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1 Introduction

Multi-Attribute Decision Making (MADM) is a structured approach used to identify the most
appropriate alternative from a set by evaluating each against multiple criteria [5, 26, 31]. When
this evaluative process requires the integration of judgments and preferences from several
decision-makers (DMs), it becomes a Multi-Attribute Group Decision Making (MAGDM). In
practice, DMs frequently provide their assessments using linguistic descriptors, such as “very
high,” “medium,” or “poor” [21]. However, linguistic evaluations are inherently imprecise and
subjective, causing terms to be interpreted differently by different DMs and thus introducing
ambiguity and inconsistency [32].

Fuzzy set theory has become foundational in modeling such imprecision, refining MADM
approaches by mathematically representing uncertainty. Early applications relied on Type-1
Fuzzy Sets (T1FSs), where each element is assigned a precise membership degree in [0, 1] [17].
However, T1FSs are limited in their ability to capture higher-order ambiguities, particularly in
the context of complex linguistic information [21, 32].

Introduced by Zadeh in 1965 [40], Type-2 Fuzzy Sets (T2FSs) provide an enhanced frame-
work by allowing the membership function itself to be fuzzy. This added dimension enables
T2FSs to better represent and manage uncertainty [24]. For practical computational purposes,
Turksen [33] proposed the subclass of Interval Type-2 Fuzzy Sets (IT2FSs), which restrict the
secondary membership function to an interval, making the sets more tractable yet expressive.
Mendel [24] further emphasized that linguistic expressions are often too nuanced for T1FSs,
highlighting the need for T2FS and IT2FS models in applications where uncertainty is pro-
nounced. Interval Type-2 Fuzzy Numbers (IT2FNs), a common numeric form of IT2FSs, have
thus emerged as powerful instruments in environments characterized by ambiguous informa-
tion [19, 28, 29, 38].

A central issue in fuzzy MADM is the ability to rank alternatives modelled as fuzzy
numbers—particularly IT2FNs—since ranking is fundamental to the selection of the optimal
solution under uncertainty [1, 43]. Various IT2FN ranking approaches have been proposed, such
as centroid-based, dominance degree-based, and rank-index techniques, and many have found
application in MADM and group decision-making frameworks [12, 14, 25, 41, 42]. Nonethe-
less, these methodologies largely employ linguistic scales that only account for positive assess-
ments, with normalized endpoints at zero and one [9, 10, 15, 27, 37]. This unilateral perspective
neglects the inherent duality in many evaluation contexts.

According to the philosophy of Yin-Yang equilibrium [36], all phenomena exhibit both pos-
itive and negative facets, and judgment should be balanced accordingly. In MADM, this means
that attribute assessments should allow for both positive (“very high”) and negative (“very low”)
linguistic extremes, with neutral terms (e.g., “medium”) serving as the equilibrium or “fuzzy
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zero.” Recent work by Zamri et al. [41] developed such a linguistic scale, permitting DMs to
express both positive and negative IT2FNs.

This research builds on these concepts by introducing a novel IT2FN rankingmethod specif-
ically designed for linguistic MADM problems embracing both positive and negative assess-
ments. This method, based on the center of gravity approach, offers the advantage of simplicity
in understanding and calculation. The method incorporates the average and standard deviation
of both the upper and lower membership functions, as well as each IT2FN’s height, ensuring full
use of their structural and dispersion properties. Theoretical analysis addresses key properties
such as zero, unity, and symmetry. Extensive comparative testing with seven sets of IT2FNs
demonstrates the new method’s rationality and superiority over prevailing alternatives.

Based on this ranking, we further propose a new MAGDM framework that accommodates
positive and negative IT2FNs in both criteria and their weights. The effectiveness and practi-
cality of the proposed method are substantiated through two detailed numerical examples—one
employing a purely positive linguistic scale, and the other using a combined positive/negative
scale.

The remainder of this article is structured as follows: Section 2 reviews relevant fuzzy set
concepts and details the proposed IT2FN ranking method; Section 3 outlines the newMAGDM
procedure; Section 4 presents illustrative examples; and Section 5 concludes with key findings
and avenues for future research.

2 Background and Related Work

The theory of fuzzy sets, originally introduced by Zadeh in 1965 [40], provides a robust math-
ematical framework for modelling systems characterized by vagueness, complexity, and im-
precision. Type-1 Fuzzy Sets (T1FSs), wherein each element has a membership grade between
zero and one, have been widely used in various decision-making problems [3, 34, 37]. How-
ever, T1FSs can be limited in their ability to fully capture the inherent uncertainty present in
real-world assessments, particularly when the available information is itself imprecise or sub-
jective [1, 19].

Type-2 fuzzy sets extend type-1 fuzzy sets by representing the membership function itself as
fuzzy, which provides an additional degree of uncertainty modeling [24]. Instead of assigning
a crisp degree of membership to an element, a T2FS employs a so-called Secondary Mem-
bership Function (SMF), which expresses fuzziness over each possible value of the primary
membership grade. Therefore, T2FSs can model the “uncertainty about uncertainty,” which
is particularly valuable in fields that require nuanced treatment of ambiguity, such as pattern
recognition, control systems, and decision support [24, 25].
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2.1 Interval Type-2 Fuzzy Sets: Definitions and Operators

This subsection begins with a review of essential definitions and foundational concepts related
to T2FSs [24]. It then details several prevalent arithmetic operations applicable to IT2FNs.

Definition 1. A type-2 fuzzy set Ã on the reference set X , as defined in [24], is given by:

Ã = {((x, u), µÃ(x, u)) | x ∈ X,u ∈ Jx ⊆ [0, 1], and 0 ≤ µÃ(x, u) ≤ 1}.

Definition 2. A T2FS Ã, as defined in [24], can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx µÃ(x, u)/u

x
, (1)

where
∫
is the union of all combinations (x, u), x is the primary variable, and u is the secondary

variable in Jx ⊆ [0, 1] with a secondary membership grade of µÃ(x, u).

Definition 3. As stated in [25], a fuzzy set Ã is called an Interval Type-2 Fuzzy Set (IT2FS)
if Ã is a T2FS in which all secondary membership grades are equal to 1, i.e., µÃ(x, u) = 1.
Equivalently, IT2FS can be represented as:

Ã =

∫
x∈X

∫
u∈Jx 1/u

x
. (2)

Definition 4. The Footprint of Uncertainty (FOU) of an IT2FS Ã is the union of all its primary
memberships and is defined as follows [25]:

FOU(Ã) =
⋃
x∈X

Jx. (3)

The FOU is bounded by two Type-1 membership functions: the Upper Membership Function
(UMF), µÃ(x), and the Lower Membership Function (LMF), µ

Ã
(x). For any x ∈ X , we have:

µÃ(x) = sup(FOU(Ã)), (4)

µ
Ã
(x) = inf(FOU(Ã)). (5)

Therefore, the FOU of an IT2FS Ã can be expressed as the region between the UMF and LMF:
FOU(Ã) =

⋃
x∈X [µ

Ã
(x), µÃ(x)].

