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blended by a scalar, enabling our new methods to solve the targeted
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1 Introduction

Consider the nonlinear unconstrained optimization problem

min f(x), x ∈ Rn, (1)

where f : Rn −→ R is a continuously differentiable function and bounded below. So far, many
numerical methods have been proposed to solve the optimization problem (1). Some of these
methods are line search methods, trust-region methods, Newton’s method and its modifications,
quasi-Newton methods and conjugate gradient method [7, 12, 15].

Conjugate gradient (CG) methods to solve (1) starting from x0 ∈ Rn, an initial guess, and
generate

xk+1 = xk + αkdk, k = 0, 1, 2, · · · , (2)

in whichαk > 0 is a step-size obtained by inexact line search conditions and the search direction
dk given by

dk =

−gk, k = 0,

−gk + βkdk−1, k > 0,
(3)

where βk is called CG-parameter and gk = ∇f(xk). The step-size αk is usually obtained by
weak Wolfe line search (WWLS) conditions [12]:

f(xk + αkdk) ≤ f(xk) + c1αkg
T
k dk, (4)

g(xk + αkdk)
Tdk ≥ c2g

T
k dk, (5)

or the strong Wolfe line search (SWLS) conditions:

f(xk + αkdk) ≤ f(xk) + c1αkg
T
k dk, (6)∣∣g(xk + αkdk)

Tdk
∣∣ ≤ c2

∣∣gTk dk∣∣, (7)

in which 0 < c1 < c2 < 1. Moreover, the search direction dk satisfies the descent condition

gTk dk < 0,

or the sufficient descent condition

gTk dk < −c∥gk∥2, c > 0,

in which ∥ ·∥ is the Euclidean norm. The well-known CG parameters are Hestenes-Stiefel (HS)
[9], Fletcher-Reeves (FR) [6], Polak-Ribière-Polak (PRP) [13, 14], conjugate descent (CD) [5],
Dai-Yuan (DY) [3] and Hager-Zhang (HZ) [7]. These parameters are listed as follows:

βFR
k =

∥gk∥2

∥gk−1∥2
, βCD

k = − ∥gk∥2

gTk−1dk−1
, βHS

k =
gTk yk−1

dTk−1yk−1
,
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βPRP
k =

gTk yk−1

∥gk−1∥2
, βDY

k =
∥gk∥2

dTk−1yk−1
, βHZ

k = βHS
k − 2

∥yk−1∥2dTk−1gk

(dTk−1yk−1)2
,

where yk−1 = gk − gk−1.
The steepest descent direction −gk has verry small step-size. Therefore, the convergence

of this method is slow. To overcome this drawback, Barzilai and Borwein (BB) [1] obtained
the following step-sizes:

λ1
k =

sTk−1yk−1

sTk−1sk−1
, and λ2

k =
yTk−1yk−1

sTk−1yk−1
.

In fact, λ1
k and λ

2
k are the solution of the least-square problems:

min ∥λsk−1 − yk−1∥2, λ ∈ R,

and
min ∥λyk−1 − sk−1∥2, λ ∈ R.

Finally, the BB parameter is
λBB
k = min

{
λ1
k, λ

2
k

}
.

2 Hybrid Conjugate Gradient Methods

Using the quasi-Newton equation, Dai and Liao obtained the following conjugate condition [2]:

dTk yk−1 = −tgTk sk−1, (8)

in which t > 0. Substituting (3) into (8), then

dTk yk−1 = −gTk yk−1 + βkd
T
k−1yk−1 = −tgTk sk−1,

or

βk =
gTk (yk−1 − tsk−1)

dTk−1yk−1
.

Let t = 1. Hence, Dai-Liao (DL) conjugate gradient parameter βDL
k is as follows:

βDL
k =

gTk (yk−1 − sk−1)

dTk−1yk−1
. (9)

βLS
k proposed by Liu and Storey [10] as following:

βLS
k = −

gTk yk−1

gTk−1dk−1
. (10)
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If the exact line search is used, the LSmethod is equivalent to PRPmethod [8], which is efficient
CG method in practical computation.

