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2 Some Hybrid Conjugate Gradient Methods ...

1 Introduction

Consider the nonlinear unconstrained optimization problem
min f(z), x e R", (1)

where f : R™ — R s a continuously differentiable function and bounded below. So far, many,
numerical methods have been proposed to solve the optimization problem (1). Some of these
methods are line search methods, trust-region methods, Newton’s method and its modifications,
quasi-Newton methods and conjugate gradient method [7, 12, 15].

Conjugate gradient (CG) methods to solve (1) starting from xy € R™,an initial guess, and

generate
Th+1 ::xk‘+'akdka k ::0a1727"'7 (2)
in which o, > 0 is a step-size obtained by inexact line search conditions and the search direction|
dy, given by
—9k; k =0,
d, = 3)

— gk ¥ Pkdr—1, k>0,

where [y, is called CG-parameter and g = V f(xp): The step-size oy is usually obtained by
weak Wolfe line search (WWLS) conditions [12]:

flop+agdy) < f(zr) + crangf dr, 4)
g(xy, + ardy)Tdy, > esgi dy, (5)

or the strong Wolfe line search (SWLS) conditions:

F@p+ ardy) < f(zg) + craggr dy, (6)
lglar, + andp)" di| < ca|gf dil, (7)

in which 0 < ¢1 < eo. < 1. Moreover, the search direction d;, satisfies the descent condition
g di <0,
or the sufficient descent condition
g dy, < —cllgkll, c>0,

in which || - || is the Euclidean norm. The well-known CG parameters are Hestenes-Stiefel (HS)
[9], Fletcher-Reeves (FR) [6], Polak-Ribiére-Polak (PRP) [13, 14], conjugate descent (CD) [5],
Dai-Yuan (DY) [3] and Hager-Zhang (HZ) [7]. These parameters are listed as follows:

2

BFR _ H9k||2 501) _ 9% | ﬁHS _ ggykﬂ
k - k — I‘IT f‘] ’ k - f]T U 1,

Sp=1%k—1 k—19F=1
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2T
BERP — 91 Yk—1 BPY = lgx|® pHZ — gHS _ 2”?/k—1|| dy,— 19k
lgk—1]? dl yk—1 (di_yk—1)?

where yi—1 = gk — gk—1-

The steepest descent direction —g;, has verry small step-size. Therefore, the convergence
of this method is slow. To overcome this drawback, Barzilai and Borwein (BB) [1] obtained
the following step-sizes:

T T
Sk—1Yk—1 Yp—1Yk=1
k1970 and A2 = Jk—19877

A =

) .
Sf_lsk—1 s}f_lyk_l
In fact, )\,1C and )\i are the solution of the least-square problems:

min ||Asg_1 — yk,1||2, AN ER,

and
min [[Aye_1 —sp-1)® | A ER.

Finally, the BB parameter is
ABB — min {A,lg, Ai}.

2 Hybrid Conjugate Gradient Methods

Using the quasi-Newton equation, Dai and Liao obtained the following conjugate condition [2]:
dfyk—1 = —tgi sk—1, (8)
in which ¢ > (. Substituting (3) into (8), then
df yk—1 = =Gk yedr + Bredh_1yk—1 = —tgi sp—1,
or

 gE (yr—1 — tsp—1)
Br = T :
dk_lyk—l

Let ¢ = 1. Hence, Dai-Liao (DL) conjugate gradient parameter ﬁ,? L is as follows:

BDL g/{(yk—l - Sk—l)
k

= : 9)
dg;lyk—l
]55 proposed by Liu and Storey [10] as following:
T
BES = L (10)

al 4

Ip=1%k=1
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If the exact line search is used, the LS method is equivalent to PRP method [8], which is efficient
CG method in practical computation.

Rivaie et al. [17] proposed ﬁ,fM L which the generated directions are sufficient descent.
,Blf/M L is denoted by
é%M[L _ gg(gk - gk—l)' (11)
ldk—1]?
In [16], parameter 6§M L is modified as follows
T
BRMIL+ _ 9x (9k — gr—1 . dr—1) (12)
ldi—1

The most important properties of these conjugate gradient. methods are

e The DL method satisfies in conjugate condition (8)for ¢ = 1 and has strong global
convergence properties.

e The LS method is numerical efficiency and becomes PRP method with a strong numerical

results by exact line search.

e The RMIL+ method has good convergence and the generated directions by it are suffi-
cient descent.

INow, we combine the above conjugate gradient methods and obtain three hybrid conjugate

gradient methods. Some of the most important characteristics of hybrid methods are

1. We combine strong convergence methods with numerically efficient methods. So, the

new method has both convergence and numerical efficiency properties.
2. We use parameter BB.to combine methods that accelerate convergence.