Definition 5. [28]. A Trapezoidal Interval Type-2 Fuzzy Number (TIT2FN), denoted by Ã,
can be represented by its UMF and LMF as:

Ã = (ÃU , ÃL) = ((aU1 , a
U
2 , a

U
3 , a

U
4 ;h

U
1 , h

U
2 ), (a

L
1 , a

L
2 , a

L
3 , a

L
4 ;h

L
1 , h

L
2 )), (6)

where ÃU and ÃL are Type-1 fuzzy numbers representing the UMF and LMF, respectively.
As shown in Figure 1, hU1 is the membership height of the interval [aU2 , aU3 ] and hL1 is the
membership height of [aL2 , aL3 ]. We have 0 ≤ hL1 ≤ hU1 ≤ 1. For a triangular fuzzy number,
a2 = a3.
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Figure 1: A trapezoidal interval type-2 fuzzy number.

Definition 6. Let Ã1 and Ã2 be two TIT2FNs. According to [19, 28], some common arithmetic
operators can be defined as follows:

• Addition:

Ã1 ⊕ Ã2 =
(
(aU11 + aU21, a

U
12 + aU22, a

U
13 + aU23, a

U
14 + aU24;min(h

U
11, h

U
21),min(h

U
12, h

U
22)),

(aL11 + aL21, a
L
12 + aL22, a

L
13 + aL23, a

L
14 + aL24;

min(hL11, h
L
21),min(h

L
12, h

L
22))

)
.

(7)

• Multiplication:

Ã1 ⊗ Ã2 =
(
(aU11a

U
21, a

U
12a

U
22, a

U
13a

U
23, a

U
14a

U
24;min(h

U
11, h

U
21),min(h

U
12, h

U
22)),

(aL11a
L
21, a

L
12a

L
22, a

L
13a

L
23, a

L
14a

L
24;min(h

L
11, h

L
21),min(h

L
12, h

L
22))

)
.

(8)

• Multiplication by a crisp value λ:

λÃ =

((λaU1 , λa
U
2 , λa

U
3 , λa

U
4 ;h

U
1 , h

U
2 ), (λa

L
1 , λa

L
2 , λa

L
3 , λa

L
4 ;h

L
1 , h

L
2 )), λ ≥ 0,

((λaU4 , λa
U
3 , λa

U
2 , λa

U
1 ;h

U
1 , h

U
2 ), (λa

L
4 , λa

L
3 , λa

L
2 , λa

L
1 ;h

L
1 , h

L
2 )), λ < 0.

(9)

• Division by a crisp value λ ̸= 0:

Ã

λ
=



(
(aU1 /λ, a

U
2 /λ, a

U
3 /λ, a

U
4 /λ;h

U
1 , h

U
2 ),

(aL1 /λ, a
L
2 /λ, a

L
3 /λ, a

L
4 /λ;h

L
1 , h

L
2 )), λ > 0,

((aU4 /λ, a
U
3 /λ, a

U
2 /λ, a

U
1 /λ;h

U
1 , h

U
2 ),

(aL4 /λ, a
L
3 /λ, a

L
2 /λ, a

L
1 /λ;h

L
1 , h

L
2 )), λ < 0.

(10)
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2.2 Existing Methods for Ranking IT2FNs

As mentioned before, various methods have been proposed for ranking IT2FNs to address
MADM problems. In this section, we will review some of these ranking methods. For clarity,
the term “TIT2FN” will refer to the Trapezoidal Interval Type-2 Fuzzy Number.

2.2.1 Chen and Hong’s Method

Chen and Lee [11] proposed a ranking method for Ãi denoted as Rank(Ãi) defined as follows:

Rank(Ãi) =
1

8

[(
(aUi1 + ki) + (2− (aUi4 + ki))

2
+

(aUi2 + ki) + (2− (aUi3 + ki))

2

+
hUi1 + hLi1 + hUi2 + hLi2

4

)
×
(
(aUi1 + ki) + (aUi2 + ki)

+ (aUi3 + ki) + (aUi4 + ki) + (aLi1 + ki)

+ (aLi2 + ki) + (aLi3 + ki) + (aLi4 + ki)
)]

(11)

where,

ki =

0 min(aUi1, aUi2, . . . , aUin) ≥ 0

|min(aUi1, aUi2, . . . , aUin)| min(aUi1, aUi2, . . . , aUin) < 0

and i = 1, 2, . . . , n. Chen and Hong introduced this method for ranking IT2FNs to demonstrate
its superiority over the approaches proposed by Cheng [14], Chen et al. [13], Wei [37], Chen
and Chen [9, 10] and Murakami et al. [27].

2.2.2 Chiao’s Parametric GMIR Method

Chiao [15], utilizing the Parametric Graded Mean Integration Representation (GMIR) expan-
sion for T2FSs, proposed the following ranking criterion for IT2FNs:

P̄Ãi
=

∫ 1

0

(
1− α

6
(aUi1 + aUi4) +

1− α

3
(aUi2 + aUi3) +

α

6
(aLi1 + aLi4) +

α

3
(aLi2 + aLi3)

)
dα

=
1

12
(aUi1 + aUi4 + aLi1 + aLi4) +

1

6
(aUi2 + aUi3 + aLi2 + aLi3), (12)

where 0 ≤ α ≤ 1.
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2.2.3 Degree of Dominance Approach

Ghorabaee et al. [19], employing the method of Wang et al. [36] and the degree of dominance
for T2FNs, proposed the rank of Ãi as follows:

Rvalue(Ãi) =
1

n(n− 1)

 n∑
j=1

D(Ãi > Ãj) +
n

2
− 1

 , (13)

where, D(Ãi > Ãj) is the degree of dominance of Ãi over Ãj defined by:

D(Ãi > Ãj) =

∑
T∈{U,L}[ω(D

T
1 ) + 3ω(DT

2 ) + 3ω(DT
3 ) + ω(DT

4 )]

8
∑

T∈{U,L}[max(aTs4, aTt4)−min(aTs1, aTt1)]
, (14)

where, for s = 1, 2, 3, 4 and t = 1, 2, 3, 4:

DT
i =

aTsi · h1(ÃT
s )− aTti · h1(ÃT

t ), i = 1, 2,

aTsi · h2(ÃT
s )− aTti · h2(ÃT

t ), i = 3, 4,

and ω(x) = max{0, x}. Ghorabaee et al. [19] demonstrated that their method offers advantages
over the approaches of Chen et al. [13], Wang et al. [35] and Balezentis and Zeng [4] in multiple
MADM benchmarks.

