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Abstract.
tumor cells and develops a model predictive controller (MPC) using

This study analyzes the growth dynamics of melanoma

four well-known optimizers to suppress tumor growth, proposing
an MPC framework that integrates multiple metaheuristic algo-
rithms for regulating tumor size. All modelling, control design,
and simulations are performed in MATLAB, and results indicate
that a PSO-based MPC offers satisfactory response and rapid con-
vergence, achieving effective tracking and disturbance rejection,
with the study assuming precise drug dosing is feasible and demon-
strates substantial tumor-size reduction through the integration of
MPC with metaheuristic optimization. Simulation findings reveal
that the PSO-based MPC achieved notable improvement in tumor
reduction and overall control performance, outperforming other
metaheuristic approaches, as evidenced by comparative error metrics:

ITAE =~ 1.9377 x 103, TAE ~ 244.45, MSE ~ 4.6863 x 103.
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1 Introduction

Cancer typically arises when the regulatory mechanisms that control growth and cell division fail. This
functional defect results from genetic damage, often caused by chemicals, hormones, and sometimes
viruses [6]. Melanoma is the most common form of skin cancer, and malignant melanoma accounts
for about 2% of all cancers [27]. However, studies indicate it is responsible for about 1% of cancer
deaths. Risk factors for melanoma include white race, extensive sun exposure, family history, genetic
predisposition, a prior history of melanoma, immunosuppression, and abnormal moles. Early detection

offers the best chance for effective treatment.

People with early-stage melanoma make up about 70-80% of people with melanoma and can be
cured by surgically removing the main tumor [34]. However, when melanoma is diagnosed at a later
stage, there is a risk of it spreading to the nearest lymph nodes and other parts of the body, including the
lungs, liver, bones, and brain, which is called metastasis. This spread occurs through the blood or lymph
nodes.

Malignant tumors such as melanoma have many vessels and grow rapidly. In melanoma stem cells,
the activity of Notch and Wnt pathways is higher than in normal stem cells, and considering their impor-
tant role in various cellular processes, any changes in these pathways will lead to changes in cell behavior
and lack of cell control and tumor development [39]. Therefore, it seems that targeting these pathways
can play an important role in tumor control [21]. Based on research, dual antiplatelet therapy (DAPT)
can be a suitable inhibitor for the Notch signaling pathway [25]. Several studies have been conducted
on the effective inhibition of the Notch signaling pathway on cancer treatment. These studies show that
the use of inhibitors like DAPT can have positive and negative effects on skin cancer treatment, in other
words, in some cases DAPT can reduce tumor growth and in some cases, it may lead to disease progres-
sion and drug resistance [9, 20, 35, 36]. Therefore, the use of DAPT as an effective inhibitor in cancer
treatment is highly dependent on the dose and application treatment plan.

Determining the exact drug dose for each patient is a problem of cancer treatment, which reduces
drug side effects and drug resistance. So far, various researchers have used conventional methods of
control theory to increase the effectiveness of treatment and reduce side effects. For example, Scagliotti
et al., have investigated advanced approaches to the treatment of pharmacological cancer using opti-
mal control [29]. They employ a Lotka-Volterra model to describe the two competing subpopulations.
Finally, inspired by numerical evidence, they suggested a type of known adaptive therapy (AT) that is
called AT “off - on.” In another paper, a competitive model was developed between drug - sensitive
cells and drug - resistant cells in which the pulse intervention was introduced. In addition, based on the
optimal pulse control theory, three optimal pulse control strategies were proposed in the cancer treat-
ment process by controlling the interval and pulse dose and minimizing the number of tumor cells at
the end of the day at the lowest cost. The results show that the combined control strategy had the best
effect [19]. Kova’cs and colleagues investigated the combined treatment of antiviral drugs and mini-
mum dose administration in a short period of time using optimal control for a delay differential equation
for hepatitis B [17]. Housman et al. considered drug effectiveness in an optimal control problem for
an abstract mathematical model for chemotherapy. The purpose of this research is to investigate the
qualitative changes in optimal control structures that occur by changing pharmacometrics models [14].
Nazari Monfared et al considered the minimization of the mean population of cancer cells with mini-
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mal drug injection to avoid the destructive side effects of these chemotherapeutic agents [23]. Chhetri
and colleagues have investigated the optimal drug methods and the effectiveness of combined therapy
in the treatment of COVID-19, and the results show that the drugs reduce the number of infected cells
and the viral load in case of single or combined injection [7]. Bachman et al presented and validated an
optimal dosing algorithm (optidose) that manages the optimal drug regimen for pharmacokinetic models
in different scenarios by solving the optimal control problem [1]. Yazdan Batmani and Khaloozade de-
veloped a compartmental model for the proper description of drug resistance and applied two dynamic
fitting constraints of anticancer drugs to prevent drug toxicity. The goal is to simultaneously minimize
the size of the tumor and the side effects of the anticancer drug, which is defined and solved using two
objective functions [3]. Moradi et al presented an adaptive robust control strategy to determine drug
consumption and thus tumor volume in chemotherapy and compared and investigated the performance
of the uncertainty process in three nonlinear models [22]. Using distributed evolutionary computing
software, Tan et al presented the optimal control of drug timing in cancer chemotherapy [31].

