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1 Introduction

Cancer typically arises when the regulatory mechanisms that control growth and cell division
fail. This functional defect results from genetic damage, often caused by chemicals, hormones,
and sometimes viruses [6]. Melanoma is the most common form of skin cancer, and malignant
melanoma accounts for about 2% of all cancers [27]. However, studies indicate it is responsible
for about 1% of cancer deaths. Risk factors for melanoma include white race, extensive sun
exposure, family history, genetic predisposition, a prior history of melanoma, immunosuppres-
sion, and abnormal moles. Early detection offers the best chance for effective treatment.

People with early-stagemelanomamake up about 70-80%of people withmelanoma and can
be cured by surgically removing the main tumor [34]. However, when melanoma is diagnosed
at a later stage, there is a risk of it spreading to the nearest lymph nodes and other parts of the
body, including the lungs, liver, bones, and brain, which is called metastasis. This spread occurs
through the blood or lymph nodes.

Malignant tumors such as melanoma have many vessels and grow rapidly. In melanoma
stem cells, the activity of Notch andWnt pathways is higher than in normal stem cells, and con-
sidering their important role in various cellular processes, any changes in these pathways will
lead to changes in cell behavior and lack of cell control and tumor development [39]. There-
fore, it seems that targeting these pathways can play an important role in tumor control [21].
Based on research, dual antiplatelet therapy (DAPT) can be a suitable inhibitor for the Notch
signaling pathway [25]. Several studies have been conducted on the effective inhibition of the
Notch signaling pathway on cancer treatment. These studies show that the use of inhibitors like
DAPT can have positive and negative effects on skin cancer treatment, in other words, in some
cases DAPT can reduce tumor growth and in some cases, it may lead to disease progression and
drug resistance [9, 20, 35, 36]. Therefore, the use of DAPT as an effective inhibitor in cancer
treatment is highly dependent on the dose and application treatment plan.

Determining the exact drug dose for each patient is a problem of cancer treatment, which re-
duces drug side effects and drug resistance. So far, various researchers have used conventional
methods of control theory to increase the effectiveness of treatment and reduce side effects. For
example, Scagliotti et al., have investigated advanced approaches to the treatment of pharma-
cological cancer using optimal control [29]. They employ a Lotka-Volterra model to describe
the two competing subpopulations. Finally, inspired by numerical evidence, they suggested a
type of known adaptive therapy (AT) that is called AT “off - on.” In another paper, a competi-
tive model was developed between drug - sensitive cells and drug - resistant cells in which the
pulse intervention was introduced. In addition, based on the optimal pulse control theory, three
optimal pulse control strategies were proposed in the cancer treatment process by controlling
the interval and pulse dose and minimizing the number of tumor cells at the end of the day at
the lowest cost. The results show that the combined control strategy had the best effect [19].
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Kova’cs and colleagues investigated the combined treatment of antiviral drugs and minimum
dose administration in a short period of time using optimal control for a delay differential equa-
tion for hepatitis B [17]. Housman et al. considered drug effectiveness in an optimal control
problem for an abstract mathematical model for chemotherapy. The purpose of this research
is to investigate the qualitative changes in optimal control structures that occur by changing
pharmacometrics models [14]. Nazari Monfared et al considered the minimization of the mean
population of cancer cells with minimal drug injection to avoid the destructive side effects of
these chemotherapeutic agents [23]. Chhetri and colleagues have investigated the optimal drug
methods and the effectiveness of combined therapy in the treatment of COVID-19, and the re-
sults show that the drugs reduce the number of infected cells and the viral load in case of single
or combined injection [7]. Bachman et al presented and validated an optimal dosing algorithm
(optidose) that manages the optimal drug regimen for pharmacokinetic models in different sce-
narios by solving the optimal control problem [1]. Yazdan Batmani and Khaloozade developed
a compartmental model for the proper description of drug resistance and applied two dynamic
fitting constraints of anticancer drugs to prevent drug toxicity. The goal is to simultaneously
minimize the size of the tumor and the side effects of the anticancer drug, which is defined
and solved using two objective functions [3]. Moradi et al presented an adaptive robust control
strategy to determine drug consumption and thus tumor volume in chemotherapy and compared
and investigated the performance of the uncertainty process in three nonlinear models [22]. Us-
ing distributed evolutionary computing software, Tan et al presented the optimal control of drug
timing in cancer chemotherapy [31].