Rivaie et al. [17] proposed βRMIL
k which the generated directions are sufficient descent.

βRMIL
k is denoted by

βRMIL
k =

gTk (gk − gk−1)

∥dk−1∥2
. (11)

In [16], parameter βRMIL
k is modified as follows

βRMIL+
k =

gTk (gk − gk−1 − dk−1)

∥dk−1∥2
. (12)

The most important properties of these conjugate gradient methods are

• The DL method satisfies in conjugate condition (8) for t = 1 and has strong global
convergence properties.

• The LSmethod is numerical efficiency and becomes PRPmethod with a strong numerical
results by exact line search.

• The RMIL+ method has good convergence and the generated directions by it are suffi-
cient descent.

Now, we combine the above conjugate gradient methods and obtain three hybrid conjugate
gradient methods. Some of the most important characteristics of hybrid methods are

1. We combine strong convergence methods with numerically efficient methods. So, the
new method has both convergence and numerical efficiency properties.

2. We use parameter BB to combine methods that accelerate convergence.

3. Two-dimensional optimization problems have many practical applications, so it is im-
portant to provide useful methods for solving them.

4. The methods presented in this paper are suitable for two-dimensional optimization prob-
lems, while they may not be suitable for higher dimensions.

We present hybrid algorithms by βDL
k , βLS

k and βRMIL+
k parameters and introduce three

hybrid methods to solve unconstrained optimization problems in two-dimensions.

Case I. Let 0 < λmin < λmax. Consider the combination of parameters βDL
k and βLS

k

which one has strong convergence and the other has good numerical efficiency

β1
k = λ̂βDL

k + (1− λ̂)βLS
k

= λ̂
gTk (yk−1 − sk−1)

dTk−1yk−1
+ (λ̂− 1)

gTk yk−1

gTk−1dk−1
, (13)
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in which
λ̂ = max{λmin,min{λBB

k , λmax}}. (14)

Hence, λmin ≤ λ̂ ≤ λmax.

Algorithm 1 Combination of βDL
k and βLS

k based on BB step-size (DL-LS).

(S0) Compute the initial function value f0 = f(x0) and the initial gradient vector g0 = g(x0)

and set d0 = −g0.

(S1) If ∥gk∥ < ε or k > kmax, stop.

(S2) Find αk satisfying SWLS conditions resulting in xk+1 = xk + αkdk, fk+1 = f(xk+1)

and gk+1 = g(xk+1).

(S3) Calculate λ̂, βDL
k+1 and β

LS
k+1 and obtain the parameter β

1
k+1 by (13) and dk+1 = −gk+1+

β1
k+1dk.

(S4) Set k = k + 1 and go to (S1).

Case II. In this case, we consider the combination of parameters βDL
k and βRMIL+

k where
both have the strong global convergence properties.

β2
k = λ̂βDL

k + (1− λ̂)βRMIL+
k

= λ̂
gTk (yk−1 − sk−1)

dTk−1yk−1
+ (1− λ̂)

gTk (gk − gk−1 − dk−1)

∥dk−1∥2
, (15)

in which λ̂ is obtained by (14).

Case III. In this case, we consider the combination of parameters βLS
k and βRMIL+

k .
The first method has appropriate numerical results and the second method has strong
convergence.

β3
k = λ̂βLS

k + (1− λ̂)βRMIL+
k

= −λ̂
gTk yk−1

gTk−1dk−1
+ (1− λ̂)

gTk (gk − gk−1 − dk−1)

∥dk−1∥2
, (16)

where λ̂ is computed by (14).
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Algorithm 2 Combination of βDL
k and βRMIL+

k based on BB step-size (DL-RMIL+).

(S0) Compute the initial function value f0 = f(x0) and the initial gradient vector g0 = g(x0)

and set d0 = −g0.