2.2.4 Centroid and Rank Index Methods

De et al. [16] first defined the centroid value of each Ãi, as follows:

CÃi
=

1

6

[
(aUi1 + bUi1 + cUi1 + dUi1) + (aLi2 + bLi2 + cLi2 + dLi2)

−
(

dUi1c
U
i1 − aUi1b

U
i1

(dUi1 + cUi1)− (aUi1 + bUi1)
+

dLi2c
L
i2 − aLi2b

L
i2

(dLi2 + cLi2)− (aLi2 + bLi2)

)]
.

Then, they defined the rank index value as follows:

R(Ãi) =
1

4
[α(h1(a

U
i1+ bUi1)+h2(a

L
i2+ bLi2))+ (1−α)(h1(c

U
i1+ dUi1)+h2(c

L
i2+ dLi2))]. (15)

Now, for comparing two IT2FNs, Ãi and Ãj , the following relations are used:

I. If CÃi
> CÃj

, then Ãi ≻ Ãj .

II. If CÃi
< CÃj

, then Ãi ≺ Ãj .

III. If CÃi
= CÃj

, then to compare two IT2FNs:

• If R(Ãi) > R(Ãj), then Ãi ≻ Ãj .
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• If R(Ãi) < R(Ãj), then Ãi ≺ Ãj .

• If R(Ãi) = R(Ãj), then:

– If (hUi1 + hLi2)/2 > (hUj1 + hLj2)/2, then Ãi ≻ Ãj .

– If (hUi1 + hLi2)/2 < (hUj1 + hLj2)/2, then Ãi ≺ Ãj .

– If (hUi1 + hLi2)/2 = (hUj1 + hLj2)/2, then Ãi ∼ Ãj .

Despite these advancements, most existing methods are based on a strictly positive linguis-
tic scale, wherein normalized assessments range from zero (lowest) to one (highest). However,
such frameworks may not adequately capture the nuances of neutrality, symmetry, or dual-
scale reasoning reflected in real-world linguistic judgments—where both positive and negative
values must be addressed, and “medium” truly represents neutral, not mid-way between two
positives [41].

3 Proposed Method

This research introduces two substantive, interrelated innovations that collectively advance the
state of the art in fuzzy Multi-Attribute Group Decision Making (MAGDM):

• A novel, symmetry-respecting ranking method for Interval Type-2 Fuzzy Numbers, fea-
turing theoretical justification and designed to overcome core limitations of previous
ranking indices, especially regarding the treatment of dual-scale linguistic information
and “fuzzy zero” neutrality.

• A new MAGDM methodology that integrates the above ranking index to enable effec-
tive group decision making using both positive and negative linguistic scales—thereby
addressing human duality in judgment and fostering a richer, more interpretable aggre-
gation and evaluation of expert assessments.

The subsequent sections detail the construction, mathematical underpinnings, and opera-
tional steps for each contribution, underscoring their advantages and positioning relative to
prevailing approaches.

3.1 Novel Ranking Method for IT2FNs

Existing IT2FN ranking functions have notable deficiencies, such as asymmetry, an inability to
process negative scales, and an absence of an explicit “fuzzy zero” treatment [11, 16, 19, 37].
Most operate under the presumption of a solely positive normalized scale, limiting their fidelity
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in reflecting the true intent of human experts—particularly when both benefits and costs, or
“good” and “bad” outcomes, require balanced evaluation.

In direct response, we propose a ranking index for IT2FNs grounded in the principles
of symmetry, neutrality, and equilibrium, as inspired by Yin-Yang duality theory [41]. The
methodology leverages both the mean and standard deviation of the upper and lower member-
ship functions (UMF and LMF), as well as the core height of the IT2FN, to achieve an unbiased,
theoretically sound quantification of vague expert inputs.

3.1.1 Mathematical Formulation

Let Ãi = ((aUi1, a
U
i2, a

U
i3, a

U
i4;h

U
i1, h

U
i2), (a

L
i1, a

L
i2, a

L
i3, a

L
i4;h

L
i1, h

L
i2)) for i = 1, 2, . . . , n be n

TIT2FNs, where −∞ ≤ aLi1 ≤ aUi1 ≤ aUi2 ≤ . . . ≤ aUi4 ≤ ∞ and 0 ≤ hLi1, h
L
i2, h

U
i1, h

U
i2 ≤ 1.

A ranking criterion for Ãi is defined as:

RN(Ãi) =
1

4

 x̄U
ÃS

i

· (hUi1 + hUi2)

1 + STDU
ÃS

i

+
x̄L
ÃS

i

· (hLi1 + hLi2)

1 + STDL
ÃS

i

 , (16)

where ÃS
i is the normalized form of Ãi. The terms x̄UÃS

i

and x̄L
ÃS

i

are the means of the UMF and

LMF points, and STDU
ÃS

i

and STDL
ÃS

i

are their standard deviations, respectively.
The structure of this ranking criterion emphasizes robustness. Normalization ensures all

IT2FNs are mapped onto a common scale, ensuring comparability across alternatives. The
denominator (1+STD) serves as a penalty for uncertainty: larger standard deviation, reflecting
greater vagueness, lowers the ranking score. Adding 1 prevents division-by-zero and stabilizes
the index, a strategy analogous to constructing risk-adjusted metrics.

The rank RN(Ãi) can be calculated via the following steps:
Step 1: Normalize the IT2FNs. A normalization factor k is calculated to map all fuzzy

numbers to a consistent range [19]:

k = max
({

⌈|aUij |⌉, ⌈|aLij |⌉ | i = 1..n, j = 1..4
}
∪ {1}

)
. (17)

Then, each IT2FN Ãi is normalized:

ÃS
i =

(
ÃU

i

k
,
ÃL

i

k

)
= ((aUS

i1 , . . . , aUS
i4 ;hUi1, h

U
i2), (a

LS
i1 , . . . , aLS

i4 ;hLi1, h
L
i2)), (18)

where aUS
ij = aUij/k and aLS

ij = aLij/k.
Step 2: Calculate the mean of normalized points. For each normalized IT2FN ÃS

i , cal-
culate the mean of its UMF and LMF points:

x̄ÃS
i
= (x̄U

ÃS
i
, x̄L

ÃS
i
) =

(∑4
j=1 a

US
ij

4
,

∑4
j=1 a

LS
ij

4

)
. (19)
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Step 3: Calculate the standard deviation of normalized points. Calculate the standard
deviation for the UMF and LMF points of ÃS

i :

STDÃS
i
= (STDU

ÃS
i
, STDL

ÃS
i
) =


√∑4

j=1(a
US
ij − x̄U

ÃS
i

)2

4
,

√∑4
j=1(a

LS
ij − x̄L

ÃS
i

)2

4

 .

(20)
Step 4: Calculate the score for UMF and LMF. Calculate the individual scores for the

UMF and LMF:

score(ÃS
i ) = (scoreU , scoreL) =

 x̄U
ÃS

i

· (hUi1 + hUi2)

2(1 + STDU
ÃS

i

)
,
x̄L
ÃS

i

· (hLi1 + hLi2)

2(1 + STDL
ÃS

i

)

 . (21)

Step 5: Calculate the final ranking criterion. The final rank is the average of the UMF
and LMF scores:

RN(Ãi) =
scoreU + scoreL

2
. (22)

For any two IT2FNs Ãi1 and Ãi2 , the order relationships are:

• If RN(Ãi1) > RN(Ãi2), then Ãi1 ≻ Ãi2 .

