In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Mathematics‎, ‎Sree Saraswathi Thyagaraja College‎, Pollachi‎, ‎Tamilnadu‎, ‎India

2 Department of Mathematics‎, ‎Sri Ramakrishna Mission Vidyalaya College of Arts and Science‎, ‎Coimbatore‎, ‎Tamilnadu‎, ‎India

3 Department of Mathematics and Computer Sciences‎, ‎Faculty of Science, Necmettin Erbakan University‎, ‎42090 Konya‎, ‎Turkiye

4 Department of Applied Mathematics and Informatics‎, ‎Kyrgyz-Turkish Manas University‎, ‎Bishkek 720038‎, ‎Kyrgyzstan

5 Department of Mathematics‎, ‎School of Basic Sciences‎, ‎CSJM University‎, ‎Kanpur‎, ‎India

10.30473/coam.2025.75850.1343

Abstract

In this study‎, ‎we fabricate and investigate a three-species intraguild predation model with a ratio-dependent functional response‎. ‎We also incorporate harvesting efforts into both intraguild prey and intraguild predators‎. ‎Then‎, ‎we analyze the dynamical behavior of the proposed model by taking the harvesting rate as the bifurcation parameter‎. ‎We precisely outline the prerequisites for the proposed model's existence‎, ‎stability‎, ‎and bifurcation near the equilibrium points‎. ‎It contributes to a better understanding of the impacts of harvesting on the survival or extinction of one or more species in the proposed model‎. ‎Furthermore‎, ‎we derive the suggested model's bionomic equilibrium and optimum harvesting policy by using the \textit{Pontryagin's maximum principle}‎. ‎Finally‎, ‎we provide some numerical simulations to validate the analytical results‎. ‎In addition‎, ‎we give some graphical representations to validate our results.

Highlights

  • Introduces a three-species intraguild predation model with a ratio-dependent functional response and independent harvesting on intraguild prey and predators.
  • Derived conditions for existence and local stability of equilibria; harvesting rates act as bifurcation parameters, yielding Hopf and transcritical bifurcations.
  • Harvesting intensity governs the balance between coexistence and extinction; moderate harvesting promotes stability.
  • Derived bioeconomic equilibrium and established conditions for a positive, sustainable state.
  • Obtain explicit optimal harvesting efforts via Pontryagin’s Maximum Principle, ensuring sustainability and maximal net profit within control bounds.

