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1 Introduction

Integer-order differential equations fail to model numerous phenomena, including aspects of
statistical mechanics, nonlinear earthquake vibrations, and continuum and fluid-dynamic trans-
port, e.g., [2, 8, 19]. Although the concept of fractional calculus dates back to Newton and
Leibniz, it has attracted substantial renewed attention in recent years. A notable advantage of
fractional derivatives in dynamic systems is their nonlocality, meaning that the current state
depends on the entire history of the system [9].

Transport dynamics and anomalous diffusion are ubiquitous. In nature, many complex-
system phenomena have been effectively described using enhanced fractional differential equa-
tions. Samko and Ross introduced the theory of variable-order operators through Fourier-
transform methods and the notion of variable order [22]. The variable-order fractional (VOF)
derivative offers a robust mathematical framework for modeling complex dynamics in porous
and heterogeneous environments and encompasses multiple definitions depending on the con-
text [13, 18]. Research on VOF partial differential equations is still in its early stages, and
numerical approximation methods for these equations are actively being developed.

A new set of equations, the advection-dispersion equations, is obtained by combining the
advection and diffusion processes. The mobile–immobile model is a special case of this for-
mulation. These equations are used to model pollutant transport, energy transfer, and subsur-
face/river flows in the subsurface and in deep river systems [4, 6, 7, 15].

Significant progress has been made in approximating VOF mobile-immobile advection-
dispersion equations. For example, some numerical methods for two-dimensional arbitrary
domains have been introduced, including reproducing kernel theory and collocation method
(RKM) [14], the approximate implicit Euler method [27], the Chebyshev wavelets method [11],
a meshless MLS-based approach [24], and the shifted Jacobi Gauss-Radau spectral method
expressed in the Coimbra sense for time-variant fractional derivatives [17].

In the present study, we apply the Ritz-approximation method using Shifted Legendre poly-
nomials to solve the VOF mobile-immobile advection-dispersion equations. These equations
are formed by incorporating the time VOF derivative in the Caputo sense, with 0 < α(x, t) ≤ 1,
into the standard advection-dispersion equation [20], which models solute transport and total
concentration in watershed catchments and rivers. The governing equation under consideration
has the following form:

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)−C vxx(x, t) = g(x, t), (x, t) ∈ [0, a]× [0, b],

(1)
under the following initial and boundary conditions:
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v(x, 0) = ϕ(x), x ∈ [0, a],

v(0, t) = ψ1(t), v(b, t) = ψ2(t), t ∈ [0, b],

where η1, η2 ≥ 0, B > 0, C > 0, and cDα(x,t)
t denotes the Caputo variable-order fractional

derivative with respect to time. ϕ(x), ψ1(t), ψ2(t) are enough smooth functions that are given
and v(x, t), is the unknown function to be determind.

This paper is organized as follows: in Section 2 several preliminaries of the VOF derivative
and SLP are represented. In Section 3, function approximation is described. In Section 4, the
error bound is estimated and in Section 5, the Ritz method is defined. In Section 6, several
numerical examples have been solved by the stated method, and results are shown. Finally,
conclusion is made in Section 7.

2 Preliminaries and Definitions

In this section, we present several essential preliminaries and definitions related to the VOF
derivative and SLPs, which provide the foundational tools for the proposed method.

2.1 Fractional Variable-Order Derivative

The definitions of left and right VO Riemann-Liouville integrals with hiding memory are then
proposed as [3]

aI
α(x,t)
t f(t) =

t∫
a

1

Γ(α(x, t))
(t−s)α(x,t)−1f(s)ds,

and

tI
α(x,t)
b f(t) =

b∫
t

1

Γ(α(x, t))
(s−t)α(x,t)−1f(s)ds.

The left-side and right-side VO Riemann-Liouville fractional derivatives are stated as [5]

RL
a D

α(t)
t f(t) =

1

Γ(n− α(t))

dn

dtn

t∫
a

(t−s)n−α(s)−1f(s)ds, n− 1 < α(t) < n,

and

RL
t D

α(t)
b f(t) =

(−1)n

Γ(n− α(t))

dn

dtn

b∫
t

(s−t)n−α(s)−1f(s)ds, n− 1 < α(t) < n.
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Meanwhile, the left Riemann-Liouville fractional derivative of order α(s, t) is defined as [16]

RL
a D

α(x,t)
t f(t) =

dn

dtn
(

1

Γ(n− α(s, t))

t∫
a

(t−s)n−α(x,t)−1f(s)ds).