(S1) If ∥gk∥ < ε or k > kmax, stop.

(S2) Find αk satisfying SWLS conditions resulting in xk+1 = xk + αkdk, fk+1 = f(xk+1)

and gk+1 = g(xk+1).

(S3) Calculate λ̂, βDL
k+1 and βRMIL+

k+1 and obtain the parameter β2
k+1 by (15) and dk+1 =

−gk+1 + β2
k+1dk.

(S4) Set k = k + 1 and go to (S1).

Algorithm 3 Combination of βLS
k and βRMIL+

k based on BB step-size (LS-RMIL+).

(S0) Compute the initial function value f0 = f(x0) and the initial gradient vector g0 = g(x0)

and set d0 = −g0.

(S1) If ∥gk∥ < ε or k > kmax, stop.

(S2) Find αk satisfying SWLS conditions resulting in xk+1 = xk + αkdk, fk+1 = f(xk+1)

and gk+1 = g(xk+1).

(S3) Calculate λ̂, βLS
k+1 and βRMIL+

k+1 and obtain the parameter β3
k+1 by (16) and dk+1 =

−gk+1 + β3
k+1dk.

(S4) Set k = k + 1 and go to (S1).

3 Convergence Analysis

We consider some assumptions to investigate the convergence of Algorithms 1-3.

(H1). For any x0 ∈ Rn, the level set L(x0) = {x ∈ Rn|f(x) ≤ f(x0)} is bounded.

(H2). For all x ∈ L(x0) there exists a constant Λ > 0 such that

∥x∥ ≤ Λ.

(H3). The gradient of f is Lipschitz continuous, i.e., there exists constant Lg > 0 such that

∥g(x)− g(y)∥ ≤ Lg∥x− y∥, ∀x, y ∈ L(x0).
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Theorem 1. The generated direction by Algorithm 1 is the sufficient descent direction.

Proof. Using Algorithm 1, we have

gTk dk = −∥gk∥2 + β1
kg

T
k dk−1

= −∥gk∥2 + λ̂
gTk (yk−1 − sk−1)

dTk−1yk−1
gTk dk−1 + (λ̂− 1)

gTk yk−1

gTk−1dk−1
gTk dk−1

≤ −∥gk∥2 +
gTk yk−1

dTk−1yk−1
gTk dk−1 −

gTk yk−1

gTk−1dk−1
gTk dk−1

≤ −∥gk∥2.

Theorem 2. Let the hypotheses(H1)-(H3) hold, and let dk be produced by the DL method.
Then,

lim
k−→∞

inf ∥gk∥ = 0.

Proof. This result follows directly from Theorem 1 in [2].

Theorem 3. Assume that dk be generated by Algorithm 2. Then

gTk dk ≤ 0.

Proof. From (15), we get

gTk dk = −∥gk∥2 + β2
kg

T
k dk−1

= −∥gk∥2 + λ̂
gTk (yk−1 − sk−1)

dTk−1yk−1
gTk dk−1 + (1− λ̂)

gTk (gk − gk−1 − dk−1)

∥dk−1∥2
gTk dk−1

≤
gTk (yk−1 − αk−1dk−1)

dTk−1yk−1
gTk dk−1 −

gTk (yk−1 − dk−1)

∥dk−1∥2
gTk dk−1

≤ 0.

Theorem 4. Let the hypotheses (H1)-(H3) hold. For the LS conjugate gradient method, either

lim
k−→∞

∥gk∥ = 0,

or
∞∑
k=0

(gTk dk)
2

∥dk∥2
< ∞.

Proof. This result follows from Theorem 3.1 in [11].
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Theorem 5. Let 0 < c1 <
1

4
. Then the generated direction by the RMIL+ method is a descent

direction.