• If RN(Ãi1) < RN(Ãi2), then Ãi1 ≺ Ãi2 .

• If RN(Ãi1) = RN(Ãi2), then Ãi1 ∼ Ãi2 .

Since the function RN(·) maps every IT2FN to a crisp real number, this method provides a
complete and unambiguous ranking for any set of alternatives.

Example 1. Consider two IT2FNs:

• Ã1 = ((3, 5, 5.5, 7; 1, 1), (4, 4.5, 5, 6; 0.95, 0.95)),

• Ã2 = ((5, 7, 7.5, 9; 1, 1), (6, 6.5, 7, 8; 0.95, 0.95)).

First, find the normalization factor k = max(⌈3⌉, . . . , ⌈9⌉, . . . , ⌈8⌉, 1) = ⌈9⌉ = 9.
For Ã1:

1. ÃS
1 = ((39 ,

5
9 ,

5.5
9 , 79 ; 1, 1), (

4
9 ,

4.5
9 , 59 ,

6
9 ; 0.95, 0.95)),

2. x̄ÃS
1
= (0.5694, 0.5417),

3. STDÃS
1
= (0.1586, 0.0817),

4. score(ÃS
1 ) =

(
0.5694·2

2(1+0.1586) ,
0.5417·1.9

2(1+0.0817)

)
= (0.4915, 0.4754),

5. RN(Ã1) =
0.4915+0.4754

2 = 0.4835.
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For Ã2: A similar calculation yields RN(Ã2) = 0.6773. Since RN(Ã2) > RN(Ã1), we
conclude that Ã2 ≻ Ã1.

Lemma 1. The proposed ranking criterion RN(·) satisfies the following properties:

• Property 1 (Zero property): If Ãi = ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 1, 1)), then

RN(Ãi) = 0.

Proof. For Ãi = ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 1, 1)), after normalization (if needed, k ≥
1), the normalized points remain all zero. Thus, x̄ÃS

i
= (0, 0). From Equation (21), this

leads to score(ÃS
i ) = (0, 0), and consequently, RN(Ãi) = 0.

• Property 2 (Unity property): If Ã1 = ((a, a, a, a; 1, 1), (a, a, a, a; 1, 1)) and Ã2 = ((1−
a, 1− a, 1− a, 1− a; 1, 1), (1− a, 1− a, 1− a, 1− a; 1, 1)) with 0 ≤ a ≤ 1, then

RN(Ã1) +RN(Ã2) = 1.

Proof. For Ã1 and Ã2 as defined, the normalization factor k = 1. For Ã1, we have
x̄ÃS

1
= (a, a) and STDÃS

1
= (0, 0). This gives score(ÃS

1 ) = (a, a), so RN(Ã1) = a.
For Ã2, we have x̄ÃS

2
= (1−a, 1−a) and STDÃS

2
= (0, 0), leading toRN(Ã2) = 1−a.

Therefore, RN(Ã1) +RN(Ã2) = a+ (1− a) = 1.

• Property 3 (Symmetry property): If Ã2 = −Ã1, then RN(Ã2) = −RN(Ã1).

Proof. Let Ã1 = ((aU1 , . . . , a
U
4 ;h

U
1 , h

U
2 ), (a

L
1 , . . . , a

L
4 ;h

L
1 , h

L
2 )). Then its symmetric

counterpart is Ã2 = −Ã1 = ((−aU4 , . . . ,−aU1 ;h
U
1 , h

U
2 ), (−aL4 , . . . ,−aL1 ;h

L
1 , h

L
2 )). The

normalization factor k is the same for both, as it depends on absolute values. After nor-
malization, we have x̄U

ÃS
2

= −x̄U
ÃS

1

, and similarly x̄L
ÃS

2

= −x̄L
ÃS

1

. The standard deviation

remains unchanged: STD(ÃS
2 ) = STD(ÃS

1 ), because it is based on squared differ-
ences. From Equation (21), we see that score(ÃS

2 ) = (−scoreU (ÃS
1 ),−scoreL(ÃS

1 )).
Therefore, RN(Ã2) = −RN(Ã1).

3.2 Comparison of the New Ranking Method with Existing Methods

In this section, we compare the performance of the proposed ranking method with several ex-
isting methods using seven sets of IT2FNs, which are visually depicted in Figure 2. The rank
of each IT2FN is computed using the following methods:

• Method 1: The method proposed by Chen and Lee [11].
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• Method 2: The method proposed by Chiao [15].

• Method 3: The method proposed by Ghorabaee et al. [19].

• Method 4: The method proposed by De et al. [16].

• Proposed Method: The newly developed method in this paper.

Figure 2: Seven IT2FN sets used in comparing ranking methods.

The comparative results of the ranking values and the final orderings are summarized in
Tables 1 and 2, respectively.

An analysis of the data presented in Tables 1, 2 and Figure 2, allows for several key assess-
ments of the examined ranking methods:
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Table 1: Numerical ranking results for seven sets of IT2FNs.

Sets Alternatives Method 1 Method 2 Method 3 Method 4 Proposed Method

Set1
A1 0.8116 0.3083 0.0723 0.3094 0.2582
A2 0.8116 0.3083 0.0268 0.3048 0.2558

Set2
A1 0.81 0.3 0 0.3 0.2626
A2 3 1 0.4 N/A 1

Set3
A1 -0.84 -0.3 0.1761 -0.3 -0.267
A2 -2.1141 -0.7625 0.0833 -0.7721 -0.6854
A3 0.84 0.3 0.1979 0.3 0.267

Set4
A1 1.5238 0.55 0.1654 0.6 0.4631
A2 1.4088 0.55 0 0.5 0.4229

Set5
A1 1.125 0.4667 0.0907 0.4404 0.3519
A2 1.3913 0.5167 0.1036 0.5333 0.4265
A3 1.43 0.5833 0.1361 0.5256 0.4389

Set6
A1 0.7978 0.2833 0.122 0.2906 0.2555
A2 0.7691 0.2833 0.0982 0.2906 0.2297
A3 0.7403 0.2833 0.0833 0.2906 0.2044

Set7
A1 0.9192 0.3292 0.1683 0.3325 0.2716
A2 -0.9192 -0.3292 0 -0.3325 -0.2716

Table 2: Results of ranking for seven sets of IT2FNs (ranking orders).