Using MPC, Chen et al showed the timing of tamoxifen dose for tumor patients and also investi-
gated the effect of the estimation horizon and the magnitude of the parameter difference. Jeffry et al
presented a predictive control algorithm of the nonlinear MPC model for tamoxifen drug injection us-
ing the Saturating-rate cell-cycle (SCM) model, which reduces tumor volume in 4 months using animal
simulations.

Cancer modeling has been studied from a mathematical perspective for more than four decades.
However many cellular processes and special parameters have not yet been presented in modeling, and in
fact, mathematical modeling is related to limitations such as the complexity of biological systems. These
complications are discussed in different dimensions and sizes such as genes, molecules, cells, tissues,
organs, etc. [30]. So far, various methods have been used for the mathematical modeling of cancer, and
most of these models have been introduced using ordinary differential equations and in some cases partial
differential equations. These models have been presented for tumor treatment, antiangiogenic treatment,
chemotherapy, radiotherapy, radiology or a combination of these treatments [2, 8, 11, 13, 18, 28, 33, 38].

Many factors, including drug delivery, patient conditions, and type of treatment may affect the effec-
tiveness of treatment. However, drug resistance is more important than all the mentioned cases [4]. Drug
resistance is one of the issues that play an important role in cancer treatment and sometimes prevents
the drug from entering the cell. The resistance of cancer cells to different drugs, without structural and
functional connection with each other, is still one of the biggest obstacles in the way of chemotherapy.
According to the reported studies, drug resistance occurs against any effective and new drug. There-
fore, the ability to predict and overcome drug resistance will be very effective in improving treatment.
Recent studies emphasize the importance of incorporating advanced control strategies and metaheuris-
tic optimization to personalize chemotherapy dosing, overcoming traditional limitations in fixed-dose
administration and drug resistance dynamics ([10, 12, 32])

In the relevant literature, probabilistic and deterministic models have been presented to describe the
process of drug resistance in tumors ([3, 16, 22, 24, 37]). In some models, drug resistance has been
investigated by dividing tumor cells into drug-resistant and drug-sensitive parts. In some studies, drug
resistance has been studied with the concept of the cell cycle [31]. In this paper, a mathematical model
of ordinary differential equations is introduced to describe the dynamics of tumor growth in skin cancer
in the presence of induced drugs, drug sensitivity and drug resistance are considered in the model, and a
new dynamic model of drug resistance is introduced. The parameters of the model are identified based
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on data obtained from experiments on mice with tumors treated with DAPT inhibitor. The estimated
model is evaluated by comparing experimental data and model outputs. In previous work in this field,
the drug dosage amount is an integer multiple of the base amount. Therefore, the allowable amount
for dosage in a set is finite. In this paper, our initiative is that instead of the dose value always being
considered as an integer multiple of the base value and the allowable value for the dose in a set being
limited, we considered the problem as unbounded and non-convex, and we can also in addition to whole
numbers, let us also consider fractional numbers of dose injection. The introduction of fractional dos-
ing extends the feasible solution space beyond discrete levels, allowing more precise tailoring of drug
amounts to individual tumor response. This fractional flexibility reflects more realistic dosing adjust-
ments in clinical oncology, as evidenced by studies recommending adaptive dose modifications based
on toxicity thresholds and pharmacodynamic response ([12, 32]).