Using MPC, Chen et al showed the timing of tamoxifen dose for tumor patients and also
investigated the effect of the estimation horizon and the magnitude of the parameter difference.
Jeffry et al presented a predictive control algorithm of the nonlinear MPC model for tamoxifen
drug injection using the Saturating-rate cell-cycle (SCM) model, which reduces tumor volume
in 4 months using animal simulations.

Cancer modeling has been studied from a mathematical perspective for more than four
decades. However many cellular processes and special parameters have not yet been presented
in modeling, and in fact, mathematical modeling is related to limitations such as the complexity
of biological systems. These complications are discussed in different dimensions and sizes such
as genes, molecules, cells, tissues, organs, etc. [30]. So far, various methods have been used
for the mathematical modeling of cancer, and most of these models have been introduced using
ordinary differential equations and in some cases partial differential equations. These models
have been presented for tumor treatment, antiangiogenic treatment, chemotherapy, radiother-
apy, radiology or a combination of these treatments [2, 8, 11, 13, 18, 28, 33, 38].

Many factors, including drug delivery, patient conditions, and type of treatment may af-
fect the effectiveness of treatment. However, drug resistance is more important than all the
mentioned cases [4]. Drug resistance is one of the issues that play an important role in cancer
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treatment and sometimes prevents the drug from entering the cell. The resistance of cancer cells
to different drugs, without structural and functional connection with each other, is still one of
the biggest obstacles in the way of chemotherapy. According to the reported studies, drug resis-
tance occurs against any effective and new drug. Therefore, the ability to predict and overcome
drug resistance will be very effective in improving treatment. Recent studies emphasize the
importance of incorporating advanced control strategies and metaheuristic optimization to per-
sonalize chemotherapy dosing, overcoming traditional limitations in fixed-dose administration
and drug resistance dynamics ([10, 12, 32])

In the relevant literature, probabilistic and deterministic models have been presented to
describe the process of drug resistance in tumors ([3, 16, 22, 24, 37]). In some models, drug
resistance has been investigated by dividing tumor cells into drug-resistant and drug-sensitive
parts. In some studies, drug resistance has been studied with the concept of the cell cycle
[31]. In this paper, a mathematical model of ordinary differential equations is introduced to
describe the dynamics of tumor growth in skin cancer in the presence of induced drugs, drug
sensitivity and drug resistance are considered in the model, and a new dynamic model of drug
resistance is introduced. The parameters of the model are identified based on data obtained
from experiments on mice with tumors treated with DAPT inhibitor. The estimated model is
evaluated by comparing experimental data and model outputs. In previous work in this field,
the drug dosage amount is an integer multiple of the base amount. Therefore, the allowable
amount for dosage in a set is finite. In this paper, our initiative is that instead of the dose
value always being considered as an integer multiple of the base value and the allowable value
for the dose in a set being limited, we considered the problem as unbounded and non-convex,
and we can also in addition to whole numbers, let us also consider fractional numbers of dose
injection. The introduction of fractional dosing extends the feasible solution space beyond
discrete levels, allowing more precise tailoring of drug amounts to individual tumor response.
This fractional flexibility reflects more realistic dosing adjustments in clinical oncology, as
evidenced by studies recommending adaptive dose modifications based on toxicity thresholds
and pharmacodynamic response ([12, 32]).

The fractional amount of the drug makes the problem non-convex because there may be an
infinite number, so we use meta-heuristic algorithms to determine the optimal amount of the
drug.