Proof. From equation (16), we obtain

gTk dk = −∥gk∥2 + β3
kg

T
k dk−1

= −∥gk∥2 − λ̂
gTk yk−1

gTk−1dk−1
gTk dk−1 + (1− λ̂)

gTk (yk−1 − dk−1)

∥dk−1∥2
gTk dk−1

≤ −∥gk∥2 − λ̂
gTk yk−1

gTk−1dk−1
gTk dk−1 −

gTk (yk−1 − dk−1)

∥dk−1∥2
gTk dk−1

≤ −∥gk∥2.

Theorem 6. Let the hypotheses (H1)-(H3) hold. If the sequences {gk} and {dk} are generated
by the RMIL+ method, then

lim
k−→∞

inf ∥gk∥ = 0.

Proof. This result follows from Theorem 3.1 in [4].

Since the hybrid CGmethods are combined by constant parameter λ̂, based on Theorems 2,
4 and 6, we conclude that the generated iterations sequence by the DL-LS, DL-RMIL+ and the
LS-RMIL+ convergence to the optimal solutions of two-dimensional unconstrained optimiza-
tion problems.

4 Numerical Results

We compare the numerical results of the DL-LS, DL-RMIL+ and LS-RMIL+ methods for solv-
ing two-dimensional unconstrained optimization problems. These results are contrasted with
the DL, LS and RMIL+ algorithms as applicable.

The stopping criteria is either ∥gk∥ ≤ ε or reaching a maximum iteration count kmax =

500. For all methods, we use the following parameters: c1 = 0.15, c2 = 0.85, ε = 10−6,
λmin = 0.001 and λmax = 100. All codes are implemented in Matlab 2017a on a Laptop with
an Intel Core i3 processor, 2.3 GHz, and 4 GB of RAM. To enable a fair comparison across all
algorithms, we evaluate ten standard two-dimensional test problems, which are introduced in
the next subsection.
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4.1 Test Functions

We reference test problems from the Test Functions and Datasets page of the Virtual Library of
Simulation Experiments: http://www.sfu.ca/~ssurjano/index.html.

• Beale test function

f(x, y) = (1.5− x(1− y))2 + (2.25− x(1− y2))2 + (2.625− x(1− y3))2,

x∗ = (3, 0.5)T , x0 = (1, 1)T .

• Booth test function

f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2,

x∗ = (1, 3)T , x0 = (0, 1)T .

• Rastrigin test function

f(x, y) = x2 + y2 − 10 cos(2πx)− 10 cos(2πy) + 20,

x∗ = (0, 0)T , x0 = (1, 1)T .

• Three Hump Camel test function

f(x, y) = 2x2 − 1.05x4 +
x6

6
+ xy + y2,

x∗ = (0, 0)T , x0 = (1, 1)T .

• Matyas test function

f(x, y) = 0.26(x2 + y2)− 0.48xy,

x∗ = (0, 0)T , x0 = (5, 1)T .

• Trid test function

f(x, y) = (x− 1)2 + (y − 1)2 − xy,

x∗ = (2, 2)T , x0 = (3, 3)T .

• Six Hump Camel test function

f(x, y) =
(
4− 2.1x2 +

x4

3

)
x2 + xy + (−4 + 4y2)y2,

x∗ = (0.0898,−0.7126)T , x0 = (0.01, 0.01)T .

http://www.sfu.ca/~ssurjano/index.html
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• Rosenbrock test function

f(x, y) = 100(y − x2)2 + (x− 1)2,

x∗ = (1, 1)T , x0 = (1.3, 1.3)T .

• Perm test function (β = 0)

f(x, y) = (x+ 2y − 2)2 + (x2 + 2y2 − 1.5)2,

x∗ = (1, 0.5)T , x0 = (0.95, 0.55)T .

• Rotated Hyper-Ellipsoid test function

f(x, y) = 2x2 + y2,

x∗ = (0, 0)T , x0 = (1, 1)T .

The comparative results on these test functions derived from various algorithms are pre-
sented in Tables 1-3. The total number of iterations are presented in Table 1, which shows
LS-RMIL+ and DL-RMIL+ methods can solve the unconstrained two-dimensional optimiza-
tion problems with less number of iterations, respectively. The comparison of the total number
of function evaluations are also shown in Table 2. In this case, DL-RMIL+ and LS-RMIL+
methods are more efficient. Finally, the CPU times of six algorithms are presented in Table 3,
which shows DL, LS-RMIL+ and DL-RMIL+ solve the two-dimensional unconstrained opti-
mization problems faster than other methods, respectively.

Table 1: The number of iterations.

Test Function DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+

Beal 285 643 385 144 174 85

Booth 214 149 69 191 110 96

Rastrigin 1 1 1 1 1 1

Three Hump Camel 21 500 65 177 77 112

Natyas 20 634 312 11 8 5

Trid 21 35 11 21 21 35

Six Hump Camel 9 500 27 4 23 4

Rosenbrock 20 500 500 500 13 26

Perm 4 500 175 500 234 24

Rotated Hyper-Ellipsoid 171 500 62 500 71 171

Avarage 76.6 396.2 160.7 204.9 73.2 55.9
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Table 2: The number of function evaluations.

Test Function DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+

Beal 287 645 387 146 176 124

Booth 216 151 71 193 112 98

Rastrigin 2 2 2 2 2 2

Three Hump Camel 22 504 67 179 79 114

Natyas 21 635 313 13 10 45

Trid 22 36 12 22 22 36

Six Hump Camel 51 543 29 47 25 46

Rosenbrock 62 504 504 504 26 65

Perm 4 540 177 540 236 62

Rotated Hyper-Ellipsoid 173 541 64 541 73 173

Avarage 90 410.1 194.8 218.7 76.1 76.5

Table 3: The CPU times for all algorithms.

Test Function DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+

Beal 23.8015 65.8402 31.2997 21.1464 24.9714 14.7864

Booth 17.8149 11.9217 5.7808 27.0438 15.9553 13.8227

Rastrigin 0.3531 0.3634 0.3419 0.4322 0.4340 0.4317

Three Hump Camel 2.0672 82.2808 6.8952 30.5951 10.9724 16.1379

Natyas 2.0114 51.3565 26.8285 2.0884 1.5943 2.4374

Trid 2.1437 3.1208 1.3013 3.3345 3.3244 5.2041

Six Hump Camel 2.4208 57.7903 2.8750 2.3456 3.6615 2.2703

Rosenbrock 3.8371 42.0699 45.6841 43.5780 3.1579 6.0971

Perm 2.1029 82.4213 13.9331 52.1107 33.9148 4.9238

Rotated Hyper-Ellipsoid 14.9261 52.2383 5.3636 89.3391 11.0134 12.0363

Avarage 7.1515 44.9403 14.0303 27.2014 10.8999 7.8148

Finally, to compare the efficiency of conjugate gradient methods, we use the relative ef-
ficiency (Ri) which is the ratio of the total iterations for the DL, LS, RMIL+, DL-LS and
DL-RMIL+ methods with respect to the number of iterations of the LS-RMIL+ method as fol-
lows

Ri =
Niter(i)

Niter(LS −RMIL+)
. (17)

The relative efficiency of hybrid CG methods are given in Table 4.
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Table 4: Relative efficiency for hybrid CG methods.

DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+
1.37 7.09 2.87 3.67 1.31 1

5 Conclusion

Conjugate gradient CG methods are among the most effective methods for solving uncon-
strained optimization problems; however, each method exhibits distinct advantages and lim-
itations. Hybrid methods are commonly employed to enhance iterative CG-based algorithms
for unconstrained optimization problems. In this study, we combined three CG methods in
pairwise configurations to form hybrid CG methods. The results demonstrate that these hybrid
solvers outperform their individual constituents in terms of iterations, function evaluations, and
CPU time. By integrating complementary strengths, the hybrids mitigate the weaknesses of the
constituent methods. Numerical experiments reported herein indicate that the proposed hybrid
CG methods are well-suited for unconstrained two-dimensional optimization problems.
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