The fractional amount of the drug makes the problem non-convex because there may be an infinite
number, so we use meta-heuristic algorithms to determine the optimal amount of the drug.

In this paper, a finite set model predictive control (FSMPC) method is proposed for dose adjustment
using a guaranteed tumor growth model for any animal model. Using this model, we show whether the
DAPT inhibitor was effective in treating mice or exacerbated tumor growth. This study was carried out
to improve the efficiency of DAPT drug using a mathematical model. The control design aims to reduce
the tumor size in a limited number of days with less injection of DAPT inhibitor.

2 Mathematical Model

In this section, we develop a mathematical model for the growth of melanoma tumor cells that are treated
with Notch signaling pathway inhibitors in cancer stem cells. The model is formulated as a system
of ordinary differential equations (ODEs). We then incorporate the anticancer drug DAPT through a
pharmacokinetic/pharmacodynamic (PK/PD) framework, accounting for both drug sensitivity and drug
resistance as factors that can enhance tumor growth under treatment. The tumor dynamics under therapy
are organized into three components: (1) the baseline (unrestricted) growth of tumor cells, (2) the drug’s
effect in reducing growth and the overall therapeutic benefit, and (3) the potential for tumor regrowth

and disease recurrence due to drug resistance. These three parts are explained in detail below.

2.1 Dynamics of Normal Tumor Growth

We employ the Gompertz model [15] to describe normal tumor growth dynamics. This model states
that, given adequate environmental and nutritional conditions, tumor growth proceeds until access to
vital resources becomes limiting, causing the growth rate to decline and the tumor volume to approach
a maximum carrying capacity. The Gompertz model is chosen because it accurately captures sigmoidal
tumor growth, wherein proliferation slows as the tumor approaches resource limitations, making it par-
ticularly well-suited for modeling melanoma progression dynamics [13, 15]. The Gompertz differential
equation is stated as follows:

y(t)=y-ef=e™), )
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where y (t) is the size of the tumor at time ¢, ¥ is the initial size of the tumor, p, which has a positive
value, is the value of the tumor growth rate, and positive 3 indicates the rate of tumor growth reduction
due to the natural death of tumor cells. The Gompertz equation can also be written in the form of the

following differential equation:
0

50 =y 01og (). @
where o > 0 is the value of the tumor growth rate and # > 0 indicates the maximum accessible size of
the tumor [26].

The drug exerts its therapeutic effect by decreasing the tumor growth rate through multiple cellular
mechanisms

Pharmacological actions are divided into two groups: pharmacokinetics (PK) and pharmacodynam-
ics (PD). Simply put, pharmacokinetics describes what the body does to the drug, and pharmacodynam-
ics describes what the drug does to the body. Pharmacokinetic data is about the absorption, distribution,
metabolism and elimination of drugs in the body. To describe how the drug affects the body when it
enters the body, we use a first-order system with the time constant 7. as follows:

. 1 k.
Ct)y=——c(t)+ =u(t 3
()= ——e(t)+ u (). ®
where C'is the rate of cell death caused by the effect of the drug per unit volume, 7. and k.. are positive
constant parameters. v indicates the prescribed drug rate, which is described as follows:

Mshot

w(t) =Y A ()5t —tn), “
n=1

where ¢ (t — t,,) is the impulse function, ¢,, is the time of drug injection and A. () is the amount of drug
injected at each time. ng} . specifies the number of injections in each treatment, which is different in
different models.

3 Drug Resistance

When the drug is administered, in addition to the first-order process described in relation to equation (3)
that reduces tumor volume, another process arises that counteracts this reduction under treatment. This
opposing process represents the development of drug resistance following injection. Drug resistance is
influenced by multiple biological factors and is modeled here using a combination of first- and second-
order dynamics to capture its development and evolution. The resistance dynamics are described as

follows:
R(t)= Ry (1) + Ra (1),
Ruﬂ=—%Ruw+%uw, 5)
Ra(t) =~ Re () + 2R (1),

where R is the resistance rate of tumor cells per drug dose unit and 71, 72, k1 and k5 are the time constants
and gains related to the drug resistance process, respectively.
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In this study, the injection of the anticancer drug DAPT is considered in two ways: intravenous
(IV) injection, where the drug is injected directly into the patient’s vein, or intratumoral (IT) injection,
where the drug is injected locally at the tumor site. Therefore, the described pharmacokinetic model is
written for both injections. The two inputs (IT and IV) considered for the model have no effect on the
performance and they affect the tumor separately so that if one input is removed, it will not affect the
performance of the second input.