3. Two-dimensional optimization problems have many practical applications, so it is im-

portant to'provide useful methods for solving them.

4. The methods presented in this paper are suitable for two-dimensional optimization prob-
lems, while they may not be suitable for higher dimensions.

We present hybrid algorithms by 51? L B,fs and 55M L+ parameters and introduce three

hybrid methods to solve unconstrained optimization problems in two-dimensions.

Case L. Let 0 < Apjn < Amax. Consider the combination of parameters ﬁkDL and B,fs
which one has strong convergence and the other has good numerical efficiency

AP+ (1= N)BE°
T T
—1 — Sk— 2 —
9k Yr—1 k1>+(>\_1) gkyk17
q f]l 1

k—1Jk—1 JE—=1%k=1

Bi

I
>

(13)
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in which
A = max{ Amin, min{ \ZZ Ao} (14)

Hence, Apin < XA < Apax-

Algorithm 1 Combination of 3% and 3£ based on BB step-size (DL-LS).

(S0) Compute the initial function value fo = f(z¢) and the initial gradient vector go = g(xo)
and set dy = —gp.

(S1) If ||gx|| < € or k > kmax, stop.

(S2) Find oy, satisfying SWLS conditions resulting in zx 3. =@ + gdi, frr1 = f(Trs1)
and gg+1 = g(Tk+1)-

(53) Calculate A, BPE and ﬁ,ffl and obtain the parameter 5, ; by (13) and di41 = —gp41 -+
511+1dk-

(S4) Setk =k + 1and go to (S1).

Case I1. In this case, we consider the combination of parameters 3 kD Land g ,?M L+ where

both have the strong global convergence properties.

XﬁkDL + (1 _ S\)B]fMIL-F

9 (W= — sk-1) 4 (1— 5\)91{(91@ — Gr—1 — dy—1)
di_ Yr=i ldg—1? 7

B

I
>

(15)

in which ) ig obtained by (14).

Case III. In this case, we consider the combination of parameters B,fs and ,B,fM It
The first method has appropriate numerical results and the second method has strong

convergence.

BE = MBS + (1= Npittter

< gl < gF(gr — gp—1 — di_
_ A ikyk 1 +(1_)\)9k(9k 9k L di 1)7
gi_1di—1 | di—1]|

(16)

where ) is computed by (14).
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Algorithm 2 Combination of ,8,? L and B,?M L+ pased on BB step-size (DL-RMIL+).

(S0) Compute the initial function value fo = f(z¢) and the initial gradient vector go = g(x¢)
and set dyg = —gp.

(S1) If ||gk|| < € or k > kmax, stop.

(S2) Find oy, satisfying SWLS conditions resulting in zx+1 = zx + agdg, frr1 = f(Trs1)

and gy41 = 9(Tp41)-

(S3) Calculate A, ﬁ,ﬁﬁ and 65%1L+ and obtain the parameter B,%_H by (15) and dp,q1 =
— k1 + By i

(S4) Setk =k + 1 and go to (S1).

Algorithm 3 Combination of B,fs and B,fM IL+ pasedon BB step-size (LS-RMIL+).

(S0) Compute the initial function value fy = f(z() and the initial gradient vector go = g(xo)
and set dy = —gp.

(S1) If ||gx|| < € or k > kmax, StOp.

(S2) Find oy, satisfying SWLS conditions resulting in x;11 = g + axdy, fir1 = f(zTr11)
and g1 = g(Tr41)-

(53) Calculate ), Blffl and 55%“” and obtain the parameter 57, ; by (16) and dj =

—Ok+1 T ﬁ]%Jrldk-

(S4) Setk =k + 1 and goto (S1).

3 Convergence Analysis

'We consider some assumptions to investigate the convergence of Algorithms 1-3.
H1). Forany xo € R", the level set L(zg) = {x € R"|f(z) < f(x)} is bounded.
H2). Forall z € L(xg) there exists a constant A > 0 such that

] < A,

H3). The gradient of f is Lipschitz continuous, i.e., there exists constant L, > 0 such that

lg(x) — gly)ll < Lolle = yll, Vo, y € L(xg)

a
J
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Theorem 1. The generated direction by Algorithm 1 is the sufficient descent direction.