Sets Method 1 Method 2 Method 3 Method 4 Proposed Method

Set1 Ã1 ≈ Ã2 Ã1 ≈ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2

Set2 Ã1 ≺ Ã2 Ã1 ≺ Ã2 Ã1 ≺ Ã2 Failed Ã1 ≺ Ã2

Set3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3

Set4 Ã1 ≻ Ã2 Ã1 ≈ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2

Set5 Ã1 ≺ Ã2 ≺ Ã3 Ã1 ≺ Ã2 ≺ Ã3 Ã1 ≺ Ã2 ≺ Ã3 Ã1 ≺ Ã3 ≺ Ã2 Ã1 ≺ Ã2 ≺ Ã3

Set6 Ã1 ≻ Ã2 ≻ Ã3 Ã1 ≈ Ã2 ≈ Ã3 Ã1 ≻ Ã2 ≻ Ã3 Ã1 ≈ Ã2 ≈ Ã3 Ã1 ≻ Ã2 ≻ Ã3

Set7 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2

• Set 1: The proposed approach, alongwithMethods 3 and 4, produced coherent and distin-
guishable ranking outcomes (Ã1 ≻ Ã2), whereas Methods 1 and 2 failed to differentiate
between the two IT2FNs.

• Set 2: Method 4 was unable to produce a ranking for Ã2. All other methods successfully
ranked Ã1 ≺ Ã2.
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• Set 3: All evaluated methods performed successfully, yielding the same accurate and
consistent ranking order: Ã2 ≺ Ã1 ≺ Ã3.

• Set 4: Except for Method 2, which yielded an implausible equivalence, all methods gen-
erated the meaningful ranking Ã1 ≻ Ã2.

• Set 5: Every method, aside from Method 4, correctly produced the ranking Ã1 ≺ Ã2 ≺
Ã3. Method 4 incorrectly ranked Ã3 below Ã2.

• Set 6: The results from the proposed method were in alignment with those of Methods 1
and 3 (Ã1 ≻ Ã2 ≻ Ã3), while Methods 2 and 4 were unable to distinguish between the
three IT2FNs.

• Set 7: For the symmetric cases Ã1 and Ã2 = −Ã1, every method returned the correct
order Ã1 ≻ Ã2. However, a closer inspection of Table 1 reveals that only Method 3
failed to maintain the symmetry property in its rank values, as RN(Ã1) ̸= −RN(Ã2).

Table 3 summarizes how each method aligns with the three fundamental ranking properties
discussed previously.

Table 3: Comparison of properties satisfied by different ranking methods.

Methods Zero property One property Symmetric property

Method 1 Yes No Yes
Method 2 Yes Yes Yes
Method 3 Yes No No
Method 4 Yes No Yes
The Proposed Method Yes Yes Yes

In summary, the proposed method and Method 2 both consistently satisfy all three prop-
erties, reflecting their robustness in ranking IT2FNs. Conversely, Methods 1, 3, and 4 exhibit
notable deficiencies, either in ranking accuracy or in property compliance [11, 15, 19, 16].
These results underscore the clear advantages of the proposed approach over existing alterna-
tives, particularly regarding its reliability and adherence to essential theoretical criteria.

4 New MAGDM Framework Integrating the Proposed Ranking Method

Building on the above ranking index, we propose a comprehensive MAGDM framework
that systematically incorporates dual-scale linguistic assessment and the new IT2FN ranking
throughout all procedural steps. This framework adapts the classic TOPSIS methodology to
accommodate the richer semantics provided by the new ranking approach.
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4.1 Procedural Steps

Consider a MAGDM problem with the following elements:

• m alternatives: A1, A2, . . . , Am.

• n attributes: C1, C2, . . . , Cn.

• K decision-makers (DMs): D1, D2, . . . , DK , with corresponding importance weights
ηl.

Assume that the weight vector of the attributes is denoted as W T = (w1, w2, . . . , wn), where
wj ∈ [0, 1] for j = 1, 2, . . . , n and

∑n
j=1wj = 1.

Let X̃l = (x̃ijl)m×n be the decision matrix from the l-th DM, where x̃ijl is the IT2FN
representing the evaluation of alternativeAi with respect to attributeCj . TheMAGDMprocess
consists of the following steps:

Step 1: Construct the collective decisionmatrix. Construct the collective decision matrix
X̃ = (x̃ij)m×n by computing the weighted average of inputs from theK DMs [19, 28]:

x̃ij =
K⊕
l=1

ηl ⊗ x̃ijl; i = 1, . . . ,m; j = 1, . . . , n. (23)

Note: While equal weights for DMs can be assumed for simplicity, the framework flexibly
accommodates non-uniform weights to reflect varying levels of expertise. The resulting matrix
is:

X̃ =



C1 C2 · · · Cn

A1 x̃11 x̃12 · · · x̃1n

A2 x̃21 x̃22 · · · x̃2n
...

...
... . . . ...

Am x̃m1 x̃m2 · · · x̃mn

. (24)

Step 2: Construct the weighted decision matrix. Form the weighted fuzzy decision ma-
trix Ṽ = (ṽij)m×n by multiplying each element of the collective matrix by its corresponding
attribute weight wj [19, ?]:

ṽij = wj ⊗ x̃ij . (25)

Here, ⊗ denotes the scalar multiplication of an IT2FN by a crisp weight.
Step 3: Defuzzify the weighted matrix. Calculate the crisp rank for each element of the

weighted decision matrix Ṽ to form a real-valued matrix R = (rij)m×n. Each element rij is
computed using the proposed ranking method (by using (16)):

rij = RN(ṽij). (26)
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Step 4: Determine the Positive and Negative Ideal Solutions (PIS and NIS) Identify the
PIS, r+ = (r+1 , r

+
2 , . . . , r

+
n ), and the NIS, r− = (r−1 , r

−
2 , . . . , r

−
n ), from the crisp matrix R.

Let Xb be the set of benefit attributes andXc be the set of cost attributes:

r+j =

maxi{rij}, if Cj ∈ Xb

mini{rij}, if Cj ∈ Xc

, j = 1, . . . , n, (27)

r−j =

mini{rij}, if Cj ∈ Xb

maxi{rij}, if Cj ∈ Xc

, j = 1, . . . , n. (28)

Step 5: Calculate distances from the ideal solutions. Calculate the Euclidean distance of
each alternative Ai from the PIS (d+i ) and the NIS (d−i ) [19, 38]:

d+i =

√√√√ n∑
j=1

(rij − r+j )
2, i = 1, . . . ,m, (29)

d−i =

√√√√ n∑
j=1

(rij − r−j )
2, i = 1, . . . ,m. (30)

Step 6: Calculate the relative closeness coefficient and rank. Calculate the relative close-
ness coefficient C(Ai) for each alternative Ai [38]:

C(Ai) =
d−i

d−i + d+i
, i = 1, . . . ,m. (31)

Rank the alternatives in descending order of theirC(Ai) values. The alternative with the highest
value is deemed the most preferable solution, A∗:

A∗ = argmax
i
{C(Ai)}. (32)

5 Numerical Examples

To demonstrate the effectiveness and practical applicability of the proposed MAGDMmethod,
two numerical examples are presented. The first example addresses a supplier selection prob-
lem utilizing only positive linguistic IT2FN scales. The results obtained using the proposed
approach are compared with alternative established methods: those of Chen and Lee [11],
Chiao [15], Ghorabaee et al. [19], and De et al. [16]. The second example utilizes both positive
and negative IT2FN linguistic terms, enabling a broader comparative evaluation.
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5.1 Numerical Example 1: Supplier Selection Using Positive Linguistic IT2FNs

Adapted fromGhorabaee et al. [19], this example evaluates seven potential suppliers (A1 toA7)
in a supply chain management decision. The evaluation is conducted by three DMs (D1, D2,
D3), members of the board of directors, who assess each supplier according to five principal
attributes:

• C1: Defect rate (cost attribute): Proportion of nonconforming items.