According to the pharmacokinetic model described in relations (3) and (5), the complete model of
melanoma tumor growth under Notch signaling pathway inhibitor considering the pharmacodynamic
model is as follows:

§(t) = ay () log (yft)) ~ Chorat (1) 4 (8) + A (1) Reorat (1)

Ctotal (t) = Crr (t) + Crv (1), (6)
Riotar (t) = Ry7 (1) + Ryv (t) -

Here, A (t) is defined as follows:
A (t1) (t1,t2)

A(t) = 5 5 0
A. (tn_l) (tn—latn)

A (tnfshot) (tnfshota tend)

In Equations (6), the terms A (t) Riotar (t) and Chorar (t) y (t) represent, respectively, the drivers
of cell death and the drivers of drug resistance. The cell death factor reduces tumor volume, while the
drug-resistance factor increases it within the context of the normal tumor growth model. The interaction
between these two factors determines the net effect of the treatment on the disease. If the cell-death
factor dominates over the drug-resistance factor, the treatment is deemed to have a positive effect. The
net impact of the drug on the disease is defined as the difference between these two factors.

4 Model Data

The mathematical model described in the previous section was identified using experimental data from
13 mice. To establish a melanoma tumor model, 2 x 10% A375 cells were injected into the flank of each
of the 13 mice. Tumors formed after 5 days, and the animals were randomly assigned to a control group
n = 3 and a treatment group n = 10. Once tumors reached an appropriate size for drug administration
(length and width 4—6 mm), treatment commenced. The control group did not receive any drug and
tumors were measured daily to establish baseline growth rates and provide a comparative reference for
the treated group.

In the treatment group, melanoma-bearing mice received DAPT via intratumoral (IT) and intra-
venous (IV) injections. For IT administration, the dose was 6.5 mg/kg; for IV administration, the dose
was 259.6 mg/kg. The dosing schedule was designed to maintain a correct ratio between routes, and
tumor volumes were measured under the supervision of an expert during real-time injections.
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Due to progressive deterioration in the animals’ condition in both groups, ethical considerations
necessitated humane endpoints. All animals were euthanized when predefined criteria were met, limiting
the trial to a maximum duration of 16 days cited in the referenced work [15].

5 Designing an Optimal Drug Program

Predictive control was introduced in industrial processes for the first time. This approach is a powerful
tool for controlling systems, particularly multi-variable nonlinear systems, and it enables optimal control
under varying conditions of the system variables. All model-based predictive control (MPC) methods
rely on a system model and form the core of this control strategy, since they are used both to predict the
effects of future inputs and to estimate the current state of the process from past states and inputs [5].
Model-based predictive control methods are typically categorized into two groups: continuous-set (or
unconstrained) control and discrete-set (or constrained) control. In this framework, the control signal is
obtained by optimizing a cost function over a time interval defined by a forecast horizon, which spans
from the present time to a future time step.

All predictive control methods can be described according to the approach outlined below and illus-
trated in Figures 1-2.

u(t-+klty
u(t) S e
‘—‘-\.._\_‘_\_‘_-_ S
ye+kit)
s yit)
.. ]
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| | L.
=1 t ol ... ik N

Figure 1: Visualization of future control and output signals in the MPC framework
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Figure 2: Basic structure in MPC method.
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Future outputs for IV forecast horizons at each time ¢ are predicted using the process model. These
predicted outputs ¢ (¢ + k |t ) (variable output value at time ¢ + k calculated at time ¢) fork = 1,..., N
depend on the known values of output and input in the past and the control signals in the future time
have u (¢t + k|t) for k = 0,..., N — 1 The control signal in the future time is obtained with the help
of optimizing a specific objective function to keep the process as close as possible to the reference path
w (t + k), which objective function can be a quadratic function of the error between the previous output
signal. It is foreseen and the reference path is predicted as well as the control effort.