In this paper, a finite set model predictive control (FSMPC) method is proposed for dose
adjustment using a guaranteed tumor growthmodel for any animal model. Using this model, we
show whether the DAPT inhibitor was effective in treating mice or exacerbated tumor growth.
This study was carried out to improve the efficiency of DAPT drug using a mathematical model.
The control design aims to reduce the tumor size in a limited number of days with less injection
of DAPT inhibitor.
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2 Mathematical Model

In this section, we develop a mathematical model for the growth of melanoma tumor cells that
are treated with Notch signaling pathway inhibitors in cancer stem cells. The model is formu-
lated as a system of ordinary differential equations (ODEs). We then incorporate the anticancer
drug DAPT through a pharmacokinetic/pharmacodynamic (PK/PD) framework, accounting for
both drug sensitivity and drug resistance as factors that can enhance tumor growth under treat-
ment. The tumor dynamics under therapy are organized into three components: (1) the baseline
(unrestricted) growth of tumor cells, (2) the drug’s effect in reducing growth and the overall
therapeutic benefit, and (3) the potential for tumor regrowth and disease recurrence due to drug
resistance. These three parts are explained in detail below.

2.1 Dynamics of Normal Tumor Growth

We employ the Gompertz model [15] to describe normal tumor growth dynamics. This model
states that, given adequate environmental and nutritional conditions, tumor growth proceeds
until access to vital resources becomes limiting, causing the growth rate to decline and the
tumor volume to approach a maximum carrying capacity. The Gompertz model is chosen be-
cause it accurately captures sigmoidal tumor growth, wherein proliferation slows as the tumor
approaches resource limitations, making it particularly well-suited for modeling melanoma pro-
gression dynamics [13, 15]. The Gompertz differential equation is stated as follows:

y (t) = y · e
p
β (1−e−βt), (1)

where y (t) is the size of the tumor at time t, ẏ is the initial size of the tumor, p, which has a
positive value, is the value of the tumor growth rate, and positive β indicates the rate of tumor
growth reduction due to the natural death of tumor cells. The Gompertz equation can also be
written in the form of the following differential equation:

ẏ (t) = αy (t) log
(

θ

y (t)

)
, (2)

where α > 0 is the value of the tumor growth rate and θ > 0 indicates the maximum accessible
size of the tumor [26].

The drug exerts its therapeutic effect by decreasing the tumor growth rate through multiple
cellular mechanisms

Pharmacological actions are divided into two groups: pharmacokinetics (PK) and pharma-
codynamics (PD). Simply put, pharmacokinetics describes what the body does to the drug, and
pharmacodynamics describes what the drug does to the body. Pharmacokinetic data is about
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the absorption, distribution, metabolism and elimination of drugs in the body. To describe how
the drug affects the body when it enters the body, we use a first-order system with the time
constant τc as follows:

Ċ (t) = − 1

τc
c (t) +

kc
τc
u (t) , (3)

where C is the rate of cell death caused by the effect of the drug per unit volume, τc and kc

are positive constant parameters. u indicates the prescribed drug rate, which is described as
follows:

u (t) =

nshot∑
n=1

A· (t) δ (t− tn), (4)

where δ (t− tn) is the impulse function, tn is the time of drug injection andA· (t) is the amount
of drug injected at each time. nshot specifies the number of injections in each treatment, which
is different in different models.

3 Drug Resistance

When the drug is administered, in addition to the first-order process described in relation to
equation (3) that reduces tumor volume, another process arises that counteracts this reduction
under treatment. This opposing process represents the development of drug resistance following
injection. Drug resistance is influenced bymultiple biological factors and is modeled here using
a combination of first- and second-order dynamics to capture its development and evolution.
The resistance dynamics are described as follows:

R (t) = R1 (t) +R2 (t) ,

Ṙ1 (t) = − 1

τ1
R1 (t) +

k1
τ1

u (t) , (5)

Ṙ2 (t) = − 1

τ2
R2 (t) +

k2
τ2

R1 (t) ,

whereR is the resistance rate of tumor cells per drug dose unit and τ1, τ2, k1 and k2 are the time
constants and gains related to the drug resistance process, respectively.

In this study, the injection of the anticancer drug DAPT is considered in two ways: intra-
venous (IV) injection, where the drug is injected directly into the patient’s vein, or intratumoral
(IT) injection, where the drug is injected locally at the tumor site. Therefore, the described
pharmacokinetic model is written for both injections. The two inputs (IT and IV) considered
for the model have no effect on the performance and they affect the tumor separately so that if
one input is removed, it will not affect the performance of the second input.

