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Abstract. The conjugate gradient (CG) method is one of the simplest
and most widely used approaches for unconstrained optimization, and
our focus is on two-dimensional problems with numerous practical
applications. We devise three hybrid CG methods in which the hybrid
parameter is constructed from the Barzilai-Borwein process, and in
these hybrids, the weaknesses of each constituent method are mitigated
by the strengths of the others. The conjugate gradient parameter is
formed as a linear combination of two well-known CG parameters,
blended by a scalar, enabling our new methods to solve the targeted
problems efficiently. Under mild assumptions, we establish the descent
property of the generated directions and prove the global convergence
of the hybrid schemes. Numerical experiments on ten practical exam-
ples indicate that the proposed hybrid CG methods outperform standard
CG methods for two-dimensional unconstrained optimization.
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1 Introduction

Consider the nonlinear unconstrained optimization problem
min f(x), z e R", (1)

where f : R™ — R is a continuously differentiable function and bounded below. So far, many numer-
ical methods have been proposed to solve the optimization problem (1). Some of these methods are line
search methods, trust-region methods, Newton’s method and its modifications, quasi-Newton methods
and conjugate gradient method [7, 12, 15].

Conjugate gradient (CG) methods to solve (1) starting from zy € R™, an initial guess, and generate

Tht1 = Tk + apdy, k=0,1,2,---, 2)
in which ay; > 0 is a step-size obtained by inexact line search conditions and the search direction dj,
given by

—9k, k= 07
dy = 3)
=gk + Brdi—1, k>0,

where [y, is called CG-parameter and g, = V f(x). The step-size «, is usually obtained by weak Wolfe
line search (WWLS) conditions [12]:

f(xy + ardy) < f(zy) + crongi dg, 4
g(zy, + ardy) dy > cagldy, Q)

or the strong Wolfe line search (SWLS) conditions:

flae + andy) < flar) + crongd dy, (6)
|\g(@n + arde) " di| < c2|gi dil, (7
in which 0 < ¢; < ¢o < 1. Moreover, the search direction dj, satisfies the descent condition
grdp <0,
or the sufficient descent condition
g die < —cllgrll?, c>0,
in which || - || is the Euclidean norm. The well-known CG parameters are Hestenes-Stiefel (HS) [9],

Fletcher-Reeves (FR) [6], Polak-Ribi¢re-Polak (PRP) [13, 14], conjugate descent (CD) [5], Dai-Yuan
(DY) [3] and Hager-Zhang (HZ) [7]. These parameters are listed as follows:

g‘R _ llgsII® kCD _ llgx|? gls _ g,{yk,l
lgr—1l?’ G-’ di_yr—1’
PRP _ i Yr—1 DY _ llgwl® HZ _ gHS _ k111> di_1 9%
* llgr—1l1?’ ’ df_1Ye—1’ ; g (di_1yk-1)?

where yp_1 = gr — gr—1.
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The steepest descent direction —gj, has verry small step-size. Therefore, the convergence of this
method is slow. To overcome this drawback, Barzilai and Borwein (BB) [1] obtained the following

step-sizes:
T T
Sk—1Yk—1 —1Yk—1
Ny = ’;i, and A\ = y;i
Sp_15k—1 Sp—1Yk—1
In fact, A, and \? are the solution of the least-square problems:
min ||Asg_1 — yp_1]% A eR,
and
min ||Ayr_1 — sk_1]|% AeR

Finally, the BB parameter is
ABB — min {A}C, Ai}.

2 Hybrid Conjugate Gradient Methods

Using the quasi-Newton equation, Dai and Liao obtained the following conjugate condition [2].
dfy—1 = —tgf sr—1, ®)
in which ¢ > 0. Substituting (3) into (8), then
diyk—1 = —Gi yk—1 + Brdi_1yk—1 = —tgy sk,

or
gt (Ye—1 — tsk—1)
dg;lykfl

B =
Lett = 1. Hence, Dai-Liao (DL) conjugate gradient parameter 32~ is as follows:

T
9 (k-1 — S1-1)
L ©)
F df,lykf1
LS proposed by Liu and Storey [10] as following:
T
LS 9k Yk—1
== (10)
F gngdkfl
If the exact line search is used, the LS method is equivalent to PRP method [8], which is efficient CG
method in practical computation.

Rivaie et al. [17] proposed 3 ,}fM L which the generated directions are sufficient descent. 3 ,}fM L is
denoted by
T _
RMIL _ 9i. (9r gkfl)‘ (11)
lldr—1?
In [16], parameter 37*M1L is modified as follows
RMIL+ _ 9 (gk — gr—1 — di—1) (12)

; k112

The most important properties of these conjugate gradient methods are
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e The DL method satisfies in conjugate condition (8) for ¢ = 1 and has strong global convergence
properties.

e The LS method is numerical efficiency and becomes PRP method with a strong numerical results
by exact line search.

e The RMIL+ method has good convergence and the generated directions by it are sufficient de-
scent.