\Proof. Using Algorithm 1, we have

gk de = =l gkl + Brgi di—1
T
9 \Yk—1 — Sk—1 R 9 Yk—1
= gl + A% JoFdy s+ (= 1) ¥t grg
dk—l Yk—1 gk_1dk—1
T T
S _Hng2 + gk yk‘—l T gk yk—l Td 4

9k Ck—1 — Ik
di_ Yk gt dr—1

< —llgxl.
U

Theorem 2. Let the hypotheses(H1)-(H3) hold, and let d; be produced by the DL method.
Then,

lim inf||gg|| = 0.
k—>o0
\Proof. This result follows directly from Theorem'l in [2]. O

Theorem 3. Assume that d; be generated by Algorithm 2. Then

g dy; < 0.
\Proof. From (15), we get
gk die = —lgll* + Bigi de—
T
< 9% (Yk—1=Sk—1 9% (9k — gk—1 — d—1
= el + A% s+ (1 3% —dio) 1y
di 1Ykt k-1
T T
9 (Yk—1— ap—1dp—1) 7 9 Yk—1 — di—1) 7
< gk di—1 — Gk dr—1
df yk—1 K l|d—1]|?
<0.
O

Theorem 4. Let the hypotheses (H1)-(H3) hold. For the LS conjugate gradient method, either
lim |[gx[| = 0,
k—o00

or

Z HdkH2

k=0

roof._This result follows from Theorem 3.1 in [11] [
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1
Theorem 5. Let0 < ¢; < T Then the generated direction by the RMIL+ method is a descent

direction.

\Proof. From equation (16), we obtain

gi di = — gkl + Bk di—1
T T
< 9 Yk—1 T Ik We—1 —di—1) p
= —lgrll* = AE=——gld_1 + (1 = }) Ir dx—1
g]zj_ldk—l ”dklez
T T
S 9L Yk—1 T [ (yk—l — dk—l) T
< —|lgrll® = A =——gl dp—1 — 9 din
gF d 7" i1/ ¥

O

Theorem 6. Let the hypotheses (H1)-(H3) hold. If the sequences { gy } and {dj} are generated
by the RMIL+ method, then

lim inf|ggl||.= 0.
k—>o0

\Proof. This result follows from/Theorem 3.1 in [4]. 0

Since the hybrid CG methods are combined by constant parameter )\, based on Theorems 2,
4 and 6, we conclude that the generated iterations sequence by the DL-LS, DL-RMIL+ and the
LS-RMIL+ convergence to the optimal solutions of two-dimensional unconstrained optimiza-

tion problems.

4 Numerical Results

'We compare the numerical results of the DL-LS, DL-RMIL+ and LS-RMIL+ methods for solv-
ing two-dimensional unconstrained optimization problems. These results are contrasted with
the DL, LS and RMIL+ algorithms as applicable.

The stopping criteria is either ||gx|| < € or reaching a maximum iteration count kmax =
500. For all methods, we use the following parameters: ¢; = 0.15, o = 0.85, ¢ = 1076,
Amin = 0.001 and Apax = 100. All codes are implemented in Matlab 2017a on a Laptop with
an Intel Core i3 processor, 2.3 GHz, and 4 GB of RAM. To enable a fair comparison across all

algorithms, we evaluate ten standard two-dimensional test problems, which are introduced in

the next subsection
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4.1 Test Functions

'We reference test problems from the Test Functions and Datasets page of the Virtual Library of

Simulation Experiments: http://www.sfu.ca/~ssurjano/index.html.

e Beale test function

fzy) = (1.5 —2(1 — )%+ (2.25 — (1 — %)) + (2.625 — z(1 — y*))?,
z* = (3,057, zo=@1,1)T.

Booth test function

fl@y) = (x+2y — 1)+ 2o4g = 5)°,
= (1,3)T, zo=(0,1)T.

Rastrigin test function

f(z,y) = 2% 4+ y* — 10 cos(2mz) — 10 cos(27y) + 20,
z* = (0,005 we = (1,1)%.

Three Hump Camel test function

6
X
f(z,y) = 22° —1.052" + =yt 2,

z* = (0,007, ‘zo=(1,1)T.

Matyas test function

fla,y) = 0.26(z* + y*) — 0.48zy,
¥ = (070)T7 Ty = (57 1)T.

Trid test function

fla,y) = (@ =1)° + (y = 1)* -y,
ot =(2,2)7, zo=(3,3)7T.

Six Hump Camel test function

.'13'4
f(xyy) = (4 — 2.1:[}2 + ?)1}2 +xy + (_4 + 492)y2,

* = (0.0898, —0.7126). 2 = (0.01,0.01)T
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e Rosenbrock test function

fl,y) = 100(y — 2%)* + (= — 1)%,
o= (1,107, zo=(1.3,13)T.

e Perm test function (5 = 0)

flz,y) = (@ +2y —2)° + (2 + 2y%= 1.5)%,
¥ = (1,0.5)7,  zo=(0.95,0.55)":

e Rotated Hyper-Ellipsoid test function

fla,y) =22 + 9,
z* = (0,007, wg = (1, )T,

The comparative results on these test functions derived from various algorithms are pre-
sented in Tables 1-3. The total number of iterations are presented in Table 1, which shows
LS-RMIL+ and DL-RMIL+ methods can solve the unconstrained two-dimensional optimiza-
tion problems with less number of‘iterations, respectively. The comparison of the total number]
of function evaluations are also shown in Table 2. In this case, DL-RMIL+ and LS-RMIL+
methods are more efficient. Finally, the CPU times of six algorithms are presented in Table 3,
which shows DL, LS-RMIL+ and DL-RMIL+ solve the two-dimensional unconstrained opti-

mization problems faster than other methods, respectively.