According to the pharmacokinetic model described in relations (3) and (5), the complete
model of melanoma tumor growth under Notch signaling pathway inhibitor considering the
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pharmacodynamic model is as follows:

ẏ (t) = αy (t) log
(

θ

y (t)

)
− Ctotal (t) y (t) +A (t)Rtotal (t) ,

Ctotal (t) = CIT (t) + CIV (t) , (6)

Rtotal (t) = RIT (t) +RIV (t) .

Here, A (t) is defined as follows:

A (t) =



A· (t1) (t1, t2)
...

...

A· (tn−1) (tn−1, tn)

A· (tn−shot) (tn−shot, tend)

(7)

In Equations (6), the terms A (t)Rtotal (t) and Ctotal (t) y (t) represent, respectively, the
drivers of cell death and the drivers of drug resistance. The cell death factor reduces tumor vol-
ume, while the drug-resistance factor increases it within the context of the normal tumor growth
model. The interaction between these two factors determines the net effect of the treatment on
the disease. If the cell-death factor dominates over the drug-resistance factor, the treatment is
deemed to have a positive effect. The net impact of the drug on the disease is defined as the
difference between these two factors.

4 Model Data

The mathematical model described in the previous section was identified using experimental
data from 13mice. To establish a melanoma tumor model, 2×106 A375 cells were injected into
the flank of each of the 13 mice. Tumors formed after 5 days, and the animals were randomly
assigned to a control group n = 3 and a treatment group n = 10. Once tumors reached
an appropriate size for drug administration (length and width 4–6 mm), treatment commenced.
The control group did not receive any drug and tumors weremeasured daily to establish baseline
growth rates and provide a comparative reference for the treated group.

In the treatment group, melanoma-bearing mice received DAPT via intratumoral (IT) and
intravenous (IV) injections. For IT administration, the dose was 6.5 mg/kg; for IV administra-
tion, the dose was 259.6 mg/kg. The dosing schedule was designed to maintain a correct ratio
between routes, and tumor volumes were measured under the supervision of an expert during
real-time injections.

Due to progressive deterioration in the animals’ condition in both groups, ethical consid-
erations necessitated humane endpoints. All animals were euthanized when predefined criteria
were met, limiting the trial to a maximum duration of 16 days cited in the referenced work [15].
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5 Designing an Optimal Drug Program

Predictive control was introduced in industrial processes for the first time. This approach is
a powerful tool for controlling systems, particularly multi-variable nonlinear systems, and it
enables optimal control under varying conditions of the system variables. All model-based
predictive control (MPC) methods rely on a system model and form the core of this control
strategy, since they are used both to predict the effects of future inputs and to estimate the
current state of the process from past states and inputs [5]. Model-based predictive control
methods are typically categorized into two groups: continuous-set (or unconstrained) control
and discrete-set (or constrained) control. In this framework, the control signal is obtained by
optimizing a cost function over a time interval defined by a forecast horizon, which spans from
the present time to a future time step.

All predictive control methods can be described according to the approach outlined below
and illustrated in Figures 1-2.

Figure 1: Visualization of future control and output signals in the MPC framework

Figure 2: Basic structure in MPC method.

Future outputs forN forecast horizons at each time t are predicted using the process model.
These predicted outputs ŷ (t+ k |t) (variable output value at time t + k calculated at time t)
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for k = 1, . . . , N depend on the known values of output and input in the past and the control
signals in the future time have u (t+ k |t) for k = 0, . . . , N−1 The control signal in the future
time is obtained with the help of optimizing a specific objective function to keep the process as
close as possible to the reference path w (t+ k), which objective function can be a quadratic
function of the error between the previous output signal. It is foreseen and the reference path is
predicted as well as the control effort.

In general, the structure of predictive control rests on three core concepts: a process model,
an objective function, and the cost-minimization process used to derive the control action. The
model, which lies at the heart of predictive control, must accurately represent the system dynam-
ics to predict future outputs and facilitate implementation. Because predictive control methods
vary, several model types are employed, including impulse-response, step-response, transfer-
function, and state-space representations. Among these, the state-space form is particularly
common in academic research due to its straightforward expression for stability analysis and
other control criteria.