Keywords

Main Subjects

 [1] Abdullah, S.N., Safuan, H.M., Nor, M.E., Jamaian, S.S., Aman, F., Shab, N.F.M. (2018). “Harvesting effects on population model of competitive interaction with shared biotic resource”. 25th National Symposium on Mathematical Sciences (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence, Malaysia, 1974(1), doi: https://doi.org/10.1063/1.5041609.
[2] Abou-nouh, H., El Khomssi, M. (2025). “Towards a viable control strategy for a model describing the dynamics of corruption”. Mathematical Modelling and Numerical Simulation with Applications, 5(1), 1-17, doi: https://doi.org/10.53391/mmnsa.1400075.
[3] Akhavan Ghassabzade, F., Bagherpoorfard, M. (2024). “Mathematical modeling and optimal control of carbon dioxide emissions”. Control and Optimization in Applied Mathematics, 9(1), 195-202, doi: https://doi.org/10.30473/coam.2023.67777.1233.
[4] Arditi, R., Ginzburg, L.R. (1989). “Coupling in predator-prey dynamics: Ratio-dependence”. Journal of theoretical biology, 139(3), 311–326, doi: https://doi.org/10.1016/S0022-5193(89)80211-5.
[5] Bahri, M. (2014). “Stability analysis and optimal harvesting policy of prey-predator model with stage structure for predator”. Applied Mathematical Sciences, 8(159), 7923–7934, doi: http://dx.doi.org/10.12988/ams.2014.410792.
[6] Beddington, J.R. (1975). “Mutual interference between parasites or predators and its effect on searching efficiency”. The Journal of Animal Ecology, 44(1), 331–340, doi: https://doi.org/10.2307/3866.
[7] Boulaaras, S., Yavuz, M., Alrashedi, Y., Bahramand, S., Jan, R. (2025). “Modeling the co-dynamics of vector-borne infections with the application of optimal control theory”. Discrete and Continuous Dynamical Systems-S, 18(5), 1331-1352, doi: https://doi.org/10.3934/dcdss.2024109.
[8] Chakraborty, K., Chakraborty, M., Kar, T.K. (2011). “Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay”. Nonlinear Analysis: Hybrid Systems, 5(4), 613–625, doi: https://doi.org/10.1016/j.nahs.2011.05.004.
[9] Chakraborty, K., Chakraborty, M., Kar, T.K. (2011). “Optimal control of harvest and bifurcation of a prey–predator model with stage structure”. Applied Mathematics and Computation, 217(21), 8778–8792, doi: https://doi.org/10.1016/j.amc.2011.03.139.
[10] Clark, C.W. (1974). “Mathematical bioeconomics”. In: van den Driessche, P. (eds) Mathematical Problems in Biology. Lecture Notes in Biomathematics, vol 2. Springer, Berlin, Heidelberg, doi: https://doi.org/10.1007/978-3-642-45455-4_3.
[11] Collera J.A., Balilo, A.T. (2018). “Dynamics of a delayed intraguild predation model with harvesting”. Symposium on Mathematics (SYMOMATH), Indonesia, 1937(1), 020006, doi: https://doi.org/10.1063/1.5026078.
[12] Crowley, P.H., Martin, E.K. (1989). “Functional responses and interference within and between year classes of a dragonfly population”. Journal of the North American Benthological Society, 8(3), 211–221, doi: https://doi.org/10.2307/1467324.
[13] Danane, J., Yavuz, M., Yıldız, M. (2023). “Stochastic modeling of three-species prey–predator model driven by Lévy Jump with mixed Holling-II and Beddington–DeAngelis functional responses”. Fractal and Fractional, 7(10), 751, doi: https://doi.org/10.3390/fractalfract7100751.
[14] Debnath, S., Majumdar, P., Sarkar, S., Ghosh, U. (2022). “Global dynamics of a prey–predator model with Holling type III functional response in the presence of harvesting”. Journal of Biological Systems, 30(01), 225–260, doi: https://doi.org/10.1142/S0218339022500073.
[15] Ebrahimipour, M., Mirhosseini-Alizamini, S.M. (2024). “Optimal adaptive sliding mode control for a class of nonlinear affine systems”. Control and Optimization in Applied Mathematics, 9(2), 123-138, doi: https://doi.org/10.30473/coam.2023.67868.1236.
[16] Eskandari, Z., Naik, P.A., Yavuz, M. (2024). “Dynamical behaviors of a discrete-time prey-predator model with harvesting effect on the predator”. Journal of Applied Analysis and Computation, 14(1), 283-297, doi: https://doi.org/10.11948/20230212.
[17] Fatima, B., Yavuz, M., Ur Rahman, M.U., Al-Duais, F.S. (2023). “Modeling the epidemic trend of Middle Eastern respiratory syndrome coronavirus with optimal control”. Mathematical Biosciences and Engineering, 20(7), 11847-11874, doi: https://doi.org/10.3934/mbe.2023527.
[18] Fatima, B., Yavuz, M., Ur Rahman, M.U., Althobaiti, A., Althobaiti, S. (2023). “Predictive modeling and control strategies for the transmission of Middle East respiratory syndrome coronavirus”. Mathematical and Computational Applications, 28(5), 98, doi: https://doi.org/10.3390/mca28050098.
[19] Ganguli, C., Kar, T., Mondal, P. (2017).“ Optimal harvesting of a prey–predator model with variable carrying capacity”. International Journal of Biomathematics, 10(5), 1750069, doi: https://doi.org/10.1142/S1793524517500693.
[20] Ghosh, B., Pal, D., Legović, T., