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1 Introduction

Multi-Attribute DecisionMaking (MADM) is a structured approach used to identify themost appropriate
alternative from a set by evaluating each against multiple criteria [5, 26, 31]. When this evaluative
process requires the integration of judgments and preferences from several decision-makers (DMs), it
becomes a Multi-Attribute Group Decision Making (MAGDM). In practice, DMs frequently provide
their assessments using linguistic descriptors, such as “very high,” “medium,” or “poor” [21]. However,
linguistic evaluations are inherently imprecise and subjective, causing terms to be interpreted differently
by different DMs and thus introducing ambiguity and inconsistency [32].

Fuzzy set theory has become foundational in modeling such imprecision, refining MADM ap-
proaches by mathematically representing uncertainty. Early applications relied on Type-1 Fuzzy Sets
(T1FSs), where each element is assigned a precise membership degree in [0, 1] [17]. However, T1FSs
are limited in their ability to capture higher-order ambiguities, particularly in the context of complex
linguistic information [21, 32].

Introduced by Zadeh in 1965 [40], Type-2 Fuzzy Sets (T2FSs) provide an enhanced framework
by allowing the membership function itself to be fuzzy. This added dimension enables T2FSs to better
represent and manage uncertainty [24]. For practical computational purposes, Turksen [33] proposed the
subclass of Interval Type-2 Fuzzy Sets (IT2FSs), which restrict the secondary membership function to an
interval, making the sets more tractable yet expressive. Mendel [24] further emphasized that linguistic
expressions are often too nuanced for T1FSs, highlighting the need for T2FS and IT2FS models in
applications where uncertainty is pronounced. Interval Type-2 Fuzzy Numbers (IT2FNs), a common
numeric form of IT2FSs, have thus emerged as powerful instruments in environments characterized by
ambiguous information [19, 28, 29, 38].

A central issue in fuzzy MADM is the ability to rank alternatives modelled as fuzzy numbers—
particularly IT2FNs—since ranking is fundamental to the selection of the optimal solution under un-
certainty [1, 43]. Various IT2FN ranking approaches have been proposed, such as centroid-based,
dominance degree-based, and rank-index techniques, and many have found application in MADM and
group decision-making frameworks [12, 14, 25, 41, 42]. Nonetheless, these methodologies largely em-
ploy linguistic scales that only account for positive assessments, with normalized endpoints at zero and
one [9, 10, 15, 27, 37]. This unilateral perspective neglects the inherent duality in many evaluation
contexts.

According to the philosophy of Yin-Yang equilibrium [36], all phenomena exhibit both positive and
negative facets, and judgment should be balanced accordingly. In MADM, this means that attribute
assessments should allow for both positive (“very high”) and negative (“very low”) linguistic extremes,
with neutral terms (e.g., “medium”) serving as the equilibrium or “fuzzy zero.” Recent work by Zamri et
al. [41] developed such a linguistic scale, permitting DMs to express both positive and negative IT2FNs.

This research builds on these concepts by introducing a novel IT2FN rankingmethod specifically de-
signed for linguistic MADM problems embracing both positive and negative assessments. This method,
based on the center of gravity approach, offers the advantage of simplicity in understanding and calcu-
lation. The method incorporates the average and standard deviation of both the upper and lower mem-
bership functions, as well as each IT2FN’s height, ensuring full use of their structural and dispersion
properties. Theoretical analysis addresses key properties such as zero, unity, and symmetry. Extensive
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comparative testing with seven sets of IT2FNs demonstrates the newmethod’s rationality and superiority
over prevailing alternatives.

Based on this ranking, we further propose a new MAGDM framework that accommodates positive
and negative IT2FNs in both criteria and their weights. The effectiveness and practicality of the proposed
method are substantiated through two detailed numerical examples—one employing a purely positive
linguistic scale, and the other using a combined positive/negative scale.

The remainder of this article is structured as follows: Section 2 reviews relevant fuzzy set concepts
and details the proposed IT2FN ranking method; Section 3 outlines the new MAGDM procedure; Sec-
tion 4 presents illustrative examples; and Section 5 concludes with key findings and avenues for future
research.

2 Background and Related Work

The theory of fuzzy sets, originally introduced by Zadeh in 1965 [40], provides a robust mathematical
framework for modelling systems characterized by vagueness, complexity, and imprecision. Type-1
Fuzzy Sets (T1FSs), wherein each element has a membership grade between zero and one, have been
widely used in various decision-making problems [3, 34, 37]. However, T1FSs can be limited in their
ability to fully capture the inherent uncertainty present in real-world assessments, particularly when the
available information is itself imprecise or subjective [1, 19].

Type-2 fuzzy sets extend type-1 fuzzy sets by representing the membership function itself as fuzzy,
which provides an additional degree of uncertainty modeling [24]. Instead of assigning a crisp degree of
membership to an element, a T2FS employs a so-called Secondary Membership Function (SMF), which
expresses fuzziness over each possible value of the primary membership grade. Therefore, T2FSs can
model the “uncertainty about uncertainty,” which is particularly valuable in fields that require nuanced
treatment of ambiguity, such as pattern recognition, control systems, and decision support [24, 25].

2.1 Interval Type-2 Fuzzy Sets: Definitions and Operators

This subsection begins with a review of essential definitions and foundational concepts related to
T2FSs [24]. It then details several prevalent arithmetic operations applicable to IT2FNs.

Definition 1. A type-2 fuzzy set Ã on the reference set X , as defined in [24], is given by:

Ã = {((x, u), µÃ(x, u)) | x ∈ X,u ∈ Jx ⊆ [0, 1], and 0 ≤ µÃ(x, u) ≤ 1}.

Definition 2. A T2FS Ã, as defined in [24], can be expressed as:

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/u

x
, (1)

where
∫
is the union of all combinations (x, u), x is the primary variable, and u is the secondary variable

in Jx ⊆ [0, 1] with a secondary membership grade of µÃ(x, u).
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Definition 3. As stated in [25], a fuzzy set Ã is called an Interval Type-2 Fuzzy Set (IT2FS) if Ã is a
T2FS in which all secondary membership grades are equal to 1, i.e., µÃ(x, u) = 1. Equivalently, IT2FS
can be represented as:

Ã =

∫
x∈X

∫
u∈Jx

1/u

x
. (2)

Definition 4. The Footprint of Uncertainty (FOU) of an IT2FS Ã is the union of all its primary mem-
berships and is defined as follows [25]:

FOU(Ã) =
⋃
x∈X

Jx. (3)

The FOU is bounded by two Type-1 membership functions: the Upper Membership Function (UMF),
µÃ(x), and the Lower Membership Function (LMF), µ

Ã
(x). For any x ∈ X , we have:

µÃ(x) = sup(FOU(Ã)), (4)

µ
Ã
(x) = inf(FOU(Ã)). (5)

Therefore, the FOU of an IT2FS Ã can be expressed as the region between the UMF and LMF:
FOU(Ã) =

⋃
x∈X [µ

Ã
(x), µÃ(x)].

Definition 5. [28]. A Trapezoidal Interval Type-2 Fuzzy Number (TIT2FN), denoted by Ã, can be
represented by its UMF and LMF as:

Ã = (ÃU , ÃL) = ((aU1 , a
U
2 , a

U
3 , a

U
4 ;h

U
1 , h

U
2 ), (a

L
1 , a

L
2 , a

L
3 , a

L
4 ;h

L
1 , h

L
2 )), (6)

where ÃU and ÃL are Type-1 fuzzy numbers representing the UMF and LMF, respectively. As shown
in Figure 1, hU1 is the membership height of the interval [aU2 , aU3 ] and hL1 is the membership height of
[aL2 , a

L
3 ]. We have 0 ≤ hL1 ≤ hU1 ≤ 1. For a triangular fuzzy number, a2 = a3.

Figure 1: A trapezoidal interval type-2 fuzzy number.

Definition 6. Let Ã1 and Ã2 be two TIT2FNs. According to [19, 28], some common arithmetic oper-
ators can be defined as follows:

• Addition:
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Ã1 ⊕ Ã2 =
(
(aU11 + aU21, a

U
12 + aU22, a

U
13 + aU23, a

U
14 + aU24;min(hU11, hU21),min(hU12, hU22)),

(aL11 + aL21, a
L
12 + aL22, a

L
13 + aL23, a

L
14 + aL24;

min(hL11, hL21),min(hL12, hL22))
)
.

(7)

• Multiplication:

Ã1 ⊗ Ã2 =
(
(aU11a

U
21, a

U
12a

U
22, a

U
13a

U
23, a

U
14a

U
24;min(hU11, hU21),min(hU12, hU22)),

(aL11a
L
21, a

L
12a

L
22, a

L
13a

L
23, a

L
14a

L
24;min(hL11, hL21),min(hL12, hL22))

)
.

(8)

• Multiplication by a crisp value λ:

λÃ =

((λaU1 , λa
U
2 , λa

U
3 , λa

U
4 ;h

U
1 , h

U
2 ), (λa

L
1 , λa

L
2 , λa

L
3 , λa

L
4 ;h

L
1 , h

L
2 )), λ ≥ 0,

((λaU4 , λa
U
3 , λa

U
2 , λa

U
1 ;h

U
1 , h

U
2 ), (λa

L
4 , λa

L
3 , λa

L
2 , λa

L
1 ;h

L
1 , h

L
2 )), λ < 0.

(9)

• Division by a crisp value λ ̸= 0:

Ã

λ
=



(
(aU1 /λ, a

U
2 /λ, a

U
3 /λ, a

U
4 /λ;h

U
1 , h

U
2 ),

(aL1 /λ, a
L
2 /λ, a

L
3 /λ, a

L
4 /λ;h

L
1 , h

L
2 )), λ > 0,

((aU4 /λ, a
U
3 /λ, a

U
2 /λ, a

U
1 /λ;h

U
1 , h

U
2 ),

(aL4 /λ, a
L
3 /λ, a

L
2 /λ, a

L
1 /λ;h

L
1 , h

L
2 )), λ < 0.

(10)

2.2 Existing Methods for Ranking IT2FNs

As mentioned before, various methods have been proposed for ranking IT2FNs to address MADM prob-
lems. In this section, we will review some of these ranking methods. For clarity, the term “TIT2FN”
will refer to the Trapezoidal Interval Type-2 Fuzzy Number.

2.2.1 Chen and Hong’s Method

Chen and Lee [11] proposed a ranking method for Ãi denoted as Rank(Ãi) defined as follows:

Rank(Ãi) =
1

8

[(
(aUi1 + ki) + (2− (aUi4 + ki))

2
+

(aUi2 + ki) + (2− (aUi3 + ki))

2

+
hUi1 + hLi1 + hUi2 + hLi2

4

)
×
(
(aUi1 + ki) + (aUi2 + ki)

+ (aUi3 + ki) + (aUi4 + ki) + (aLi1 + ki)

+ (aLi2 + ki) + (aLi3 + ki) + (aLi4 + ki)
)]

(11)

where

ki =

0 min(aUi1, aUi2, . . . , aUin) ≥ 0

|min(aUi1, aUi2, . . . , aUin)| min(aUi1, aUi2, . . . , aUin) < 0
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and i = 1, 2, . . . , n. Chen and Hong introduced this method for ranking IT2FNs to demonstrate its
superiority over the approaches proposed by Cheng [14], Chen et al. [13], Wei [37], Chen and Chen [9,
10] and Murakami et al. [27].

2.2.2 Chiao’s Parametric GMIR Method

Chiao [15], utilizing the Parametric Graded Mean Integration Representation (GMIR) expansion for
T2FSs, proposed the following ranking criterion for IT2FNs:

P̄Ãi
=

∫ 1

0

(
1− α
6

(aUi1 + aUi4) +
1− α
3

(aUi2 + aUi3) +
α

6
(aLi1 + aLi4) +

α

3
(aLi2 + aLi3)

)
dα

=
1

12
(aUi1 + aUi4 + aLi1 + aLi4) +

1

6
(aUi2 + aUi3 + aLi2 + aLi3), (12)

where 0 ≤ α ≤ 1.

2.2.3 Degree of Dominance Approach

Ghorabaee et al. [19], employing the method ofWang et al. [36] and the degree of dominance for T2FNs,
proposed the rank of Ãi as follows.

Rvalue(Ãi) =
1

n(n− 1)

 n∑
j=1

D(Ãi > Ãj) +
n

2
− 1

 , (13)

where, D(Ãi > Ãj) is the degree of dominance of Ãi over Ãj defined by

D(Ãi > Ãj) =

∑
T∈{U,L}[ω(D

T
1 ) + 3ω(DT

2 ) + 3ω(DT
3 ) + ω(DT

4 )]

8
∑

T∈{U,L}[max(aTs4, aTt4)−min(aTs1, aTt1)]
, (14)

where, for s = 1, 2, 3, 4 and t = 1, 2, 3, 4,

DT
i =

aTsi · h1(ÃT
s )− aTti · h1(ÃT

t ), i = 1, 2,

aTsi · h2(ÃT
s )− aTti · h2(ÃT

t ), i = 3, 4,

and ω(x) = max{0, x}. Ghorabaee et al. [19] demonstrated that their method offers advantages over
the approaches of Chen et al. [13], Wang et al. [35] and Balezentis and Zeng [4] in multiple MADM
benchmarks.

2.2.4 Centroid and Rank Index Methods

De et al. [16] first defined the centroid value of each Ãi, as follows:

CÃi
=

1

6

[
(aUi1 + bUi1 + cUi1 + dUi1) + (aLi2 + bLi2 + cLi2 + dLi2)

−
(

dUi1c
U
i1 − aUi1bUi1

(dUi1 + cUi1)− (aUi1 + bUi1)
+

dLi2c
L
i2 − aLi2bLi2

(dLi2 + cLi2)− (aLi2 + bLi2)

)]
.
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Then, they defined the rank index value as follows:

R(Ãi) =
1

4
[α(h1(a

U
i1 + bUi1) + h2(a

L
i2 + bLi2)) + (1− α)(h1(cUi1 + dUi1) + h2(c

L
i2 + dLi2))]. (15)

Now, for comparing two IT2FNs, Ãi and Ãj , the following relations are used:

I. If CÃi
> CÃj

, then Ãi ≻ Ãj .

II. If CÃi
< CÃj

, then Ãi ≺ Ãj .

III. If CÃi
= CÃj

, then to compare two IT2FNs:

• If R(Ãi) > R(Ãj), then Ãi ≻ Ãj .

• If R(Ãi) < R(Ãj), then Ãi ≺ Ãj .

• If R(Ãi) = R(Ãj), then:

– If (hUi1 + hLi2)/2 > (hUj1 + hLj2)/2, then Ãi ≻ Ãj .

– If (hUi1 + hLi2)/2 < (hUj1 + hLj2)/2, then Ãi ≺ Ãj .

– If (hUi1 + hLi2)/2 = (hUj1 + hLj2)/2, then Ãi ∼ Ãj .

Despite these advancements, most existing methods are based on a strictly positive linguistic scale,
wherein normalized assessments range from zero (lowest) to one (highest). However, such frameworks
may not adequately capture the nuances of neutrality, symmetry, or dual-scale reasoning reflected in real-
world linguistic judgments—where both positive and negative values must be addressed, and “medium”
truly represents neutral, not mid-way between two positives [41].

3 Proposed Method

This research introduces two substantive, interrelated innovations that collectively advance the state of
the art in fuzzy Multi-Attribute Group Decision Making (MAGDM):

• A novel, symmetry-respecting ranking method for Interval Type-2 Fuzzy Numbers, featuring
theoretical justification and designed to overcome core limitations of previous ranking indices,
especially regarding the treatment of dual-scale linguistic information and “fuzzy zero” neutrality.

• A new MAGDM methodology that integrates the above ranking index to enable effective group
decision making using both positive and negative linguistic scales—thereby addressing human
duality in judgment and fostering a richer, more interpretable aggregation and evaluation of expert
assessments.

The subsequent sections detail the construction, mathematical underpinnings, and operational steps
for each contribution, underscoring their advantages and positioning relative to prevailing approaches.
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3.1 Novel Ranking Method for IT2FNs

Existing IT2FN ranking functions have notable deficiencies, such as asymmetry, an inability to process
negative scales, and an absence of an explicit “fuzzy zero” treatment [11, 16, 19, 37]. Most operate under
the presumption of a solely positive normalized scale, limiting their fidelity in reflecting the true intent
of human experts—particularly when both benefits and costs, or “good” and “bad” outcomes, require
balanced evaluation.

In direct response, we propose a ranking index for IT2FNs grounded in the principles of symmetry,
neutrality, and equilibrium, as inspired by Yin-Yang duality theory [41]. The methodology leverages
both the mean and standard deviation of the upper and lower membership functions (UMF and LMF), as
well as the core height of the IT2FN, to achieve an unbiased, theoretically sound quantification of vague
expert inputs.

3.1.1 Mathematical Formulation

Let Ãi = ((aUi1, a
U
i2, a

U
i3, a

U
i4;h

U
i1, h

U
i2), (a

L
i1, a

L
i2, a

L
i3, a

L
i4;h

L
i1, h

L
i2)) for i = 1, 2, . . . , n be n TIT2FNs,

where −∞ ≤ aLi1 ≤ aUi1 ≤ aUi2 ≤ . . . ≤ aUi4 ≤ ∞ and 0 ≤ hLi1, hLi2, hUi1, hUi2 ≤ 1.
A ranking criterion for Ãi is defined as:

RN(Ãi) =
1

4

(
x̄U
ÃS

i

· (hUi1 + hUi2)

1 + STDU
ÃS

i

+
x̄L
ÃS

i

· (hLi1 + hLi2)

1 + STDL
ÃS

i

)
, (16)

where ÃS
i is the normalized form of Ãi. The terms x̄UÃS

i

and x̄L
ÃS

i

are the means of the UMF and LMF
points, and STDU

ÃS
i

and STDL
ÃS

i

are their standard deviations, respectively.
The structure of this ranking criterion emphasizes robustness. Normalization ensures all IT2FNs are

mapped onto a common scale, ensuring comparability across alternatives. The denominator (1+STD)

serves as a penalty for uncertainty: larger standard deviation, reflecting greater vagueness, lowers the
ranking score. Adding 1 prevents division-by-zero and stabilizes the index, a strategy analogous to
constructing risk-adjusted metrics.

The rank RN(Ãi) can be calculated via the following steps:
Step 1: Normalize the IT2FNs. A normalization factor k is calculated to map all fuzzy numbers

to a consistent range [19]:

k = max
({
⌈|aUij |⌉, ⌈|aLij |⌉ | i = 1..n, j = 1..4

}
∪ {1}

)
. (17)

Then, each IT2FN Ãi is normalized:

ÃS
i =

(
ÃU

i

k
,
ÃL

i

k

)
= ((aUS

i1 , . . . , a
US
i4 ;hUi1, h

U
i2), (a

LS
i1 , . . . , a

LS
i4 ;hLi1, h

L
i2)), (18)

where aUS
ij = aUij/k and a

LS
ij = aLij/k.

Step 2: Calculate the mean of normalized points. For each normalized IT2FN ÃS
i , calculate the

mean of its UMF and LMF points:

x̄ÃS
i
= (x̄U

ÃS
i
, x̄L

ÃS
i
) =

(∑4
j=1 a

US
ij

4
,

∑4
j=1 a

LS
ij

4

)
. (19)
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Step 3: Calculate the standard deviation of normalized points. Calculate the standard deviation
for the UMF and LMF points of ÃS

i :

STDÃS
i
= (STDU

ÃS
i
, STDL

ÃS
i
) =


√∑4

j=1(a
US
ij − x̄UÃS

i

)2

4
,

√∑4
j=1(a

LS
ij − x̄LÃS

i

)2

4

 . (20)

Step 4: Calculate the score for UMF and LMF. Calculate the individual scores for the UMF and
LMF:

score(ÃS
i ) = (scoreU , scoreL) =

(
x̄U
ÃS

i

· (hUi1 + hUi2)

2(1 + STDU
ÃS

i

)
,
x̄L
ÃS

i

· (hLi1 + hLi2)

2(1 + STDL
ÃS

i

)

)
. (21)

Step 5: Calculate the final ranking criterion. The final rank is the average of the UMF and LMF
scores:

RN(Ãi) =
scoreU + scoreL

2
. (22)

For any two IT2FNs Ãi1 and Ãi2 , the order relationships are:

• If RN(Ãi1) > RN(Ãi2), then Ãi1 ≻ Ãi2 .

• If RN(Ãi1) < RN(Ãi2), then Ãi1 ≺ Ãi2 .

• If RN(Ãi1) = RN(Ãi2), then Ãi1 ∼ Ãi2 .

Since the function RN(·) maps every IT2FN to a crisp real number, this method provides a complete
and unambiguous ranking for any set of alternatives.

Example 1. Consider two IT2FNs:

• Ã1 = ((3, 5, 5.5, 7; 1, 1), (4, 4.5, 5, 6; 0.95, 0.95)),

• Ã2 = ((5, 7, 7.5, 9; 1, 1), (6, 6.5, 7, 8; 0.95, 0.95)).

First, find the normalization factor k = max(⌈3⌉, . . . , ⌈9⌉, . . . , ⌈8⌉, 1) = ⌈9⌉ = 9.
For Ã1:

1. ÃS
1 = (( 39 ,

5
9 ,

5.5
9 ,

7
9 ; 1, 1), (

4
9 ,

4.5
9 ,

5
9 ,

6
9 ; 0.95, 0.95)),

2. x̄ÃS
1
= (0.5694, 0.5417),

3. STDÃS
1
= (0.1586, 0.0817),

4. score(ÃS
1 ) =

(
0.5694·2

2(1+0.1586) ,
0.5417·1.9

2(1+0.0817)

)
= (0.4915, 0.4754),

5. RN(Ã1) =
0.4915+0.4754

2 = 0.4835.

For Ã2: A similar calculation yields RN(Ã2) = 0.6773. Since RN(Ã2) > RN(Ã1), we conclude
that Ã2 ≻ Ã1.

Lemma 1. The proposed ranking criterion RN(·) satisfies the following properties:

• Property 1 (Zero property): If Ãi = ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 1, 1)), then

RN(Ãi) = 0.
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Proof. For Ãi = ((0, 0, 0, 0; 1, 1), (0, 0, 0, 0; 1, 1)), after normalization (if needed, k ≥ 1), the
normalized points remain all zero. Thus, x̄ÃS

i
= (0, 0). From Equation (21), this leads to

score(ÃS
i ) = (0, 0), and consequently, RN(Ãi) = 0.

• Property 2 (Unity property): If Ã1 = ((a, a, a, a; 1, 1), (a, a, a, a; 1, 1)) and Ã2 = ((1 − a, 1 −
a, 1− a, 1− a; 1, 1), (1− a, 1− a, 1− a, 1− a; 1, 1)) with 0 ≤ a ≤ 1, then

RN(Ã1) +RN(Ã2) = 1.

Proof. For Ã1 and Ã2 as defined, the normalization factor k = 1. For Ã1, we have x̄ÃS
1

=

(a, a) and STDÃS
1

= (0, 0). This gives score(ÃS
1 ) = (a, a), so RN(Ã1) = a. For Ã2, we

have x̄ÃS
2
= (1 − a, 1 − a) and STDÃS

2
= (0, 0), leading to RN(Ã2) = 1 − a. Therefore,

RN(Ã1) +RN(Ã2) = a+ (1− a) = 1.

• Property 3 (Symmetry property): If Ã2 = −Ã1, then RN(Ã2) = −RN(Ã1).

Proof. Let Ã1 = ((aU1 , . . . , a
U
4 ;h

U
1 , h

U
2 ), (a

L
1 , . . . , a

L
4 ;h

L
1 , h

L
2 )). Then its symmetric counter-

part is Ã2 = −Ã1 = ((−aU4 , . . . ,−aU1 ;hU1 , hU2 ), (−aL4 , . . . ,−aL1 ;hL1 , hL2 )). The normaliza-
tion factor k is the same for both, as it depends on absolute values. After normalization, we
have x̄U

ÃS
2

= −x̄U
ÃS

1

, and similarly x̄L
ÃS

2

= −x̄L
ÃS

1

. The standard deviation remains unchanged:
STD(ÃS

2 ) = STD(ÃS
1 ), because it is based on squared differences. From Equation (21), we

see that score(ÃS
2 ) = (−scoreU (ÃS

1 ),−scoreL(ÃS
1 )). Therefore, RN(Ã2) = −RN(Ã1).

3.2 Comparison of the New Ranking Method with Existing Methods

In this section, we compare the performance of the proposed ranking method with several existing meth-
ods using seven sets of IT2FNs, which are visually depicted in Figure 2. The rank of each IT2FN is
computed using the following methods:

• Method 1: The method proposed by Chen and Lee [11].

• Method 2: The method proposed by Chiao [15].

• Method 3: The method proposed by Ghorabaee et al. [19].

• Method 4: The method proposed by De et al. [16].

• Proposed Method: The newly developed method in this paper.

The comparative results of the ranking values and the final orderings are summarized in Tables 1
and 2, respectively.

An analysis of the data presented in Tables 1, 2 and Figure 2, allows for several key assessments of
the examined ranking methods:

• Set 1: The proposed approach, along with Methods 3 and 4, produced coherent and distinguish-
able ranking outcomes (Ã1 ≻ Ã2), whereas Methods 1 and 2 failed to differentiate between the
two IT2FNs.
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Figure 2: Seven IT2FN sets used in comparing ranking methods.

• Set 2: Method 4 was unable to produce a ranking for Ã2. All other methods successfully ranked
Ã1 ≺ Ã2.

• Set 3: All evaluated methods performed successfully, yielding the same accurate and consistent
ranking order: Ã2 ≺ Ã1 ≺ Ã3.

• Set 4: Except for Method 2, which yielded an implausible equivalence, all methods generated the
meaningful ranking Ã1 ≻ Ã2.

• Set 5: Every method, aside from Method 4, correctly produced the ranking Ã1 ≺ Ã2 ≺ Ã3.
Method 4 incorrectly ranked Ã3 below Ã2.

• Set 6: The results from the proposed method were in alignment with those of Methods 1 and 3
(Ã1 ≻ Ã2 ≻ Ã3), while Methods 2 and 4 were unable to distinguish between the three IT2FNs.
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Table 1: Numerical ranking results for seven sets of IT2FNs.

Sets Alternatives Method 1 Method 2 Method 3 Method 4 Proposed Method

Set1
A1 0.8116 0.3083 0.0723 0.3094 0.2582
A2 0.8116 0.3083 0.0268 0.3048 0.2558

Set2
A1 0.81 0.3 0 0.3 0.2626
A2 3 1 0.4 N/A 1

Set3
A1 -0.84 -0.3 0.1761 -0.3 -0.267
A2 -2.1141 -0.7625 0.0833 -0.7721 -0.6854
A3 0.84 0.3 0.1979 0.3 0.267

Set4
A1 1.5238 0.55 0.1654 0.6 0.4631
A2 1.4088 0.55 0 0.5 0.4229

Set5
A1 1.125 0.4667 0.0907 0.4404 0.3519
A2 1.3913 0.5167 0.1036 0.5333 0.4265
A3 1.43 0.5833 0.1361 0.5256 0.4389

Set6
A1 0.7978 0.2833 0.122 0.2906 0.2555
A2 0.7691 0.2833 0.0982 0.2906 0.2297
A3 0.7403 0.2833 0.0833 0.2906 0.2044

Set7
A1 0.9192 0.3292 0.1683 0.3325 0.2716
A2 -0.9192 -0.3292 0 -0.3325 -0.2716

Table 2: Results of ranking for seven sets of IT2FNs (ranking orders).

Sets Method 1 Method 2 Method 3 Method 4 Proposed Method

Set1 Ã1 ≈ Ã2 Ã1 ≈ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2

Set2 Ã1 ≺ Ã2 Ã1 ≺ Ã2 Ã1 ≺ Ã2 Failed Ã1 ≺ Ã2

Set3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3 Ã2 ≺ Ã1 ≺ Ã3

Set4 Ã1 ≻ Ã2 Ã1 ≈ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2

Set5 Ã1 ≺ Ã2 ≺ Ã3 Ã1 ≺ Ã2 ≺ Ã3 Ã1 ≺ Ã2 ≺ Ã3 Ã1 ≺ Ã3 ≺ Ã2 Ã1 ≺ Ã2 ≺ Ã3

Set6 Ã1 ≻ Ã2 ≻ Ã3 Ã1 ≈ Ã2 ≈ Ã3 Ã1 ≻ Ã2 ≻ Ã3 Ã1 ≈ Ã2 ≈ Ã3 Ã1 ≻ Ã2 ≻ Ã3

Set7 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2 Ã1 ≻ Ã2

• Set 7: For the symmetric cases Ã1 and Ã2 = −Ã1, every method returned the correct order
Ã1 ≻ Ã2. However, a closer inspection of Table 1 reveals that only Method 3 failed to maintain
the symmetry property in its rank values, as RN(Ã1) ̸= −RN(Ã2).

Table 3 summarizes how eachmethod aligns with the three fundamental ranking properties discussed
previously.

In summary, the proposedmethod andMethod 2 both consistently satisfy all three properties, reflect-
ing their robustness in ranking IT2FNs. Conversely, Methods 1, 3, and 4 exhibit notable deficiencies,



Dehghani & Nahid Titkanlue,/ COAM, 11 (1), Winter-Spring (2026) 43

Table 3: Comparison of properties satisfied by different ranking methods.

Methods Zero property One property Symmetric property

Method 1 Yes No Yes
Method 2 Yes Yes Yes
Method 3 Yes No No
Method 4 Yes No Yes
The Proposed Method Yes Yes Yes

either in ranking accuracy or in property compliance [11, 15, 16, 19]. These results underscore the clear
advantages of the proposed approach over existing alternatives, particularly regarding its reliability and
adherence to essential theoretical criteria.

4 New MAGDM Framework Integrating the Proposed Ranking Method

Building on the above ranking index, we propose a comprehensive MAGDM framework that systemati-
cally incorporates dual-scale linguistic assessment and the new IT2FN ranking throughout all procedural
steps. This framework adapts the classic TOPSIS methodology to accommodate the richer semantics
provided by the new ranking approach.

4.1 Procedural Steps

Consider a MAGDM problem with the following elements:

• m alternatives: A1, A2, . . . , Am.

• n attributes: C1, C2, . . . , Cn.

• K decision-makers (DMs): D1, D2, . . . , DK , with corresponding importance weights ηl.

Assume that the weight vector of the attributes is denoted asWT = (w1, w2, . . . , wn), wherewj ∈ [0, 1]

for j = 1, 2, . . . , n and
∑n

j=1 wj = 1.
Let X̃l = (x̃ijl)m×n be the decision matrix from the l-th DM, where x̃ijl is the IT2FN representing

the evaluation of alternative Ai with respect to attribute Cj . The MAGDM process consists of the
following steps:

Step 1: Construct the collective decision matrix. Construct the collective decision matrix X̃ =

(x̃ij)m×n by computing the weighted average of inputs from theK DMs [19, 28]:

x̃ij =

K⊕
l=1

ηl ⊗ x̃ijl; i = 1, . . . ,m; j = 1, . . . , n. (23)

Note: While equal weights for DMs can be assumed for simplicity, the framework flexibly accommo-
dates non-uniform weights to reflect varying levels of expertise. The resulting matrix is:
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X̃ =



C1 C2 · · · Cn

A1 x̃11 x̃12 · · · x̃1n

A2 x̃21 x̃22 · · · x̃2n
...

...
...

. . .
...

Am x̃m1 x̃m2 · · · x̃mn

. (24)

Step 2: Construct the weighted decision matrix. Form the weighted fuzzy decision matrix Ṽ =

(ṽij)m×n by multiplying each element of the collective matrix by its corresponding attribute weight
wj [19, ?]:

ṽij = wj ⊗ x̃ij . (25)

Here, ⊗ denotes the scalar multiplication of an IT2FN by a crisp weight.
Step 3: Defuzzify the weighted matrix. Calculate the crisp rank for each element of the weighted

decision matrix Ṽ to form a real-valued matrix R = (rij)m×n. Each element rij is computed using the
proposed ranking method (by using (16)):

rij = RN(ṽij). (26)

Step 4: Determine the Positive and Negative Ideal Solutions (PIS and NIS) Identify the PIS,
r+ = (r+1 , r

+
2 , . . . , r

+
n ), and the NIS, r− = (r−1 , r

−
2 , . . . , r

−
n ), from the crisp matrix R. Let Xb be the

set of benefit attributes and Xc be the set of cost attributes:

r+j =

maxi{rij}, if Cj ∈ Xb

mini{rij}, if Cj ∈ Xc

, j = 1, . . . , n, (27)

r−j =

mini{rij}, if Cj ∈ Xb

maxi{rij}, if Cj ∈ Xc

, j = 1, . . . , n. (28)

Step 5: Calculate distances from the ideal solutions. Calculate the Euclidean distance of each
alternative Ai from the PIS (d+i ) and the NIS (d

−
i ) [19, 38]:

d+i =

√√√√ n∑
j=1

(rij − r+j )2, i = 1, . . . ,m, (29)

d−i =

√√√√ n∑
j=1

(rij − r−j )2, i = 1, . . . ,m. (30)

Step 6: Calculate the relative closeness coefficient and rank. Calculate the relative closeness
coefficient C(Ai) for each alternative Ai [38]:

C(Ai) =
d−i

d−i + d+i
, i = 1, . . . ,m. (31)

Rank the alternatives in descending order of their C(Ai) values. The alternative with the highest value
is deemed the most preferable solution, A∗:

A∗ = argmax
i
{C(Ai)}. (32)
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5 Numerical Examples

To demonstrate the effectiveness and practical applicability of the proposed MAGDM method, two nu-
merical examples are presented. The first example addresses a supplier selection problem utilizing only
positive linguistic IT2FN scales. The results obtained using the proposed approach are compared with
alternative established methods: those of Chen and Lee [11], Chiao [15], Ghorabaee et al. [19], and De
et al. [16]. The second example utilizes both positive and negative IT2FN linguistic terms, enabling a
broader comparative evaluation.