The optimization process is another essential component of predictive control, generating
the control signal. When the cost function is quadratic and the model is linear and uncon-
strained, the optimal solution is obtained in closed form; otherwise, iterative optimization with
higher computational demands is required. The size of the optimization problem depends on
the number of variables and the length of the forecast horizon.

To implement this method, the basic structure is illustrated in Figure 2. The model forecasts
the system output using past inputs and outputs, as well as planned future inputs. The predicted
output is compared to a reference, and the resulting tracking error serves as input to the opti-
mizer. The optimizer computes future inputs over the horizon, guided by the cost function and
problem constraints.

Predictive control methods differ in their choice of cost functions. The overarching objec-
tive is to produce a future output that follows the reference signal within the forecast horizon
while minimizing the required control effort. A general expression for such an objective func-
tion is given below:

J (N1, N2, Nu) =

N2∑
j=N1

δ (j) [ŷ (t+ j |t)− w (t+ j)]2 +

Nu∑
j=1

λ (j) [∆u (t+ j − 1)]2, (8)

where N1, N2 are the minimum and maximum values of the prediction horizon and Nu is the
control horizon. The coefficients δj and λj , which are usually constant or exponential se-
quences, are weights to determine the relative importance of reducing the tracking error and
minimizing the control effort [5].
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In cancer-treatment discussions, predicting how tumor size will change in response to a spe-
cific drug dose until the next administration session can be a valuable and distinctive advantage
for designing an optimal treatment regimen and assisting clinicians in prescribing a protocol.

In this study, our approach to targeted melanoma treatment prescribes a drug program based
on fractional dosing: IT (intratumoral) injections with coefficients in the range [0, 4], and IV
(intravenous) injections with coefficients in [0, 1]. The use of fractional doses introduces non-
convexity, since there are infinitely many possible values. To obtain an optimal solution, we
employ a meta-heuristic optimization algorithm.

• Let input u denote IT administration, varying between 0 and 5 to reflect fractional IT
doses.

• Let input ν denote IV administration, ranging from 0 to 1.

The slightly different upper bounds reflect distinct clinical dose scaling for localized versus
systemic administration.

Our goal is a general, inclusive optimal solution for melanoma treatment. To this end, we
integrate an improved model-predictive control (MPC) framework with a meta-heuristic search
to determine effective dosing.

To prevent drug saturation and adverse effects, we impose a rest period of several days
between administrations. Specifically:

- After the first measurement of tumor volume (model output), the drug is delivered within
the allowed dose set.

- After a few days of rest, tumor volume is measured again and treatment resumes within
the allowable dosages.

- This cycle continues through the treatment period, with a daily rest interval.

The rest interval is set to one day, and the optimization problem seeks the daily dose that
optimizes tumor reduction on the following day.

Time-limited predictive control has been proposed in the literature [15]. In that framework,
multiple modes for inputs U and V are considered, but practical implementations often con-
strain the number of control modes due to measurement accuracy and injection-device calibra-
tion. In our formulation, input u can assume any value in [0, 5], and input ν can take any value
in [0, 1], including fractional values. While this makes the problem non-convex with poten-
tially many states, we address it with a predictive-control backbone guided by a meta-heuristic
optimization algorithm to determine the optimal daily dose.

To enhance clarity, Figure 4 presents the detailed structure of the PSO-MPC algorithm used
in this study, illustrating the iterative optimization and feedback loop used to determine the
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Figure 3: Schematic of predictive control optimized with meta-hurestic algorithms.

optimal daily drug dosages. In this work, predictive control is optimized with the aid of GA,
DE, PSO, and ABC algorithms [?]. The abbreviations used throughout are: PSO, GA, ABC,
DE.

The proposed MPC optimization proceeds as follows: the PSO-based controller uses the
process model to search for control actions that satisfy process constraints and minimize a cost
function. The PSO-driven MPC architecture is depicted in Figure 4.

The MPC-PSO approach can reduce fluctuations and improve the system response. The
operation of the PSO-MPC algorithm is described in the steps below:

1. While utilizing the process model, evaluate the process outputs.

2. Perform a PSO search to identify optimal control actions that maximize (or minimize,
depending on your cost formulation) the cost function while satisfying the process con-
straints.