By integrating the aforementioned conjugate gradient methods, we construct three hybrid conjugate
gradient algorithms. The principal characteristics of these hybrid methods can be summarized as follows:

1. They combine strongly convergent methods with computationally efficient ones, thereby inherit-
ing both robust convergence properties and numerical efficiency.

2. The BB parameter is employed to merge methods in a manner that enhances the convergence
speed.

3. Two-dimensional optimization problems arise in numerous practical applications; consequently,
the development of effective solution methods for such problems is of significant importance.

4. The methods proposed in this study are specifically designed for two-dimensional optimization

problems and may not be directly applicable to higher-dimensional cases.

We present hybrid algorithms by 3PF, BES and BEM L+ parameters and introduce three hybrid

methods to solve unconstrained optimization problems in two-dimensions.

Case L. Let 0 < Apin < Amax. Consider the combination of parameters 32~ and B which one

has strong convergence and the other has good numerical efficiency

Br = ABCF + (1= NBE°

T T
2 9k (ykfl - Sk—l) N 9k Yk—1
= A =+ (A= 1) (13)
dgqyk—l gz;ldk—l
in which
A = max{ Amin, min{ A5 Ao} ). (14)
Hence, >\min < 5\ < )\max~
Case II. In this case, we consider the combination of parameters 3 ,? L and B ,?M IL+ where both
have the strong global convergence properties.
52 = }ﬂ]?L (- 5\) Ilc%MIL—O—
R T _ R T _ _ d
_ 39k (ykT—1 k1) by (9% — gr—1 : k—1)7 (15)
di_1Yk—1 lldk—1ll

in which )\ is obtained by (14).
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Algorithm 3 Combination of B,? L and B,fs based on BB step-size (DL-LS).

(S0) Compute the initial function value fy = f(z¢) and the initial gradient vector go = g(xo)
and set dy = —gp.

(S1) If ||gx|| < € or k > kmax, stop.

(S2) Find oy, satisfying SWLS conditions resulting in x3+1 = g + axdk, fir1 = f(zr11)

and g4 = 9($k+1)-

(S3) Calculate A, B2 and AL, and obtain the parameter 3}, | by (13) and dj41 = —gpr1+

ﬁliﬂdk’

(S4) Setk =k + 1 and goto (S1).

Algorithm 4 Combination of 6,? L and B,f“M L+ based on BB step-size (DL-RMIL+).

(S0) Compute the initial function value fo = f(z¢) and the initial gradient vector go = g(xo)
and set dg = —gp.

(S1) If ||gx|| < € or k > kmax, stop.

(S2) Find oy, satisfying SWLS conditions resulting in xx+1 = zx + agdi, frr1 = f(Tr41)

and gr1 = 9(Tr41).

(S3) Calculate A, 51?+L1 and 55%1L+ and obtain the parameter 5,% 41 by (15) and dyy1 =

— k1 + Bridy.

(S4) Setk =k + 1and goto (S1).

Case I1I. In this case, we consider the combination of parameters ﬁkL,S and B,?M IL+  The first
method has appropriate numerical results and the second method has strong convergence.

By = ABES + (1 — \)gFMILT

T T
s 9k Yk—1 9t gk — gr—1 — di—1)
/3 L S| , 16
9i_1dk ( ) l|dx—1]|? (e

where A is computed by (14).
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Algorithm 5 Combination of ,8,{35 and ﬂ,f“M IL+ pased on BB step-size (LS-RMIL+).

(50)

(51)

(52)

(53)

(54)

Compute the initial function value fy = f(zo) and the initial gradient vector go = g(xo)

and set dyg = —gp.
If || gk|| < €ork > kmax, Stop.

Find oy satisfying SWLS conditions resulting in x;11 = xp + ardk, fr+1 = f(Tg+1)

and gy41 = 9(Tp41)-

Calculate ), ﬁ,f_fl and Blij_‘/ln L+ and obtain the parameter B,?; 41 by (16) and dpyq =
— k1 + B

Setk =k + 1 and go to (S1).

3 Convergence Analysis

We consider some assumptions to investigate the convergence of Algorithms 3-5.

(HI).
(H2).

For any o € R", the level set L(xo) = {x € R"|f(z) < f(x0)} is bounded.

For all € L(xy) there exists a constant A > 0 such that

o] < A.