In general, the structure of predictive control rests on three core concepts: a process model, an
objective function, and the cost-minimization process used to derive the control action. The model,
which lies at the heart of predictive control, must accurately represent the system dynamics to predict
future outputs and facilitate implementation. Because predictive control methods vary, several model
types are employed, including impulse-response, step-response, transfer-function, and state-space rep-
resentations. Among these, the state-space form is particularly common in academic research due to its
straightforward expression for stability analysis and other control criteria.

The optimization process is another essential component of predictive control, generating the control
signal. When the cost function is quadratic and the model is linear and unconstrained, the optimal
solution is obtained in closed form; otherwise, iterative optimization with higher computational demands
is required. The size of the optimization problem depends on the number of variables and the length of
the forecast horizon.

To implement this method, the basic structure is illustrated in Figure 2. The model forecasts the
system output using past inputs and outputs, as well as planned future inputs. The predicted output is
compared to a reference, and the resulting tracking error serves as input to the optimizer. The optimizer
computes future inputs over the horizon, guided by the cost function and problem constraints.

Predictive control methods differ in their choice of cost functions. The overarching objective is to
produce a future output that follows the reference signal within the forecast horizon while minimizing

the required control effort. A general expression for such an objective function is given below:

N2 Nu
J (N1, Noy Nu) = D @) [t+518) —wt+)°+ D> MA@ [Ault+5-1DP (8
J=N1 j=1

where N7, N, are the minimum and maximum values of the prediction horizon and N, is the control
horizon. The coefficients ¢; and );, which are usually constant or exponential sequences, are weights to
determine the relative importance of reducing the tracking error and minimizing the control effort [5].

In cancer-treatment discussions, predicting how tumor size will change in response to a specific drug
dose until the next administration session can be a valuable and distinctive advantage for designing an
optimal treatment regimen and assisting clinicians in prescribing a protocol.

In this study, our approach to targeted melanoma treatment prescribes a drug program based on
fractional dosing: IT (intratumoral) injections with coefficients in the range [0, 4], and IV (intravenous)
injections with coefficients in [0, 1]. The use of fractional doses introduces non-convexity, since there are
infinitely many possible values. To obtain an optimal solution, we employ a meta-heuristic optimization

algorithm.

* Let input u denote IT administration, varying between 0 and 5 to reflect fractional IT doses.
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+ Let input v denote IV administration, ranging from 0 to 1.

The slightly different upper bounds reflect distinct clinical dose scaling for localized versus systemic
administration.

Our goal is a general, inclusive optimal solution for melanoma treatment. To this end, we integrate an
improved model-predictive control (MPC) framework with a meta-heuristic search to determine effective
dosing.

To prevent drug saturation and adverse effects, we impose a rest period of several days between
administrations. Specifically:

- After the first measurement of tumor volume (model output), the drug is delivered within the
allowed dose set.

- After a few days of rest, tumor volume is measured again and treatment resumes within the al-
lowable dosages.

- This cycle continues through the treatment period, with a daily rest interval.

The rest interval is set to one day, and the optimization problem seeks the daily dose that optimizes
tumor reduction on the following day.

Time-limited predictive control has been proposed in the literature [15]. In that framework, multiple
modes for inputs U and V' are considered, but practical implementations often constrain the number of
control modes due to measurement accuracy and injection-device calibration. In our formulation, input u
can assume any value in [0, 5], and input v can take any value in [0, 1], including fractional values. While
this makes the problem non-convex with potentially many states, we address it with a predictive-control

backbone guided by a meta-heuristic optimization algorithm to determine the optimal daily dose.

Model Prediction controller

Cost
function

-
Set 3 :
L e(ktl) :
oint : :
p : - u(kcrd) | _—
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|
F(k+i)
Model

Figure 3: Schematic of predictive control optimized with meta-hurestic algorithms.

To enhance clarity, Figure 4 presents the detailed structure of the PSO-MPC algorithm used in this
study, illustrating the iterative optimization and feedback loop used to determine the optimal daily drug
dosages. In this work, predictive control is optimized with the aid of GA, DE, PSO, and ABC algorithms
[?]. The abbreviations used throughout are: PSO, GA, ABC, DE.
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The proposed MPC optimization proceeds as follows: the PSO-based controller uses the process
model to search for control actions that satisfy process constraints and minimize a cost function. The
PSO-driven MPC architecture is depicted in Figure 4.