The right Riemann-Liouville fractional derivative of order α(x, t) is stated as

RL
t D

α(x,t)
b f(t) =

dn

dtn
(

(−1)n

Γ(n− α(s, t))

b∫
t

(s−t)n−α(x,t)−1f(s)ds).

Because the initial conditions for the FDEs with the Caputo derivatives are the same as the inte-
ger order differential equations, Caputo type definition is extremely useful in many application
fields.

Definition 1. The Caputo VOF derivative of order α(x, t) concerning to t for the assumed
function v(x, t) can be specified as follows [23]:

cDα(x,t)
t v(x, t) =


1

Γ(k−α(x,t))

∫ t
0

v
(k)
µ (x,µ)

(t−µ)α(x,t)−k+1 dµ, k − 1 < α(x, t) < k,

v
(k)
t (x, t), α(x, t) = k,

(2)

that k ∈ N and Γ(·), is the Gamma function. If the value   of α(x, t) is an integer, the VOF
Caputo derivative can be defined identically with the integer-order derivative.

In the following, we represent some general properties of the VOF Caputo derivative. The
linearity is the common property between the fractional derivative and the integer-order deriva-
tive.

Dα(x,t)(λ1 v(x, t) + λ2 v(x, t)) = λ1 Dα(x,t)v(x, t) + λ2 Dα(x,t)v(x, t),

Where the value of λ1, and λ2, are constant and Dα(x,t) is in the range k − 1 < α(x, , t) ≤ k,
meets the property given below:

Dα(x,t)
t C = 0 (C is a constant),

Dα(x,t)
t tm =

0, m = 0, · · · , k − 1,

Γ(m+1)
Γ(m+1−α(x,t)) t

m−α(x,t), m = k, k + 1, . . . .

2.2 Notation about Two Dimensional Shifted Legendre Polynomials

The Legendre polynomials are a well-known family of orthogonal polynomials on the interval
[−1, 1]. They can be defined using Rodrigues’ formula as follows:
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Pm(y) =
1

(2mm!)
· d

m(y2 − 1)m

dym
, m = 0, 1, 2, · · · .

The first few Legendre polynomials are: P0(y) = 1, P1(y) = y. To define these polynomials
on x ∈ [c, d], we perform a change of variable y = 1

d−c [2x − (d + c)], the SLPs P ∗
m(x) are

obtained.
The Two dimensional Shifted Legendre polynomials constructed by taking the product of

one-dimensional SLPs in each direction. For Ω = [0, a]× [0, b], we define:

P ∗
mn(x, t) = P ∗

m(x) · P ∗
n(t)

= Pm(
a

2
(y + 1)).Pn(

b

2
(s+ 1)), m, n = 0, 1, . . . .

We cosider these polynomials in the spaceL2(Ω) equipped with the following inner product
and norm:

⟨v(x, t), u(x, t)⟩ =
∫ b

0

∫ a

0
v(x, t).u(x, t)dxdt, (3)

∥v(x, t)∥2 = ⟨v(x, t), v(x, t)⟩. (4)

These polynomials in L2(Ω) form a complete system with the orthogonality property∫ a

0

∫ b

0
P ∗
mn(x, t).P

∗
ij(x, t)dtdx =

a.b

(2m+ 1)(2n+ 1)
δmn,

form = i, n = j and δmn indicate the Kronecker delta function.

3 Function Approximation

Any function v(x, t) ∈ L2(Ω) admits an infinite expansion in terms of two-dimensional SLPs:

v(x, t) ∼=
∞∑

m=0

∞∑
n=0

cmnP
∗
mn(x, t),

where the coefficients cmn are uniquely determined by the inner product:

cmn = (
2

a
n− 1)(

2

b
m− 1)

∫ a

0

∫ b

0
P ∗
mn(x, t).v(x, t)dtdx.

LetH = span{P ∗
mn}rm,n=0 ⊂ L2(Ω). For v(x, t) ∈ L2(Ω), the best approximation fromH is

ṽ(x, t) [12], such that for each u ∈ H,

∥v − ṽ∥ ≤ ∥v − u∥.
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Since H is finite dimensional, the best approximation ṽ(x, t) can be expressed as a finite
sum

ṽ(x, t) =

r∑
m=0

r∑
n=0

cmnP
∗
mn(x, t), (5)

and the coefficients are given by the orthogonality as:

cmn =
⟨ṽ(x, t), P ∗

mn(x, t)⟩
∥P ∗

mn(x, t)∥2
.