• C2: Cost (cost attribute): Estimated procurement-related costs.

• C3: Delivery reliability (benefit attribute): Timeliness of deliveries.

• C4: Responsiveness (benefit attribute): Speed of reacting to demands.

• C5: Flexibility (benefit attribute): Adaptability to customer requirements.

Decision-makers use linguistic variables corresponding to positive IT2FNs (Table 4), as-
signing equal weights to each DM (ηT = (1/3, 1/3, 1/3)). Table 5 presents the raw linguistic
assessments, and Table 6 shows the linguistic weights assigned by the DMs to each attribute.

Table 4: Linguistic Variables and Corresponding IT2FNs [19].

Linguistic Variable TIT2FNs

Very Low (VL) ((0,0,0,0.1;1,1), (0,0,0,0.05;0.9,0.9))
Low (L) ((0,0.1,0.15,0.3;1,1), (0.05,0.1,0.15,0.2;0.9,0.9))
Medium Low (ML) ((0.1,0.3,0.35,0.5;1,1), (0.2,0.3,0.35,0.4;0.9,0.9))
Medium (M) ((0.3,0.5,0.55,0.7;1,1), (0.4,0.5,0.55,0.6;0.9,0.9))
Medium High (MH) ((0.5,0.7,0.75,0.9;1,1), (0.6,0.7,0.75,0.8;0.9,0.9))
High (H) ((0.7,0.85,0.9,1;1,1), (0.8,0.85,0.9,0.95;0.9,0.9))
Very High (VH) ((0.9,1,1,1;1,1), (0.95,1,1,1;0.9,0.9))

The proposed method is executed through the following steps. The aggregated mean
weights are shown in Table 7.

Step 1 & 2: Construct Aggregated and Weighted Decision Matrices

First, the DMs’ evaluations are aggregated using Equation (23). For instance, the aggregated
evaluation forA1 under attributeC1 is x̃11 = 1

3L⊕ 1
3V L⊕ 1

3V L. Next, the aggregated attribute
weights (w̄j) are used to compute the weighted decision matrix Ṽ = (ṽij) using Equation (25).
The full weighted decision matrix is presented in Table 8.
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Table 5: Linguistic performance values of alternatives (Example 1).

DMs Alternatives C1 C2 C3 C4 C5

DM1

A1 L ML VH M MH
A2 L VL VH H VH
A3 H MH M MH ML
A4 MH VH MH L VL
A5 M VH M ML MH
A6 VH M L MH VH
A7 MH M VL VH H

DM2

A1 VL L H MH M
A2 ML VL VH H VH
A3 MH M MH MH M
A4 MH MH H ML ML
A5 M H M M MH
A6 H ML ML H H
A7 MH M L H MH

DM3

A1 VL M H MH H
A2 VL VL VH H VH
A3 M MH M M M
A4 M VH M VL L
A5 ML H MH ML H
A6 MH MH ML MH VH
A7 M M ML MH MH

Table 6: Linguistic weights of attributes evaluated by DMs (Example 1).

Attributes D1 D2 D3

C1 VH VH H
C2 MH MH M
C3 VH H VH
C4 VH MH MH
C5 H H MH

Step 3: Rank the Weighted Decision Matrix

The new IT2FN ranking method (Equation (16)) is applied to each element ṽij to obtain the
crisp rank matrix R = (rij), shown in Table 9.
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Table 7: IT2FNs subjective weights by DMs and aggregated mean values in Example 1.

DM Attributes IT2FN Weight Value

Mean

C1 ((0.833,0.95,0.967,1;1,1), (0.9,0.95,0.967,0.983;0.9,0.9))
C2 ((0.433,0.633,0.683,0.833;1,1), (0.533,0.633,0.683,0.733;0.9,0.9))
C3 ((0.833,0.95,0.967,1;1,1), (0.9,0.95,0.967,0.983;0.9,0.9))
C4 ((0.567,0.75,0.8,0.933;1,1), (0.667,0.75,0.8,0.85;0.9,0.9))
C5 ((0.633,0.8,0.85,0.967;1,1), (0.733,0.8,0.85,0.9;0.9,0.9))

Table 8: The weighted decision matrix (ṽij) for Example 1.

Alternatives Attributes Weighted IT2FN Value ṽij

A1

C1 ((0,0.03,0.05,0.17;1,1), (0.02,0.03,0.05,0.1;0.9,0.9))
C2 ((0.06,0.19,0.24,0.42;1,1), (0.12,0.19,0.24,0.29;0.9,0.9))
C3 ((0.64,0.86,0.9,1;1,1), (0.77,0.86,0.9,0.95;0.9,0.9))
C4 ((0.25,0.48,0.55,0.78;1,1), (0.36,0.48,0.55,0.62;0.9,0.9))
C5 ((0.32,0.55,0.62,0.84;1,1), (0.44,0.55,0.62,0.71;0.9,0.9))

A2

C1 ((0.03,0.13,0.16,0.3;1,1), (0.08,0.13,0.16,0.21;0.9,0.9))
C2 ((0,0,0,0.08;1,1), (0,0,0,0.04;0.9,0.9))
C3 ((0.75,0.95,0.97,1;1,1), (0.86,0.95,0.97,0.98;0.9,0.9))
C4 ((0.4,0.64,0.72,0.93;1,1), (0.53,0.64,0.72,0.81;0.9,0.9))
C5 ((0.57,0.8,0.85,0.97;1,1), (0.7,0.8,0.85,0.9;0.9,0.9))

Table 9: Rank of the weighted decision matrix (rij) in Example 1.

Alternatives C1 C2 C3 C4 C5

A1 0.0501 0.1893 0.7408 0.4201 0.4818
A2 0.1318 0.0141 0.8199 0.5574 0.6878
A3 0.1748 0.3591 0.4651 0.4201 0.3159
A4 0.5173 0.4898 0.5613 0.1116 0.1178
A5 0.3607 0.4953 0.4651 0.2562 0.5251
A6 0.6951 0.2908 0.2088 0.4923 0.6570
A7 0.5173 0.2908 0.1318 0.5518 0.5251

Steps 4, 5, and 6: Determine Ideal Solutions, Distances, and Final Ranking

The Positive and Negative Ideal Solutions (PIS and NIS) are determined using (27) and (28).
Then, the Euclidean distances of each alternative from PIS (d+i ) and NIS (d−i ) are computed,
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followed by the relative closeness coefficient C(Ai). The results are shown in Table 10, and
the final ranking is compared with other methods in Table 11. The optimal supplier is A2, with
the final order A2 ≻ A1 ≻ A3 ≻ A5 ≻ A6 ≻ A7 ≻ A4.