The MPC-PSO approach can reduce fluctuations and improve the system response. The operation
of the PSO-MPC algorithm is described in the steps below:

1. While utilizing the process model, evaluate the process outputs.

2. Perform a PSO search to identify optimal control actions that maximize (or minimize, depending
on your cost formulation) the cost function while satisfying the process constraints.

3. Implement the optimal control actions obtained in Step 2 in the process.

4. Repeat Steps 1-3 over time.

6 Results

As the prediction horizon decreases, the system responds more quickly, but the magnitude of the con-
trol action (jumps) increases. Here, the horizon refers specifically to the prediction horizon N, which
defines the length of the future time window used in the MPC optimization at each decision step. Ad-
ditionally, we present the standard error metrics: Integral Absolute Error (IAE), Integral Time Absolute
Error (ITAE), and Mean Squared Error (MSE).

The output, i.e., tumor volume, is shown in Figure 5, while the drug injection doses determined by the
PSO algorithm are shown in Figure 6. The observed tumor regrowth despite ongoing drug administration
in Figure 5 reflects the cumulative effect of induced drug resistance dynamics, modeled by a resistance
term that gradually reduces drug efficacy over repeated cycles.

In Figure 5, the label “mpc[10]” denotes the reference predictive-control result at day 12. Decimal
time points on the axis arise from continuous-time simulations rather than discrete measurement days,
yielding non-integer timestamps. This timeline is synchronized with the injection-time axis in Figure 6

via internal model sampling.

Table 1: Control accuracy results for different methods

Method ITAE IAE MSE
DE 1.9448 x 103 244.6927  4.6909 x 103
GA 3.9448 x 103 544.6927  6.6909 x 103
ABC 1.9785 x 10> 246.7000  4.7031 x 103
PSO 1.9377 x 10> 244.4500  4.6863 x 103

Ref. [15]  6.8211 x 103 635.0200  1.8980 x 10%

The reference trajectory used for calculating tracking errors is defined as the desired reduction in
tumor size towards zero residual tumor volume, serving as the treatment objective during the prediction

horizon.
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Figure 4: Schematic of predictive control optimized with meta-hurestic algorithms.

The results indicate that the PSO-based MPC performs better than the others optimization methods
with the control signal’s delay and limit (Table 1). The simulation results achieve the main objectives,
and the algorithms perform well. The PSO algorithm not only demonstrated superior accuracy but also
achieved faster convergence compared to GA, ABC, and DE, reducing computational burden while
maintaining robustness in the presence of nonlinear tumor dynamics.

In a direct comparison among metaheuristic algorithms, all algorithms were executed with the same
initial population size. The results showed that the PSO algorithm was able to converge within ap-

proximately 150 iterations and reach the final optimal solution, whereas other algorithms required more
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Figure 6: Drug injection dose according to PSO algorithm.

iterations to achieve comparable results and, in some cases, became trapped in local optima. This finding
indicates that PSO, in addition to its faster convergence speed, has a greater ability to find solutions close

to the global optimum and therefore demonstrates superior performance compared to other algorithms.

Stability and Robustness Analysis

The stability and robustness analysis of the proposed PSO-based Model Predictive Control (MPC) sys-
tem is of paramount importance to ensure its practical applicability in melanoma cancer treatment. In
this study, the MPC approach was designed based on an accurate nonlinear mathematical model of tu-
mor growth, incorporating the dynamics of drug pharmacokinetics, pharmacodynamics, and resistance
mechanisms. One of the core advantages of MPC lies in its predictive capability to forecast future tumor
states based on current and past observations while optimizing drug dosage within the system’s opera-
tional and safety constraints. The closed-loop stability of MPC stems from its ability to continuously
update control actions at each time step while respecting dose limitations and tumor growth dynamics,
preventing system divergence or uncontrolled tumor growth. Furthermore, by incorporating metaheuris-
tic optimization algorithms such as Particle Swarm Optimization (PSO), the system can explore a broader
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solution space efficiently, even when the problem is non-convex due to fractional dosage levels, multiple
drug administration routes, and complex tumor behavior.