4 Estimate the Error Bound

Theorem 1. Let v(x) ∈ Cm+1[0, L] and let X = span{P ∗
0 (x), · · · , P ∗

m(x)} be a finite-
dimensional space. If ṽ(x) is the best approximation to v(x) in X , then

∥v(x)− ṽ(x)∥2 ≤
Um.R

2m+3
2

(m+ 1)!
√
2m+ 3

, x ∈ [xi, xi + 1] ⊆ [0, L],

where R = max[xi, xi + 1], Um = max
x∈[0,L]

|v(m+1)(x)|.

Proof. See [1].

Theorem 2. Let v(x, t) ∈ Cm+1(Ω) and let ṽ(x, t) ∈ H be the best approximation defined in
Equation (5). Then the error satisfies the following bound:

∥v(x, t)− ṽ(x, t)∥2 ≤
2.M(Kx +Kt)

m+2

(m+ 1)!
√

(2m+ 3)(2m+ 4)
.

Proof. We recall the two variable Taylor’s series expansion of v(x, t)

v(x, t) =
m+1∑
p=0

1

p!

p∑
r=0

(
p

r

)
∆xr.∆tp−r ∂

pv(x, t)

∂xr∂tp−r
. (6)

Since ṽ(x, t) ∈ H , its Taylor’s series expansion is

ṽ(x, t) =
m+1∑
p=0

1

p!

p∑
r=0

(
p

r

)
∆xr.∆tp−r ∂

pv(x, t)

∂xr∂tp−r
. (7)

By considering that the all of partial derivatives of v(x, t) up to order m + 1 are bounded by
M , thus the difference of two equations (6) and (7) give the following result:

|v(x, t)− ṽ(x, t)| = 1

(m+ 1)!

∣∣∣∣∣
m+1∑
r=0

(
m+ 1

r

)
∆xr.∆tm+1−r ∂

m+1v(x, t)

∂xr∂tm+1−r

∣∣∣∣∣
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≤ M

(m+ 1)!
(|∆x|+ |∆t|)m+1 .

Regarding the norm as defined in Equation (3), we deduce that

∥v(x, t)− ṽ(x, t)∥22 =
∫ a

0

∫ b

0
|v(x, t)− ṽ(x, t)|2dtdx

≤
∫ a

0

∫ b

0

( M

(m+ 1)!
(|∆x|+ |∆t|)m+1

)2
dtdx

=
M2

((m+ 1)!)2

∫ a

0

∫ b

0
(|∆x|+ |∆t|)2m+2 dtdx

≤ 4M2(Kx +Kt)
2m+4

((m+ 1)!)2 (2m+ 3)(2m+ 4)
,

where Kx = max |∆x|,Kt = max |∆t|. By taking square root from two side the result is
obtained.

5 Description of the Method

In 1908, Ritz introduced a simple and effective scheme for solving initial and boundary value
problems. In this method, the approximate solution is expressed as a truncated series, and the
continuous problem is converted into a discrete algebraic system. Since the resulting system is
relatively small, the computational effort is significantly reduced.

We estimate the v(x, t) in Equation (1) as the following form

v(x, t) ∼= ṽ(x, t) =
n∑

i=0

n∑
j=0

cijκ(x, t)P
∗
ij(x, t) + w(x, t), (x, t) ∈ Ω, (8)

which P ∗
ij is the SLPs used as basis functions and κ(x, t) is a function that satisfies the homo-

geneous part of the initial and boundary conditions.

κ(x, t) = (x− 1)xt.

The function w(x, t), called the satisfier function,is chosen to satisfy initial and boundary con-
ditions [26]. It is usually constructed based on the known data of the problem. Experience
shows that selecting w(x, t) to be close to the exact solution improves the efficiency of the
computation [25]. A practical and effective choice for w(x, t)

w(x, t) = ϕ(x) + (1− x)(ψ1(t)− ψ1(0)) + x(ψ2(t)− ψ2(0)). (9)

We use the Equations (8) - (9) and substituting them in Equation (1)
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η1 ṽt(x, t) + η2
cD

α(x,t)
t ṽ(x, t) +B ṽx(x, t)− C ṽxx(x, t) = g(x, t). (10)

To approximate ṽ(x, t), we evaluate Equation (10) at the roots of Legendre polynomials, leading
to a nonlinear algebraic system. This system is solved numerically using Mathematica 10, and
the unknown coefficients cij are determined accordingly.