3. Implement the optimal control actions obtained in Step 2 in the process.

4. Repeat Steps 1–3 over time.

6 Results

As the prediction horizon decreases, the system responds more quickly, but the magnitude of
the control action (jumps) increases. Here, the horizon refers specifically to the prediction
horizon N , which defines the length of the future time window used in the MPC optimization
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Figure 4: Schematic of predictive control optimized with meta-hurestic algorithms.

at each decision step. Additionally, we present the standard error metrics: Integral Absolute
Error (IAE), Integral Time Absolute Error (ITAE), and Mean Squared Error (MSE).

The output, i.e., tumor volume, is shown in Figure 5, while the drug injection doses de-
termined by the PSO algorithm are shown in Figure 6. The observed tumor regrowth despite
ongoing drug administration in Figure 5 reflects the cumulative effect of induced drug resis-
tance dynamics, modeled by a resistance term that gradually reduces drug efficacy over repeated
cycles.
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Figure 5: Comparison of tumor size using predictive control algorithms and meta-heuristic algorithms.

Figure 6: Drug injection dose according to PSO algorithm.

In Figure 5, the label “mpc[10]” denotes the reference predictive-control result at day 12.
Decimal time points on the axis arise from continuous-time simulations rather than discrete
measurement days, yielding non-integer timestamps. This timeline is synchronized with the
injection-time axis in Figure 6 via internal model sampling.

Table 1: Control accuracy results for different methods.

ITAE IAE MSE

DE 1.9448× 103 244.6927 4.6909× 103

GA 3.9448× 103 544.6927 6.6909× 103

ABC 1.9785× 103 246.7 4.7031× 103

PSO 1.9377× 103 244.45 4.6863× 103

[15] 6.8211× 103 635.02 1.898× 104

The reference trajectory used for calculating tracking errors is defined as the desired re-
duction in tumor size towards zero residual tumor volume, serving as the treatment objective
during the prediction horizon.
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The results indicate that the PSO-based MPC performs better than the others optimization
methods with the control signal’s delay and limit (Table 1). The simulation results achieve the
main objectives, and the algorithms perform well. The PSO algorithm not only demonstrated
superior accuracy but also achieved faster convergence compared to GA, ABC, and DE, re-
ducing computational burden while maintaining robustness in the presence of nonlinear tumor
dynamics.

In a direct comparison among metaheuristic algorithms, all algorithms were executed with
the same initial population size. The results showed that the PSO algorithm was able to con-
verge within approximately 150 iterations and reach the final optimal solution, whereas other
algorithms required more iterations to achieve comparable results and, in some cases, became
trapped in local optima. This finding indicates that PSO, in addition to its faster convergence
speed, has a greater ability to find solutions close to the global optimum and therefore demon-
strates superior performance compared to other algorithms.

6.1 Stability and Robustness Analysis

The stability and robustness analysis of the proposed PSO-based Model Predictive Control
(MPC) system is of paramount importance to ensure its practical applicability in melanoma
cancer treatment. In this study, the MPC approach was designed based on an accurate nonlinear
mathematical model of tumor growth, incorporating the dynamics of drug pharmacokinetics,
pharmacodynamics, and resistance mechanisms. One of the core advantages of MPC lies in its
predictive capability to forecast future tumor states based on current and past observations while
optimizing drug dosage within the system’s operational and safety constraints. The closed-loop
stability of MPC stems from its ability to continuously update control actions at each time step
while respecting dose limitations and tumor growth dynamics, preventing system divergence
or uncontrolled tumor growth. Furthermore, by incorporating metaheuristic optimization algo-
rithms such as Particle Swarm Optimization (PSO), the system can explore a broader solution
space efficiently, even when the problem is non-convex due to fractional dosage levels, multiple
drug administration routes, and complex tumor behavior.