Table 10: Distances from ideal solutions and relative closeness for Example 1.

Alternative d+i d−i C(Ai)

A1 0.313028 1.052798 0.770814
A2 0.081689 1.243355 0.938350
A3 0.646078 0.731224 0.530910
A4 1.017412 0.464600 0.313492
A5 0.696348 0.639699 0.478800
A6 0.933250 0.694878 0.426796
A7 0.891578 0.657707 0.424523

Table 11: Final rankings comparison for Example 1.

Alternatives
Method 1 Method 2 Method 3 Method 4 Proposed Method

C(Ai) R C(Ai) R C(Ai) R C(Ai) R C(Ai) R

A1 0.769 2 0.938 2 0.881 2 0.781 2 0.771 2
A2 0.938 1 0.779 1 0.743 1 0.940 1 0.938 1
A3 0.529 3 0.546 3 0.567 3 0.538 3 0.531 3
A4 0.313 7 0.487 7 0.463 7 0.314 7 0.313 7
A5 0.477 4 0.438 4 0.402 4 0.490 4 0.479 4
A6 0.425 5 0.436 5 0.388 5 0.439 5 0.427 5
A7 0.423 6 0.313 6 0.354 6 0.439 6 0.425 6

The results affirm that the proposedMAGDMmethod yields rankings consistent with those
reported by existing frameworks. This robustness underscores the validity and reliability of the
approach when restricted to positive IT2FNs.

5.2 Numerical Example 2: Car Selection with Positive and Negative IT2FNs

To further demonstrate the robustness and flexibility of the proposed MAGDMmethodology, a
car selection problem involving both positive and negative linguistic scales is presented. Three
vehicles (A1, A2, A3) are evaluated by threeDMs across four attributes: C1 (Safety),C2 (Price),
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C3 (Appearance), and C4 (Performance). C2 is a cost attribute, while the others are benefit
attributes. The linguistic scales are defined in Tables 12 and 13, based on [41].

Table 12: Linguistic terms for performance and their corresponding IT2FNs [41].

Linguistic Variable TIT2FNs

Very Low (VL) ((-10, -9, -8, -7; 0.8, 0.8), (-10, -10, -8, -6; 1, 1))
Low (L) ((-8, -7, -5, -4; 0.8, 0.8), (-9, -7, -5, -3; 1, 1))
Medium (M) ((-2, -1, 1, 2; 0.8, 0.8), (-3, -2, 2, 3; 1, 1))
High (H) ((4, 5, 7, 8; 0.8, 0.8), (3, 5, 7, 9; 1, 1))
Very High (VH) ((7, 8, 10, 10; 0.8, 0.8), (6, 8, 10, 10; 1, 1))

Table 13: Linguistic terms for weights and their corresponding IT2FNs [41].

Linguistic Term TIT2FNs

Medium (M) ((-0.2, -0.1, 0.1, 0.2; 0.8, 0.8),(-0.3, -0.2, 0.2, 0.3; 1, 1))
Medium High (MH) ((0.1, 0.2, 0.4, 0.5; 0.8, 0.8),(0, 0.2, 0.4, 0.6; 1, 1))
High (H) ((0.4, 0.5, 0.7, 0.8; 0.8, 0.8),(0.3, 0.5, 0.7, 0.9; 1, 1))
Very High (VH) ((0.7, 0.8, 1, 1; 0.8, 0.8), (0.6, 0.8, 1, 1; 1, 1))

The procedural steps are analogous to the first example. The weighted decision matrix is
constructed (Table 14) and then ranked (Table 15).

Finally, the PIS and NIS are determined, distances are calculated, and the final ranking is
produced. The results and comparison are shown in Table 16.

According to the proposed method, alternative A1 achieves the highest relative closeness
coefficient (0.580), making it the best choice. The results produced by the proposed approach
display strong consistency with some existing methods (agreeing closely with Methods 2 and
4 in selecting A1 as optimal), but differences in ranking order for less-preferred alternatives
reflect the improved sensitivity of the proposed method, especially when negative and positive
linguistic terms coexist.

6 Discussion

Developing robust methodologies for multi-attribute group decision-making (MAGDM) under
uncertainty remains a key challenge, especially when expert opinions involve imprecise lin-
guistic terms. Fuzzy set theory—and more specifically, Type-2 Fuzzy Sets (T2FSs) and their
interval forms (IT2FSs/IT2FNs)—has long been recognized as a powerful paradigm for mod-
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Table 14: The weighted decision matrix (ṽij) for Example 2.

Alternative Attributes Weighted IT2FN Value ṽij

A1

C1 ((-2.8,-1.2,1.2,2.8;1,1),(-1.94,-0.9,0.9,1.94;0.8,0.8))
C2 ((2.4,4.2,7.2,8.71;1,1),(2.5,4.2,7.2,8.41;0.8,0.8))
C3 ((0,0.6,2.4,3.73;1,1), (-0.87,0.45,2.64,4.33;0.8,0.8))
C4 ((2,3.6,6.4,8.09;1,1), (2,3.6,6.4,8.09;0.8,0.8))

A2

C1 ((-8.71,-7.2,-4.2,-2.4;1,1),(-8.41,-6.9,-4.2,-2.5;0.8,0.8))
C2 ((-4.98,-3.6,-1.4,0;1,1),(-4.53,-3.3,-1.4,-0.5;0.8,0.8))
C3 ((-3.87,-2.7,-0.7,0;1,1),(-4.67,-2.75,-0.53,0.93;0.8,0.8))
C4 ((-6.36,-5.07,-2.2,-1;1,1),(-6.22,-4.53,-2.4,-1.2;0.8,0.8))

A3

C1 ((-7.78,-6.3,-3.5,-1.8;1,1),(-7.44,-6,-3.5,-2;0.8,0.8))
C2 ((-6.53,-4.8,-1.87,-0.6;1,1),(-5.82,-4.5,-2.1,-1;0.8,0.8))
C3 ((-3.33,-2.1,-0.5,0;1,1),(-3.83,-2.2,-0.38,0.77;0.8,0.8))
C4 ((-8.38,-7.2,-4.2,-2.5;1,1),(-8.71,-6.67,-4.2,-2.4;0.8,0.8))

Table 15: Rank of the weighted decision matrix (rij) in Example 2.