6 Illustrative Examples

In this section, the suggested method is employed for solving several test problems. The out-
comes showed that this method is precise and efficient. On the other hand, since the small
number terms of the series are used to approximate the solution, this method has high compu-
tational value. The error in the examples is calculated as follow

En = |u(xi, b)− un(xi, b)|,

where n is degree of SLPs. In all examples, for computing cij we consider n = 2. The figures
and tables presented below correspond to Theorems 1 and 2 in the examples section. According
to these results, the error generated by this method decreases progressively as the number of
sentences increases, stabilizes at a negligible level, and ultimately approaches a well-defined
bound.

Example 1. Consider the VOF mobile-immobile equation such as was defined in Equation (1)
[21]:

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C v(x, t) = g(x, t), (11)

regarding the following initial and boundary conditionsv(x, 0) = 10x2(1− x)2, x ∈ [0, 1],

v(0, t) = v(1, t) = 0, t ∈ [0, b],

where (x, t) ∈ [0, 1]× [0, b] and

g(x, t) = 10(1− x)2x2 +
10x2(1− x)2t1−α(x,t)

Γ(2− α(x, t))
+ 10(t+ 1)(2x− 6x2 + 4x3)

− 10(1 + t)(12x2 − 12x+ 2),

and its exact solution is v(x, t) = 10x2(1− x)2(1 + t).
The values of parameters are η1 = η2 = B = C = 1 and α(x, t) = 1 − 1

2e
−xt. The satisfier

function regarding Equation (9) is calculated as

w(x, t) = 10x2(1− x)2.
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Substituting this into Equation (11) and solving the resulting algebraic system, the coefficients
cij are obtained as

c00 = −1.6667, c01 = 4.0214× 10−15, c02 = −1.373× 10−15,

c10 = −8.1824× 10−15, c11 = 7.9319× 10−15, c12 = −4.1486× 10−15,

c20 = 1.6667, c21 = 2.7589× 10−15, c22 = −1.5775× 10−15.

The absolute error of the presented method (PM) is shown in Figure 1. We compare our
numerical results with (i) finite differences with Haar wavelets from [10] and (ii) Hahn polyno-
mials with an operational matrix (Hahn) from [21] at b = 1, as reported in Table 1. Furthermore,
Figure 2 presents both the approximate and exact solutions. The comparison in Figure 2 indi-
cates that the approximate solution matches the exact solution very close almost everywhere in
the interval and for any x and t.

Figure 1: The absolute error En for Equation (11).

Table 1: Comparison of absolute errors at b = 1 for Equation (11).

x PM (n=2) [10] Hahn (n=5) [21]
0.1 1.3878e− 17 3.1933e− 05 3.750e− 13

0.2 3.2960e− 17 5.9210e− 05 4.410e− 13

0.3 1.2490e− 16 8.2203e− 05 4.420e− 13

0.4 2.2205e− 16 1.0032e− 04 3.400e− 14

0.5 4.1633e− 16 1.1202e− 04 3.350e− 13

0.6 7.7716e− 16 1.1514e− 04 8.700e− 14

0.7 8.1879e− 16 1.0830e− 04 1.051e− 12

0.8 8.6216e− 16 8.9421e− 05 1.355e− 10

0.9 6.2450e− 16 5.5022e− 05 6.400e− 13
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Table 1 highlights the advantages of the proposed scheme, as it achieves high accuracy
using significantly fewer points compared to previous methods.

approximte

exact

Figure 2: The approximate and the exact solution of Equation (11).

Example 2. Consider another VOF advection-dispersion in mobile-immobile cases [21]

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C v(x, t) = g(x, t), (x, t) ∈ Ω, (12)

where v(x, 0) = 5x(1− x), x ∈ [0, 1],

v(0, t) = v(1, t) = 0, t ∈ [0, b],

that Ω ∈ [0, 1]2 and

g(x, t) = 5x(1− x) +
5x(1− x)t1−α(x,t)

Γ(2− α(x, t))
+ 5(1 + t)(1− 2x) + 10(1 + t),

and
v(x, t) = 5x(1− x)(1 + t),

is the exact solution.
The parameters of Equation (12) are taken as

η1 = η2 = B = C = 1, and α(x, t) = 0.8 + 0.005 sinx cos tx.