5.1 Numerical Example 1: Supplier Selection Using Positive Linguistic IT2FNs

Adapted from Ghorabaee et al. [19], this example evaluates seven potential suppliers (A1 to A7) in a
supply chain management decision. The evaluation is conducted by three DMs (D1,D2,D3), members
of the board of directors, who assess each supplier according to five principal attributes:

• C1: Defect rate (cost attribute): Proportion of nonconforming items.

• C2: Cost (cost attribute): Estimated procurement-related costs.

• C3: Delivery reliability (benefit attribute): Timeliness of deliveries.

• C4: Responsiveness (benefit attribute): Speed of reacting to demands.

• C5: Flexibility (benefit attribute): Adaptability to customer requirements.

Decision-makers use linguistic variables corresponding to positive IT2FNs (Table 4), assigning
equal weights to each DM (ηT = (1/3, 1/3, 1/3)). Table 5 presents the raw linguistic assessments,
and Table 6 shows the linguistic weights assigned by the DMs to each attribute.

Table 4: Linguistic Variables and Corresponding IT2FNs [19].

Linguistic Variable TIT2FNs

Very Low (VL) ((0,0,0,0.1;1,1), (0,0,0,0.05;0.9,0.9))
Low (L) ((0,0.1,0.15,0.3;1,1), (0.05,0.1,0.15,0.2;0.9,0.9))
Medium Low (ML) ((0.1,0.3,0.35,0.5;1,1), (0.2,0.3,0.35,0.4;0.9,0.9))
Medium (M) ((0.3,0.5,0.55,0.7;1,1), (0.4,0.5,0.55,0.6;0.9,0.9))
Medium High (MH) ((0.5,0.7,0.75,0.9;1,1), (0.6,0.7,0.75,0.8;0.9,0.9))
High (H) ((0.7,0.85,0.9,1;1,1), (0.8,0.85,0.9,0.95;0.9,0.9))
Very High (VH) ((0.9,1,1,1;1,1), (0.95,1,1,1;0.9,0.9))

The proposed method is executed through the following steps. The aggregated mean weights are
shown in Table 7.
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Table 5: Linguistic performance values of alternatives (Example 1).

DMs Alternatives C1 C2 C3 C4 C5

DM1

A1 L ML VH M MH
A2 L VL VH H VH
A3 H MH M MH ML
A4 MH VH MH L VL
A5 M VH M ML MH
A6 VH M L MH VH
A7 MH M VL VH H

DM2

A1 VL L H MH M
A2 ML VL VH H VH
A3 MH M MH MH M
A4 MH MH H ML ML
A5 M H M M MH
A6 H ML ML H H
A7 MH M L H MH

DM3

A1 VL M H MH H
A2 VL VL VH H VH
A3 M MH M M M
A4 M VH M VL L
A5 ML H MH ML H
A6 MH MH ML MH VH
A7 M M ML MH MH

Table 6: Linguistic weights of attributes evaluated by DMs (Example 1).

Attributes D1 D2 D3

C1 VH VH H
C2 MH MH M
C3 VH H VH
C4 VH MH MH
C5 H H MH

Step 1 & 2: Construct Aggregated and Weighted Decision Matrices

First, the DMs’ evaluations are aggregated using Equation (23). For instance, the aggregated evaluation
for A1 under attribute C1 is x̃11 = 1

3L ⊕
1
3V L ⊕

1
3V L. Next, the aggregated attribute weights (w̄j)
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are used to compute the weighted decision matrix Ṽ = (ṽij) using Equation (25). The full weighted
decision matrix is presented in Table 8.

Table 7: IT2FNs subjective weights by DMs and aggregated mean values in Example 1.

DM Attributes IT2FN Weight Value

Mean

C1 ((0.833,0.95,0.967,1;1,1), (0.9,0.95,0.967,0.983;0.9,0.9))
C2 ((0.433,0.633,0.683,0.833;1,1), (0.533,0.633,0.683,0.733;0.9,0.9))
C3 ((0.833,0.95,0.967,1;1,1), (0.9,0.95,0.967,0.983;0.9,0.9))
C4 ((0.567,0.75,0.8,0.933;1,1), (0.667,0.75,0.8,0.85;0.9,0.9))
C5 ((0.633,0.8,0.85,0.967;1,1), (0.733,0.8,0.85,0.9;0.9,0.9))

Table 8: The weighted decision matrix (ṽij) for Example 1.

Alternatives Attributes Weighted IT2FN Value ṽij

A1

C1 ((0,0.03,0.05,0.17;1,1), (0.02,0.03,0.05,0.1;0.9,0.9))
C2 ((0.06,0.19,0.24,0.42;1,1), (0.12,0.19,0.24,0.29;0.9,0.9))
C3 ((0.64,0.86,0.9,1;1,1), (0.77,0.86,0.9,0.95;0.9,0.9))
C4 ((0.25,0.48,0.55,0.78;1,1), (0.36,0.48,0.55,0.62;0.9,0.9))
C5 ((0.32,0.55,0.62,0.84;1,1), (0.44,0.55,0.62,0.71;0.9,0.9))

A2

C1 ((0.03,0.13,0.16,0.3;1,1), (0.08,0.13,0.16,0.21;0.9,0.9))
C2 ((0,0,0,0.08;1,1), (0,0,0,0.04;0.9,0.9))
C3 ((0.75,0.95,0.97,1;1,1), (0.86,0.95,0.97,0.98;0.9,0.9))
C4 ((0.4,0.64,0.72,0.93;1,1), (0.53,0.64,0.72,0.81;0.9,0.9))
C5 ((0.57,0.8,0.85,0.97;1,1), (0.7,0.8,0.85,0.9;0.9,0.9))

Step 3: Rank the Weighted Decision Matrix

The new IT2FN ranking method (Equation (16)) is applied to each element ṽij to obtain the crisp rank
matrix R = (rij), shown in Table 9.

Steps 4, 5, and 6: Determine Ideal Solutions, Distances, and Final Ranking

The Positive and Negative Ideal Solutions (PIS and NIS) are determined using (27) and (28). Then,
the Euclidean distances of each alternative from PIS (d+i ) and NIS (d−i ) are computed, followed by
the relative closeness coefficient C(Ai). The results are shown in Table 10, and the final ranking is
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Table 9: Rank of the weighted decision matrix (rij) in Example 1.

