in Figure 1. We compare our numerical
results with (i) finite differences with Haar wavelets from [10] and (ii) Hahn polynomials with an opera-
tional matrix (Hahn) from [21] at b = 1, as reported in Table 1. Furthermore, Figure 2 presents both the
approximate and exact solutions. The comparison in Figure 2 indicates that the approximate solution
matches the exact solution very close almost everywhere in the interval and for any x and t.

Figure 1: The absolute error En for Equation (11).

Table 1: Comparison of absolute errors at b = 1 for Equation (11).

x PM (n = 2) Ref. [10] Hahn (n = 5) [21]

0.1 1.39× 10−17 3.19× 10−5 3.75× 10−13

0.2 3.30× 10−17 5.92× 10−5 4.41× 10−13

0.3 1.25× 10−16 8.22× 10−5 4.42× 10−13

0.4 2.22× 10−16 1.00× 10−4 3.40× 10−14

0.5 4.16× 10−16 1.12× 10−4 3.35× 10−13

0.6 7.77× 10−16 1.15× 10−4 8.70× 10−14

0.7 8.19× 10−16 1.08× 10−4 1.05× 10−12

0.8 8.62× 10−16 8.94× 10−5 1.36× 10−10

0.9 6.25× 10−16 5.50× 10−5 6.40× 10−13

Table 1 highlights the advantages of the proposed scheme, as it achieves high accuracy using sig-
nificantly fewer points compared to previous methods.

Example 2. Consider another VOF advection-dispersion in mobile-immobile cases [21]

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C v(x, t) = g(x, t), (x, t) ∈ Ω, (12)

where
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approximte

exact

Figure 2: The approximate and the exact solution of Equation (11).

v(x, 0) = 5x(1− x), x ∈ [0, 1],

v(0, t) = v(1, t) = 0, t ∈ [0, b],

that Ω ∈ [0, 1]2 and

g(x, t) = 5x(1− x) + 5x(1− x)t1−α(x,t)

Γ(2− α(x, t))
+ 5(1 + t)(1− 2x) + 10(1 + t),

and
v(x, t) = 5x(1− x)(1 + t),

is the exact solution.
The parameters of Equation (12) are taken as

η1 = η2 = B = C = 1, and α(x, t) = 0.8 + 0.005 sinx cos tx.

The w(x, t) = 5x(1− x) is satisfier function, and the unknown cij are

c00 = −5, c01 = 2.4157× 10−15, c02 = −1.2195× 10−15,

c10 = 7.0168× 10−16, c11 = −5.7017× 10−16, c12 = 6.1121× 10−16,

c20 = 5.1988× 10−17, c21 = 1.0543× 10−16, c22 = −1.6736× 10−16.

The absolute error is shown in Figure 3, and the exact versus approximation solutions at t = 1 are
drawn in Figure 4. Additionally, the numerical performance of the current method is compared with
reproducing kernel with collocation method (RKM) from [14] and Hahn polynomials from [21] in Table
2.

Example 3. Consider the following equation which has an exact solution v(x, t) = t3ex [21]:

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C vxx(x, t) = g(x, t), (x, t) ∈ Ω, (13)

subject to the following conditionsv(x, 0) = 0, x ∈ [0, 1],

v(0, t) = t3, v(1, t) = et3, t ∈ [0, b],
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Figure 3: The absolute error En for Equation (12).

Table 2: Comparison of absolute errors at b = 1 for Equation (12).

x PM (n = 2) Hahn (n = 10) [21] RKM (n = 13) [27]

0.1 3.33× 10−17 7.77× 10−16 0
0.2 0 8.88× 10−16 2.22× 10−16

0.3 6.12× 10−17 8.88× 10−16 4.44× 10−16

0.4 0 4.44× 10−16 0
0.5 6.77× 10−17 0 0
0.6 0 0 4.44× 10−16

0.7 2.02× 10−16 4.44× 10−16 0
0.8 2.09× 10−16 0 0
0.9 2.03× 10−16 5.55× 10−16 6.66× 10−16

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

uexact,uapp

exact

approx

Figure 4: The exact and approximate result of Equation (12) at b = 1.

where g(x, t) = ex(3t2 + 3t3−α(x,t)

Γ(4−α(x,t)) − t
3) and the parameters of the equation are considered η1 =

2η2 = B = 1
2C = 1 and α(x, t) = 0.8 + 0.02e−x sin t. The w(x, t) = t3(1 − x + ex), is the satisfier

function and the unknown cij are obtained as

c00 = 0.2825, c01 = 0.4237, c02 = 0.1413,

c10 = 0.0469, c11 = 0.0704, c12 = 0.0235,

c20 = 0.0039, c21 = 0.0058, c22 = 0.0019.
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The exact and approximation solution in Figure 5 is drawn when t = 1 and our numerical results
are compared with those obtained using Hann polynomials [21], as reported in Table 3.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

x

u
e
x
a
c
t,
u
a
p
p

exact

approx

Figure 5: The approximate and exact solutions of Equation (13) at b = 1.

Table 3: Comparison of absolute errors at b = 1 for Eq. (13).

x PM (n = 2) Hann (n = 2) [21]

0.1 4.10× 10−5 4.54× 10−2

0.2 1.02× 10−4 7.70× 10−2

0.3 1.21× 10−4 9.59× 10−2

0.4 8.41× 10−5 1.03× 10−1

0.5 7.29× 10−6 1.01× 10−1

0.6 7.34× 10−5 9.01× 10−2

0.7 1.19× 10−4 7.25× 10−2

0.8 1.07× 10−4 5.02× 10−2

0.9 4.54× 10−5 4.54× 10−2

7 Conclusion

In this paper, we introduce a simple and effective numerical technique that combines the Ritz approxima-
tion with Shifted Legendre Polynomials (SLPs) to solve advection-dispersion equations with variable-
order fractional operators in a velocity–obsoluteation framework (VOF) featuring mobile-immobile
phases. The approach discretizes the domain using a small set of basis functions, transforming the
original problem into a system of algebraic equations. This yields a substantial reduction in computa-
tional cost while preserving high accuracy. Several numerical examples are presented to validate the
method and illustrate its efficiency. Although the current study concentrates on Caputo variable-order
derivatives, the framework can be extended to other VOF operators or alternative basis-function sets.
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