Table 1: The number of iterations.

Test Function _| oL | LS| RMIL+ | DL-LS | DL-RMIL+ | LS-RMIL+
Beal 285 | 643 385 144 174 85
Booth 214 149 69 191 110 96
Rastrigin 1 1 1 1 1 1
Three Hump Camel 21 500 65 177 7 112
Natyas 20 634 312 11 8 5
Trid 21 35 11 21 21 35
Six Hump Camel 9 500 27 4 23 4
Rosenbrock 20 500 500 500 13 26
Perm 4 500 175 500 234 24
Rotated Hyper-Ellipsoid | 171 | 500 62 500 71 171

Avarage | 76.6 [ 396.2 | 160.7 | 2049 | 732 55.9




Rahpeymaii & Rostami, 11

Table 2: The number of function evaluations.

Test Function | DL | LS | RMIL+ | DL-LS | DL-RMIL+ | LS-RMIL+
Beal 287 | 645 387 146 176 124
Booth 216 | 151 71 193 112 98
Rastrigin 2 2 2 2 2 2
Three Hump Camel 22 504 67 179 79 114
Natyas 21 635 313 13 10 45
Trid 22 36 12 22 22 36
Six Hump Camel 51 543 29 47 25 46
Rosenbrock 62 504 504 504 26 65
Perm 4 540 177 540 236 62
Rotated Hyper-Ellipsoid | 173 | 541 64 541 73 173
Avarage | 90 [4101 | 1948 ['2187 |\ 761 | 765 |

Table 3: The CPU times for all algorithms.

Test Function | pL | LS [RMIL+| DL-LS | DL-RMIL+ | LS-RMIL+ |
Beal 23.8015 |65.8402 | 31.2097 [ 21.1464 | 24.9714 14.7864
Booth 17.8149 | 11.9217 | 5.7808 | 27.0438 | 15.9553 13.8227
Rastrigin 0.3531 | 0.3634 | 0.3419 | 0.4322 |  0.4340 0.4317
Three Hump Camel 2.0672 | 82.2808 | 6.8952 | 30.5951 | 10.9724 16.1379
Natyas 2.0114 | 51.3565 | 26.8285 | 2.0884 1.5943 2.4374
Trid 2.1437 | 3.1208 | 13013 | 3.3345 | 3.3244 5.2041
Six Hump Camel 2.4208-| 57.7903 | 2.8750 | 2.3456 | 3.6615 2.2703
Rosenbrock 3.8371 | 42:0699.| 45.6841 | 43.5780 |  3.1579 6.0971
Perm 21029 | 82.4213 | 13.9331 | 52.1107 | 33.9148 4.9238
Rotated Hyper-Ellipsoid | 14.9261 |.52.2383 | 5.3636 | 89.3391 11.0134 12.0363
Avarage | 7.1515 | 44.9403 | 14.0303 | 27.2014 | 10.8999 7.8148

Finally, to compare the efficiency of conjugate gradient methods, we use the relative ef-
ficiency (R;) which is the ratio of the total iterations for the DL, LS, RMIL+, DL-LS and
DL-RMIL+ methods with respect to the number of iterations of the LS-RMIL+ method as fol-
lows

Niter(i)
(LS — RMIL+)’

R; = ~ (17)

iter

The relative efficiency of hybrid CG methods are given in Table 4
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Table 4: Relative efficiency for hybrid CG methods.

DL | LS | RMIL+ | DL-LS | DL-RMIL+ | LS-RMIL+
1.37 | 7.09 2.87 3.67 1.31 1

5 Conclusion

Conjugate gradient CG methods are among the most effective methods for solving uncon-
strained optimization problems; however, each method exhibits distinct advantages and lim-
itations. Hybrid methods are commonly employed to enhance iterative CG-based algorithms
for unconstrained optimization problems. In this study,; we combined three CG methods in|
pairwise configurations to form hybrid CG methods. The results demonstrate that these hybrid
solvers outperform their individual constituents in terms of iterations, function evaluations, and
CPU time. By integrating complementary strengths, the hybrids mitigate the weaknesses of the
constituent methods. Numerical experiments reported herein indicate that the proposed hybrid
CG methods are well-suited for unconstrained two-dimensional optimization problems.
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