Alternatives C1 C2 C3 C4 C5

A1 0.0501 0.1893 0.7408 0.4201 0.4818
A2 0.1318 0.0141 0.8199 0.5574 0.6878
A3 0.1748 0.3591 0.4651 0.4201 0.3159
A4 0.5173 0.4898 0.5613 0.1116 0.1178
A5 0.3607 0.4953 0.4651 0.2562 0.5251
A6 0.6951 0.2908 0.2088 0.4923 0.6570
A7 0.5173 0.2908 0.1318 0.5518 0.5251

compared with other methods in Table 11. The optimal supplier is A2, with the final order A2 ≻ A1 ≻
A3 ≻ A5 ≻ A6 ≻ A7 ≻ A4.

Table 10: Distances from ideal solutions and relative closeness for Example 1.

Alternative d+i d−i C(Ai)

A1 0.313028 1.052798 0.770814
A2 0.081689 1.243355 0.938350
A3 0.646078 0.731224 0.530910
A4 1.017412 0.464600 0.313492
A5 0.696348 0.639699 0.478800
A6 0.933250 0.694878 0.426796
A7 0.891578 0.657707 0.424523

Table 11: Final rankings comparison for Example 1.

Alternatives
Method 1 Method 2 Method 3 Method 4 Proposed Method

C(Ai) R C(Ai) R C(Ai) R C(Ai) R C(Ai) R

A1 0.769 2 0.938 2 0.881 2 0.781 2 0.771 2
A2 0.938 1 0.779 1 0.743 1 0.940 1 0.938 1
A3 0.529 3 0.546 3 0.567 3 0.538 3 0.531 3
A4 0.313 7 0.487 7 0.463 7 0.314 7 0.313 7
A5 0.477 4 0.438 4 0.402 4 0.490 4 0.479 4
A6 0.425 5 0.436 5 0.388 5 0.439 5 0.427 5
A7 0.423 6 0.313 6 0.354 6 0.439 6 0.425 6
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The results affirm that the proposedMAGDMmethod yields rankings consistent with those reported
by existing frameworks. This robustness underscores the validity and reliability of the approach when
restricted to positive IT2FNs.

5.2 Numerical Example 2: Car Selection with Positive and Negative IT2FNs

To further demonstrate the robustness and flexibility of the proposed MAGDM methodology, a car
selection problem involving both positive and negative linguistic scales is presented. Three vehicles
(A1, A2, A3) are evaluated by three DMs across four attributes: C1 (Safety), C2 (Price), C3 (Appear-
ance), andC4 (Performance). C2 is a cost attribute, while the others are benefit attributes. The linguistic
scales are defined in Tables 12 and 13, based on [41].

Table 12: Linguistic terms for performance and their corresponding IT2FNs [41].

Linguistic Variable TIT2FNs

Very Low (VL) ((-10, -9, -8, -7; 0.8, 0.8), (-10, -10, -8, -6; 1, 1))
Low (L) ((-8, -7, -5, -4; 0.8, 0.8), (-9, -7, -5, -3; 1, 1))
Medium (M) ((-2, -1, 1, 2; 0.8, 0.8), (-3, -2, 2, 3; 1, 1))
High (H) ((4, 5, 7, 8; 0.8, 0.8), (3, 5, 7, 9; 1, 1))
Very High (VH) ((7, 8, 10, 10; 0.8, 0.8), (6, 8, 10, 10; 1, 1))

Table 13: Linguistic terms for weights and their corresponding IT2FNs [41].

Linguistic Term TIT2FNs

Medium (M) ((-0.2, -0.1, 0.1, 0.2; 0.8, 0.8),(-0.3, -0.2, 0.2, 0.3; 1, 1))
Medium High (MH) ((0.1, 0.2, 0.4, 0.5; 0.8, 0.8),(0, 0.2, 0.4, 0.6; 1, 1))
High (H) ((0.4, 0.5, 0.7, 0.8; 0.8, 0.8),(0.3, 0.5, 0.7, 0.9; 1, 1))
Very High (VH) ((0.7, 0.8, 1, 1; 0.8, 0.8), (0.6, 0.8, 1, 1; 1, 1))

The procedural steps are analogous to the first example. The weighted decision matrix is constructed
(Table 14) and then ranked (Table 15).

Finally, the PIS and NIS are determined, distances are calculated, and the final ranking is produced.
The results and comparison are shown in Table 16.

According to the proposed method, alternative A1 achieves the highest relative closeness coeffi-
cient (0.580), making it the best choice. The results produced by the proposed approach display strong
consistency with some existing methods (agreeing closely with Methods 2 and 4 in selecting A1 as op-
timal), but differences in ranking order for less-preferred alternatives reflect the improved sensitivity of
the proposed method, especially when negative and positive linguistic terms coexist.
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Table 14: The weighted decision matrix (ṽij) for Example 2.

Alternative Attributes Weighted IT2FN Value ṽij

A1

C1 ((-2.8,-1.2,1.2,2.8;1,1),(-1.94,-0.9,0.9,1.94;0.8,0.8))
C2 ((2.4,4.2,7.2,8.71;1,1),(2.5,4.2,7.2,8.41;0.8,0.8))
C3 ((0,0.6,2.4,3.73;1,1), (-0.87,0.45,2.64,4.33;0.8,0.8))
C4 ((2,3.6,6.4,8.09;1,1), (2,3.6,6.4,8.09;0.8,0.8))

A2

C1 ((-8.71,-7.2,-4.2,-2.4;1,1),(-8.41,-6.9,-4.2,-2.5;0.8,0.8))
C2 ((-4.98,-3.6,-1.4,0;1,1),(-4.53,-3.3,-1.4,-0.5;0.8,0.8))
C3 ((-3.87,-2.7,-0.7,0;1,1),(-4.67,-2.75,-0.53,0.93;0.8,0.8))
C4 ((-6.36,-5.07,-2.2,-1;1,1),(-6.22,-4.53,-2.4,-1.2;0.8,0.8))

A3

C1 ((-7.78,-6.3,-3.5,-1.8;1,1),(-7.44,-6,-3.5,-2;0.8,0.8))
C2 ((-6.53,-4.8,-1.87,-0.6;1,1),(-5.82,-4.5,-2.1,-1;0.8,0.8))
C3 ((-3.33,-2.1,-0.5,0;1,1),(-3.83,-2.2,-0.38,0.77;0.8,0.8))
C4 ((-8.38,-7.2,-4.2,-2.5;1,1),(-8.71,-6.67,-4.2,-2.4;0.8,0.8))

Table 15: Rank of the weighted decision matrix (rij) in Example 2.

Alternatives C1 C2 C3 C4

A1 0.0000 0.4420 0.1400 0.3980
A2 -0.4400 -0.2060 -0.1490 -0.2950
A3 -0.3840 -0.2750 -0.1240 -0.4380

Table 16: Final Rankings and Closeness Coefficients for Example 2.