The w(x, t) = 5x(1− x) is satisfier function, and the unknown cij are

c00 = −5, c01 = 2.4157× 10−15, c02 = −1.2195× 10−15,

c10 = 7.0168× 10−16, c11 = −5.7017× 10−16, c12 = 6.1121× 10−16,

c20 = 5.1988× 10−17, c21 = 1.0543× 10−16, c22 = −1.6736× 10−16.

The absolute error is shown in Figure 3, and the exact versus approximation solutions at
t = 1 are drawn in Figure 4. Additionally, the numerical performance of the current method is
compared with reproducing kernel with collocation method (RKM) from [14] and Hahn poly-
nomials from [21] in Table 2.
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Figure 3: The absolute error En for Equation (12).

Table 2: Comparison of the results of the absolute errors at b = 1 for Equation (12).

x PM (n=2) Hahn (n=10) [21] RKM (n=13) [27]
0.1 3.3255e− 17 7.7716e− 16 0

0.2 0 8.8818e− 16 2.22205e− 16

0.3 6.1200e− 17 8.8818e− 16 4.4409e− 16

0.4 0 4.4409e− 16 0

0.5 6.7738e− 17 0 0

0.6 0 0 4.4409e− 16

0.7 2.0188e− 16 4.4409e− 16 0

0.8 2.0933e− 16 0 0

0.9 2.0295e− 16 5.5511e− 16 6.6613e− 16

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

uexact,uapp

exact

approx

Figure 4: The exact and approximate result of Equation (12) at b = 1.

Example 3. Consider the following equation which has an exact solution v(x, t) = t3ex [21]:

η1 vt(x, t) + η2
cDα(x,t)

t v(x, t) +B vx(x, t)− C vxx(x, t) = g(x, t), (x, t) ∈ Ω, (13)

subject to the following conditionsv(x, 0) = 0, x ∈ [0, 1],

v(0, t) = t3, v(1, t) = et3, t ∈ [0, b],
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where g(x, t) = ex(3t2 + 3t3−α(x,t)

Γ(4−α(x,t)) − t3) and the parameters of the equation are considered
η1 = 2η2 = B = 1

2C = 1 and α(x, t) = 0.8 + 0.02e−x sin t. The w(x, t) = t3(1 − x + ex),
is the satisfier function and the unknown cij are obtained as

c00 = 0.2825, c01 = 0.4237, c02 = 0.1413,

c10 = 0.0469, c11 = 0.0704, c12 = 0.0235,

c20 = 0.0039, c21 = 0.0058, c22 = 0.0019.

The exact and approximation solution in Figure 5 is drawn when t = 1 and our numerical
results are compared with those obtained using Hann polynomials [21], as reported in Table 3.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

x

u
e
x
a
c
t,
u
a
p
p

exact

approx

Figure 5: The approximate and exact solutions of Equation (13) at b = 1.

Table 3: Comparison of absolute errors at b = 1 for Equation (13).

x PM (n=2) Hann (n=2) [21]
0.1 4.1015e− 5 4.5433E − 02

0.2 1.0185e− 4 7.7018E − 02

0.3 1.2140e− 4 9.5918E − 02

0.4 8.4135e− 5 1.0342E − 01

0.5 7.2906e− 6 1.0094E − 01

0.6 7.3408e− 5 9.0057E − 02

0.7 1.1934e− 4 7.2499E − 02

0.8 1.0684e− 4 5.0187E − 02

0.9 4.5425e− 5 4.5433E − 02

7 Conclusion

In this paper, we introduce a simple and effective numerical technique that combines the Ritz
approximation with Shifted Legendre Polynomials (SLPs) to solve advection-dispersion equa-
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tions with variable-order fractional operators in a velocity–obsoluteation framework (VOF)
featuring mobile-immobile phases. The approach discretizes the domain using a small set of
basis functions, transforming the original problem into a system of algebraic equations. This
yields a substantial reduction in computational cost while preserving high accuracy. Several
numerical examples are presented to validate the method and illustrate its efficiency. Although
the current study concentrates on Caputo variable-order derivatives, the framework can be ex-
tended to other VOF operators or alternative basis-function sets.
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