Alternatives C1 C2 C3 C4

A1 0.0000 0.4420 0.1400 0.3980
A2 -0.4400 -0.2060 -0.1490 -0.2950
A3 -0.3840 -0.2750 -0.1240 -0.4380

Table 16: Final Rankings and Closeness Coefficients for Example 2.

Alternative
Method 1 Method 2 Method 3 Method 4 Proposed Method

C(Ai) R C(Ai) R C(Ai) R C(Ai) R C(Ai) R

A1 0.450 3 0.579 1 0.441 3 0.647 1 0.580 1
A2 0.544 1 0.434 2 0.532 2 0.350 3 0.432 2
A3 0.533 2 0.430 3 0.559 1 0.361 2 0.427 3

elling such complex, ambiguous evaluations [19, 20]. However, a persistent gap in the literature
has been the asymmetrical treatment of linguistic assessment scales, which has constrained the
fidelity and interpretability of group decision-making models.

This study overcomes these limitations by presenting two interconnected advancements.
First, a symmetry-oriented ranking method for IT2FNs is presented. Unlike prior approaches—
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which either compute centroids, dominance, or similar indices over a positive-normalized
scale—this method leverages the mean and standard deviation of both the upper (UMF) and
lower membership functions (LMF), as well as the IT2FN height, to deliver a ranking index
inherently sensitive to both positive and negative linguistic scales. Critically, this index is
theoretically calibrated so that the “medium” or “neutral” linguistic value—the fuzzy equiv-
alent of zero—serves as a precise balance point, directly reflecting the duality proposed in
equilibrium/Yin-Yang theories and more accurately representing human reasoning in decision
contexts. The rigorous development and validation of this ranking index go beyond numeri-
cal performance: the method aligns with the psychological and philosophical underpinnings of
human judgment, rendering it theoretically robust. Key properties—including scale symme-
try, zero-point neutrality, and the ability to treat mirror-opposite IT2FNs equivalently but with
reversed sign—are demonstrated both formally and through comparative experiments.

Second, this ranking method becomes the cornerstone of a new MAGDM framework. By
integrating dual-scale linguistic assessment—allowing both positive (“very high,” “high”) and
negative (“very low,” “low”) terms—into the MADM pipeline, the methodology generalizes
classical multi-attribute decision models to environments characterized by true evaluative du-
ality. This means that decision-makers’ linguistic inputs are not forcibly mapped onto a one-
sided, positive-normalized scheme, but rather maintain their inherent semantic richness and in-
terpretability throughout the evaluative process. In a practical implementation, decision-makers
would continue to use familiar linguistic terms. The mapping to positive or negative IT2FNs
is a back-end process, ensuring that the user interface remains intuitive while the underlying
model captures the full semantic duality of their judgments.

Numerical experiments, including scenarios with both strictly positive and genuinely dual-
scale linguistic assessments, confirm the practical superiority of the proposed approach. In
benchmark problems, the new ranking method demonstrates enhanced discernibility between
alternatives and a closer alignment with intuitive expectations of neutrality and duality. When
deployed within the newMAGDM framework, group preference aggregation, attribute weight-
ing, and alternative ranking all benefit from a more nuanced and interpretable processing of un-
certainty and human linguistic judgment. Importantly, the framework facilitates more transpar-
ent and justifiable decision processes in real-world scenarios where not just positive advantages
but also negative aspects and trade-offs must be considered—such as sustainability assessment,
risk-benefit analysis, and social/environmental impact evaluations. The interpretability of the
results, especially the explicit meaning of a “neutral” evaluation, can strengthen decision ac-
ceptance and stakeholder trust.

Compared with the state-of-the-art, these innovations substantially extend the modelling
scope and accuracy of fuzzy MAGDM methods. Prior work [11, 16, 19, 20, 28], while ad-
vancing IT2FN ranking for purely positive scales or through incremental extensions, has not
addressed the need for symmetric treatment encompassing both negative and positive evalua-
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tions. The present study, inspired by advanced theoretical considerations (e.g., Yin-Yang equi-
librium), explicitly overcomes these gaps and empirically demonstrates why this is not merely
an theoretical concern, but a critical factor for real-world decision support.

A key advantage of the proposed ranking method lies in its ability to symmetrically handle
both positive and negative linguistic assessments by incorporating the mean, standard devia-
tion, and height of the IT2FNs. This provides a more robust and nuanced evaluation compared
to methods that operate only on positive scales. However, a potential trade-off is the slightly
increased computational complexity due to the normalization and standard deviation calcula-
tion steps. We contend that this is a worthwhile compromise for the enhanced accuracy and
applicability to real-world problems that feature inherent duality.

7 Conclusion

This study addresses the persistent challenge of effective multi-attribute group decision-making
in environments marked by linguistic vagueness and subjective expert judgment. While Type-2
Fuzzy Sets have enhanced the capacity to model uncertainty in decision contexts, a major lim-
itation of previous methods has been the asymmetrical treatment of linguistic scales. Conven-
tional approaches have predominantly emphasized a normalized, positive scale, thereby failing
to capture the natural duality of human perception and the importance of neutrality, as articu-
lated in principles such as the Yin-Yang equilibrium theory. To overcome these limitations, this
paper introduces two principal innovations: First, a novel, symmetry-oriented ranking method
for IT2FNs is presented. This method uniquely incorporates both the average and standard devi-
ation of the upper and lower membership functions, as well as the height of IT2FNs, to system-
atically treat positive, negative, and neutral (“fuzzy zero”) linguistic evaluations in a balanced
manner. Comprehensive comparative testing against state-of-the-art ranking methods confirms
that the proposed approach delivers theoretically consistent and practically interpretable results,
especially in contexts requiring explicit recognition of neutral and negative values.

Second, building on this ranking foundation, a new MAGDM framework is advanced, ca-
pable of integrating group expert assessments across dual-scale linguistic data. The method
generalizes classical MADM techniques by enabling the aggregation and discrimination of al-
ternatives not just on a unipolar, but on a truly bipolar (positive-negative) scale. Numerical
demonstrations on benchmark problems with both positive-only and dual-scale linguistic inputs
highlight the framework’s superiority in terms of discernibility, interpretability, and faithfulness
to human-centered reasoning.

In summary, the proposed IT2FN ranking method and the MAGDM framework together
establish a new standard in fuzzy group decision modeling, respecting the complexity of expert
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linguistic judgments and robustly supporting real-world decisions characterized by uncertainty
and duality. Future research directions include the adaptation of the method to general Type-
2 or hesitant fuzzy environments, further exploration of aggregation strategies, and practical
validation through large-scale, domain-specific applications.

Looking ahead, future work should focus on extending the developed ranking methodology
to other classes of fuzzy sets—such as Intuitionistic, Pythagorean, and Neutrosophic sets—to
further enhance its generality and applicability. Additionally, applying the proposed IT2FN
rankingmethod across a broader range ofmulti-attribute decision-making problemsmay deepen
its practical impact and demonstrate its versatility in complex real-world scenarios.
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