(H3). The gradient of f is Lipschitz continuous, i.e., there exists constant L, > 0 such that

l9(x) = gl < Lgllz = yll, Yo,y € L(zo).

Theorem 1. The generated direction by Algorithm 3 is the sufficient descent direction.

Proof. Using Algorithm 3, we have

gi di = —|lgxl® + Bigi dx—1
T T
{9k \Yk—1 — Sk—1 ] 95 Yk—1
R
k—1Yk—1 gk_ldk—l
T T
9k Ye—1 T 9k Ye—1 T
< gk l® + gl dk—1 — gl di 1
dzflyk—l ¥ 9]{,1dk—1 .
< —|lgrl®.

Theorem 2. Let the hypotheses(H1)-(H3) hold, and let dj;, be produced by the DL method. Then,

lim inf||gx|| = 0.
k—00
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Proof. This result follows directly from Theorem 1 in [2]. [
Theorem 3. Assume that dj, be generated by Algorithm 4. Then

Proof. From (15), we get

g d. = —lgxll® + Bigi -
c0E (Y1 — Sp_ « G (g — Gre—1 — di—
= —|lgel® + ATETRTL Bl <ykT - l)ggdkA +(1- A% (9 — g1 2 L l)ggqu
dj—1Yr—1 lldk—1l]
T T
9k Wk—1 —ag_1dr_1) 1 9 (k-1 —dr_1) 7
< Ik di—1 — I di—
T RO ldea? 7T
<0.
O
Theorem 4. Let the hypotheses (H1)-(H3) hold. For the LS conjugate gradient method, either
lim ||gk|| =0,
k—>o00
or
e Td 2
DR LB
2 i
Proof. This result follows from Theorem 3.1 in [11]. O

1
Theorem 5. Let0 < ¢ < 1 Then the generated direction by the RMIL+ method is a descent direction.

Proof. From equation (16), we obtain

i di = =l gxll® + Bigi dx—
T T
2 3 9kYk—1 T Ik W1 —di—1)
=—|lgull* —AF——gr di—1 + (1 = ) =01 dr—1
” ” gg_ldk—l k ( ) ||dk71||2 k
T T
X 9 Yk—1 T 9k (yk—l - dk—l) T
< —llgel® = AF=——gl dpy — P gl dg
g1 d—1 | dy—1]?
< —lgr*.

O

Theorem 6. Let the hypotheses (H1)-(H3) hold. If the sequences {gx} and {d}} are generated by the
RMIL+ method, then

lim inf||gx|| = 0.
k— 00
Proof. This result follows from Theorem 3.1 in [4]. [

Since the hybrid CG methods are combined by constant parameter ), based on Theorems 2, 4 and
6, we conclude that the generated iterations sequence by the DL-LS, DL-RMIL+ and the LS-RMIL+
convergence to the optimal solutions of two-dimensional unconstrained optimization problems.
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4 Numerical Results

We compare the numerical results of the DL-LS, DL-RMIL+ and LS-RMIL+ methods for solving two-
dimensional unconstrained optimization problems. These results are contrasted with the DL, LS and
RMIL+ algorithms as applicable.

The stopping criteria is either ||gx|| < € or reaching a maximum iteration count k., = 500. For
all methods, we use the following parameters: ¢; = 0.15, c; = 0.85, ¢ = 1076, Amin = 0.001 and
Amax = 100. All codes are implemented in Matlab 2017a on a Laptop with an Intel Core i3 processor,
2.3 GHz, and 4 GB of RAM. To enable a fair comparison across all algorithms, we evaluate ten standard
two-dimensional test problems, which are introduced in the next subsection.

4.1 Test Functions

We reference test problems from the Test Functions and Datasets page of the Virtual Library of Simula-
tion Experiments: http://www.sfu.ca/~ssurjano/index.html.

e Beale test function

flz,y) = (1.5 —2(1 —y))% + (2.25 — 2(1 — )% + (2.625 — (1 — y*))?,
z* = (3,0.5)T, zo=(1,1)T.

Booth test function

flzy)=(x+2y -7+ 2z +y—5)7
z* = (153)T7 To = (07 1)T

Rastrigin test function

f(z,y) = 2% + y* — 10cos(2mz) — 10 cos(2my) + 20,
" =(0,0", zo=(1,1)".

Three Hump Camel test function

6
f(z,y) = 22% — 1.052* + % a4
2 =(0,0)7, z= (1,17

Matyas test function

f(z,y) = 0.26(z® + y*) — 0.48zy,
¥ = (0,007, zo=(51)7.

Trid test function
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Six Hump Camel test function

.7/'4
flx,y) = (4 —2.12% + ?)12 +xy + (_4 +4y2)y2,

z* = (0.0898, —0.7126)", 29 = (0.01,0.01)T.