Alternative
Method 1 Method 2 Method 3 Method 4 Proposed Method

C(Ai) R C(Ai) R C(Ai) R C(Ai) R C(Ai) R

A1 0.450 3 0.579 1 0.441 3 0.647 1 0.580 1
A2 0.544 1 0.434 2 0.532 2 0.350 3 0.432 2
A3 0.533 2 0.430 3 0.559 1 0.361 2 0.427 3

6 Discussion

Developing robust methodologies for multi-attribute group decision-making (MAGDM) under uncer-
tainty remains a key challenge, especially when expert opinions involve imprecise linguistic terms.
Fuzzy set theory—andmore specifically, Type-2 Fuzzy Sets (T2FSs) and their interval forms (IT2FSs/IT2FNs)—
has long been recognized as a powerful paradigm for modelling such complex, ambiguous evalua-
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tions [19, 20]. However, a persistent gap in the literature has been the asymmetrical treatment of linguis-
tic assessment scales, which has constrained the fidelity and interpretability of group decision-making
models.

This study overcomes these limitations by presenting two interconnected advancements. First, a
symmetry-oriented ranking method for IT2FNs is presented. Unlike prior approaches—which either
compute centroids, dominance, or similar indices over a positive-normalized scale—this method lever-
ages the mean and standard deviation of both the upper (UMF) and lower membership functions (LMF),
as well as the IT2FN height, to deliver a ranking index inherently sensitive to both positive and nega-
tive linguistic scales. Critically, this index is theoretically calibrated so that the “medium” or “neutral”
linguistic value—the fuzzy equivalent of zero—serves as a precise balance point, directly reflecting the
duality proposed in equilibrium/Yin-Yang theories and more accurately representing human reasoning in
decision contexts. The rigorous development and validation of this ranking index go beyond numerical
performance: the method aligns with the psychological and philosophical underpinnings of human judg-
ment, rendering it theoretically robust. Key properties—including scale symmetry, zero-point neutrality,
and the ability to treat mirror-opposite IT2FNs equivalently but with reversed sign—are demonstrated
both formally and through comparative experiments.

Second, this ranking method becomes the cornerstone of a new MAGDM framework. By integrat-
ing dual-scale linguistic assessment—allowing both positive (“very high,” “high”) and negative (“very
low,” “low”) terms—into the MADM pipeline, the methodology generalizes classical multi-attribute
decision models to environments characterized by true evaluative duality. This means that decision-
makers’ linguistic inputs are not forcibly mapped onto a one-sided, positive-normalized scheme, but
rather maintain their inherent semantic richness and interpretability throughout the evaluative process.
In a practical implementation, decision-makers would continue to use familiar linguistic terms. The
mapping to positive or negative IT2FNs is a back-end process, ensuring that the user interface remains
intuitive while the underlying model captures the full semantic duality of their judgments.

Numerical experiments, including scenarios with both strictly positive and genuinely dual-scale lin-
guistic assessments, confirm the practical superiority of the proposed approach. In benchmark problems,
the new ranking method demonstrates enhanced discernibility between alternatives and a closer align-
ment with intuitive expectations of neutrality and duality. When deployed within the new MAGDM
framework, group preference aggregation, attribute weighting, and alternative ranking all benefit from a
more nuanced and interpretable processing of uncertainty and human linguistic judgment. Importantly,
the framework facilitates more transparent and justifiable decision processes in real-world scenarios
where not just positive advantages but also negative aspects and trade-offs must be considered—such
as sustainability assessment, risk-benefit analysis, and social/environmental impact evaluations. The
interpretability of the results, especially the explicit meaning of a “neutral” evaluation, can strengthen
decision acceptance and stakeholder trust.

Compared with the state-of-the-art, these innovations substantially extend the modelling scope and
accuracy of fuzzy MAGDM methods. Prior work [11, 16, 19, 20, 28], while advancing IT2FN ranking
for purely positive scales or through incremental extensions, has not addressed the need for symmetric
treatment encompassing both negative and positive evaluations. The present study, inspired by advanced
theoretical considerations (e.g., Yin-Yang equilibrium), explicitly overcomes these gaps and empirically
demonstrates why this is not merely an theoretical concern, but a critical factor for real-world decision
support.
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A key advantage of the proposed ranking method lies in its ability to symmetrically handle both
positive and negative linguistic assessments by incorporating the mean, standard deviation, and height
of the IT2FNs. This provides a more robust and nuanced evaluation compared to methods that operate
only on positive scales. However, a potential trade-off is the slightly increased computational complexity
due to the normalization and standard deviation calculation steps. We contend that this is a worthwhile
compromise for the enhanced accuracy and applicability to real-world problems that feature inherent
duality.

7 Conclusion

This study addresses the persistent challenge of effective multi-attribute group decision-making in envi-
ronmentsmarked by linguistic vagueness and subjective expert judgment. While Type-2 Fuzzy Sets have
enhanced the capacity to model uncertainty in decision contexts, a major limitation of previous methods
has been the asymmetrical treatment of linguistic scales. Conventional approaches have predominantly
emphasized a normalized, positive scale, thereby failing to capture the natural duality of human per-
ception and the importance of neutrality, as articulated in principles such as the Yin-Yang equilibrium
theory. To overcome these limitations, this paper introduces two principal innovations: First, a novel,
symmetry-oriented ranking method for IT2FNs is presented. This method uniquely incorporates both
the average and standard deviation of the upper and lower membership functions, as well as the height
of IT2FNs, to systematically treat positive, negative, and neutral (“fuzzy zero”) linguistic evaluations in
a balanced manner. Comprehensive comparative testing against state-of-the-art ranking methods con-
firms that the proposed approach delivers theoretically consistent and practically interpretable results,
especially in contexts requiring explicit recognition of neutral and negative values.

Second, building on this ranking foundation, a new MAGDM framework is advanced, capable of
integrating group expert assessments across dual-scale linguistic data. The method generalizes classical
MADM techniques by enabling the aggregation and discrimination of alternatives not just on a unipolar,
but on a truly bipolar (positive-negative) scale. Numerical demonstrations on benchmark problems with
both positive-only and dual-scale linguistic inputs highlight the framework’s superiority in terms of
discernibility, interpretability, and faithfulness to human-centered reasoning.

In summary, the proposed IT2FN ranking method and the MAGDM framework together establish a
new standard in fuzzy group decision modeling, respecting the complexity of expert linguistic judgments
and robustly supporting real-world decisions characterized by uncertainty and duality. Future research
directions include the adaptation of the method to general Type-2 or hesitant fuzzy environments, fur-
ther exploration of aggregation strategies, and practical validation through large-scale, domain-specific
applications.

Looking ahead, future work should focus on extending the developed ranking methodology to other
classes of fuzzy sets—such as Intuitionistic, Pythagorean, and Neutrosophic sets—to further enhance its
generality and applicability. Additionally, applying the proposed IT2FN rankingmethod across a broader
range of multi-attribute decision-making problems may deepen its practical impact and demonstrate its
versatility in complex real-world scenarios.
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