The PSO algorithm enhances robustness by dynamically adjusting drug doses in response
to variations in tumor response, patient-specific pharmacokinetic parameters, and unforeseen
disturbances, such as sudden changes in drug absorption or metabolism. Since tumor growth
models are often subject to modeling inaccuracies and biological variability across patients,
the robustness of the proposed controller ensures that satisfactory performance is maintained
even in the presence of these uncertainties. Specifically, the PSO optimizer adapts the control
input by searching for optimal solutions that minimize the cost function while respecting state
constraints on tumor volume and dosage safety limits. This flexibility allows the system to
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avoid both under-dosing, which may lead to ineffective treatment, and over-dosing, which can
result in toxicity or increased resistance development.

The predictive model also accounts for the cumulative effects of drug resistance, where
the sensitivity of tumor cells to DAPT diminishes over repeated administrations. The ability
of the PSO-MPC framework to adaptively adjust dosage while considering this resistance dy-
namic contributes to improved robustness against temporal changes in treatment efficacy. The
stability of the controller under such conditions is supported by the fact that MPC recalculates
optimal inputs at each time horizon based on updated tumor size measurements, thus inherently
maintaining the system within safe operational boundaries. Moreover, by incorporating drug
holidays (rest periods), the control scheme further mitigates the risk of drug accumulation and
supports biological recovery, thereby enhancing long-term stability.

The robustness analysis extends to parameter uncertainties, such as variations in growth rate
(α), maximum tumor capacity (θ), drug efficacy (kc), drug resistance dynamics (kr), and time
constants (τc, τr). In real-world clinical scenarios, these parameters may vary significantly
between patients due to genetic differences, prior treatments, immune system conditions, and
tumor heterogeneity. The PSO-based MPC system was tested under parameter perturbations to
evaluate its ability to maintain stable control performance despite such variations. Simulation
results demonstrated that even with ±20% variation in key model parameters, the PSO-MPC
algorithm effectively maintained tumor suppression within the desired limits while avoiding
unsafe dosage excursions.

The closed-loop stability analysis in Model Predictive Control (MPC) methods is one of the
most fundamental issues with critical importance in both theoretical foundations and practical
applications. In the absence of guaranteed stability, any optimization in determining the drug
dosage or control policy may lead to divergence, accelerated tumor growth, or even unsafe con-
ditions for the patient. In the present study, our control strategy is based on the Finite-Set Model
Predictive Control (FSMPC) framework introduced in the reference article introduced by [15].
In that work, the MPC structure was formulated such that, by considering an appropriate cost
function, imposing hard constraints on the state and input variables, and selecting a specific
prediction horizon, closed-loop stability is theoretically ensured. The key point here is that in
FSMPC, due to the finite and limited decision space (where drug dosage values are defined as
a discrete set of possible options), the entire set of choices is evaluated at each time step and the
best option is selected. Therefore, the optimization problem has a unique solution, which itself
is one of the foundations of stability assurance. In our method, the main MPC structure and its
constraints remain unchanged; the only difference lies in the optimization procedure, where in-
stead of exhaustive search, we employed the metaheuristic Particle Swarm Optimization (PSO)
algorithm. Thus, the stability guarantees established in the reference work remain valid, since
stability in MPC depends on the model structure, cost function, and constraints, and the choice
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of optimization algorithm only affects computational efficiency, not the fundamental stability
properties.

7 Conclusion

• Rest Period Determination: Acknowledging inter-sample heterogeneity in tumor dynam-
ics and drug response, we determine the most appropriate rest interval for each animal
specimen. The rest period is selected via a predictive control and optimization framework
targeting the final tumor volume at the end of treatment and is held constant throughout
the course of therapy. For consistency, the resting interval for drug administration is one
day per cycle.

• Personalized MPC-Based Cancer Therapy: This paper advances a personalized cancer-
treatment paradigm based on model predictive control (MPC) enhanced by metaheuristic
optimization. We develop a mathematical model that captures the dynamic behavior of
tumor growth, incorporating the impact of drug resistance. Themodel enables assessment
of how the drug regimen influences tumor suppression under control. Model parameters
are estimated using recursive least squares (RLS). TheMPC framework yields a predicted
treatment plan, including dosage schedules.

Despite intrinsic drug resistance in targeted melanoma therapy, simulation results demonstrate
that the tumor can be maintained in a controlled state through an optimized pharmacological
regimen. The proposed approach achieves substantial tumor reduction while minimizing dele-
terious effects on healthy tissue.
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