Rosenbrock test function

flz,y) =100(y —2*)* + (z — 1)?,
o = (1,17, x=(1.3,1.3)T.

Perm test function (5 = 0)

f(z,y) = (x +2y —2)* + (2% + 2¢y° — 1.5)%,
¥ = (1,0.5)T, x5 =(0.95,0.55)T.

Rotated Hyper-Ellipsoid test function

flz,y) = 22% + ¢,
a* = (0,007, zo=(1,1)7.

The comparative results on these test functions derived from various algorithms are presented in
Tables 1-3. The total number of iterations are presented in Table 1, which shows LS-RMIL+ and DL-
RMIL+ methods can solve the unconstrained two-dimensional optimization problems with less number
of iterations, respectively. The comparison of the total number of function evaluations are also shown
in Table 2. In this case, DL-RMIL+ and LS-RMIL+ methods are more efficient. Finally, the CPU
times of six algorithms are presented in Table 3, which shows DL, LS-RMIL+ and DL-RMIL+ solve the
two-dimensional unconstrained optimization problems faster than other methods, respectively.

Table 1: The number of iterations.

Test Function DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+
Beal 285 643 385 144 174 85
Booth 214 149 69 191 110 96
Rastrigin 1 | 1 1 1 1
Three Hump Camel 21 500 65 177 77 112
Natyas 20 634 312 11 8 5
Trid 21 35 11 21 21 35
Six Hump Camel 9 500 27 4 23 4
Rosenbrock 20 500 500 500 13 26
Perm 4 500 175 500 234 24
Rotated Hyper-Ellipsoid 171 500 62 500 71 171

Average 76.6 396.2 160.7 204.9 73.2 55.9
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Table 2: The number of function evaluations.

Test Function DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+
Beal 287 645 387 146 176 124
Booth 216 151 71 193 112 98
Rastrigin 2 2 2 2 2 2
Three Hump Camel 22 504 67 179 79 114
Natyas 21 635 313 13 10 45
Trid 22 36 12 22 22 36
Six Hump Camel 51 543 29 47 25 46
Rosenbrock 62 504 504 504 26 65
Perm 4 540 177 540 236 62
Rotated Hyper-Ellipsoid 173 541 64 541 73 173
Average 90.0 410.1 194.8 218.7 76.1 76.5

Table 3: The CPU times for all algorithms.

Test Function DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+
Beal 23.8015 65.8402 31.2997 21.1464 249714 14.7864
Booth 17.8149 11.9217 5.7808  27.0438 15.9553 13.8227
Rastrigin 0.3531 0.3634  0.3419  0.4322 0.4340 0.4317
Three Hump Camel 2.0672  82.2808  6.8952  30.5951 10.9724 16.1379
Natyas 2.0114 51.3565 26.8285 2.0884 1.5943 24374
Trid 2.1437  3.1208 1.3013  3.3345 3.3244 5.2041
Six Hump Camel 24208 57.7903 2.8750  2.3456 3.6615 2.2703
Rosenbrock 3.8371  42.0699 45.6841 43.5780 3.1579 6.0971
Perm 2.1029  82.4213 13.9331 52.1107 33.9148 4.9238
Rotated Hyper-Ellipsoid  14.9261 52.2383 53636  89.3391 11.0134 12.0363
Average 7.1515 449403 14.0303 27.2014 10.8999 7.8148

Finally, to compare the efficiency of conjugate gradient methods, we use the relative efficiency (R;)
which is the ratio of the total iterations for the DL, LS, RMIL+, DL-LS and DL-RMIL+ methods with

respect to the number of iterations of the LS-RMIL+ method as follows

R, =

Niter(i)

1

Niter(LS — RMIL+)

The relative efficiency of hybrid CG methods are given in Table 4.

(17)
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Table 4: Relative efficiency for hybrid CG methods.

DL LS RMIL+ DL-LS DL-RMIL+ LS-RMIL+

1.37  7.09 2.87 3.67 1.31 1.00

5 Conclusion

Conjugate gradient CG methods are among the most effective methods for solving unconstrained opti-
mization problems; however, each method exhibits distinct advantages and limitations. Hybrid methods
are commonly employed to enhance iterative CG-based algorithms for unconstrained optimization prob-
lems. In this study, we combined three CG methods in pairwise configurations to form hybrid CG meth-
ods. The results demonstrate that these hybrid solvers outperform their individual constituents in terms
of iterations, function evaluations, and CPU time. By integrating complementary strengths, the hybrids
mitigate the weaknesses of the constituent methods. Numerical experiments reported herein indicate
that the proposed hybrid CG methods are well-suited for unconstrained two-dimensional optimization
problems.
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