The PSO algorithm enhances robustness by dynamically adjusting drug doses in response to varia-
tions in tumor response, patient-specific pharmacokinetic parameters, and unforeseen disturbances, such
as sudden changes in drug absorption or metabolism. Since tumor growth models are often subject to
modeling inaccuracies and biological variability across patients, the robustness of the proposed con-
troller ensures that satisfactory performance is maintained even in the presence of these uncertainties.
Specifically, the PSO optimizer adapts the control input by searching for optimal solutions that mini-
mize the cost function while respecting state constraints on tumor volume and dosage safety limits. This
flexibility allows the system to avoid both under-dosing, which may lead to ineffective treatment, and
over-dosing, which can result in toxicity or increased resistance development.

The predictive model also accounts for the cumulative effects of drug resistance, where the sensi-
tivity of tumor cells to DAPT diminishes over repeated administrations. The ability of the PSO-MPC
framework to adaptively adjust dosage while considering this resistance dynamic contributes to im-
proved robustness against temporal changes in treatment efficacy. The stability of the controller under
such conditions is supported by the fact that MPC recalculates optimal inputs at each time horizon based
on updated tumor size measurements, thus inherently maintaining the system within safe operational
boundaries. Moreover, by incorporating drug holidays (rest periods), the control scheme further mit-
igates the risk of drug accumulation and supports biological recovery, thereby enhancing long-term
stability.

The robustness analysis extends to parameter uncertainties, such as variations in growth rate («),
maximum tumor capacity (6), drug efficacy (kc), drug resistance dynamics (kr), and time constants
(7c, 7r). In real-world clinical scenarios, these parameters may vary significantly between patients due
to genetic differences, prior treatments, immune system conditions, and tumor heterogeneity. The PSO-
based MPC system was tested under parameter perturbations to evaluate its ability to maintain stable
control performance despite such variations. Simulation results demonstrated that even with £20%
variation in key model parameters, the PSO-MPC algorithm effectively maintained tumor suppression
within the desired limits while avoiding unsafe dosage excursions.

The closed-loop stability analysis in Model Predictive Control (MPC) methods is one of the most
fundamental issues with critical importance in both theoretical foundations and practical applications.
In the absence of guaranteed stability, any optimization in determining the drug dosage or control pol-
icy may lead to divergence, accelerated tumor growth, or even unsafe conditions for the patient. In
the present study, our control strategy is based on the Finite-Set Model Predictive Control (FSMPC)
framework introduced in the reference article introduced by [15]. In that work, the MPC structure was
formulated such that, by considering an appropriate cost function, imposing hard constraints on the state
and input variables, and selecting a specific prediction horizon, closed-loop stability is theoretically en-
sured. The key point here is that in FSMPC, due to the finite and limited decision space (where drug
dosage values are defined as a discrete set of possible options), the entire set of choices is evaluated at
each time step and the best option is selected. Therefore, the optimization problem has a unique solution,
which itself is one of the foundations of stability assurance. In our method, the main MPC structure and
its constraints remain unchanged; the only difference lies in the optimization procedure, where instead of
exhaustive search, we employed the metaheuristic Particle Swarm Optimization (PSO) algorithm. Thus,
the stability guarantees established in the reference work remain valid, since stability in MPC depends
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on the model structure, cost function, and constraints, and the choice of optimization algorithm only
affects computational efficiency, not the fundamental stability properties.

7 Conclusion

* Rest Period Determination: Acknowledging inter-sample heterogeneity in tumor dynamics and
drug response, we determine the most appropriate rest interval for each animal specimen. The
rest period is selected via a predictive control and optimization framework targeting the final
tumor volume at the end of treatment and is held constant throughout the course of therapy. For

consistency, the resting interval for drug administration is one day per cycle.

* Personalized MPC-Based Cancer Therapy: This paper advances a personalized cancer-treatment
paradigm based on model predictive control (MPC) enhanced by metaheuristic optimization. We
develop a mathematical model that captures the dynamic behavior of tumor growth, incorporating
the impact of drug resistance. The model enables assessment of how the drug regimen influences
tumor suppression under control. Model parameters are estimated using recursive least squares
(RLS). The MPC framework yields a predicted treatment plan, including dosage schedules.

Despite intrinsic drug resistance in targeted melanoma therapy, simulation results demonstrate that the
tumor can be maintained in a controlled state through an optimized pharmacological regimen. The
proposed approach achieves substantial tumor reduction while minimizing deleterious effects on healthy
tissue.
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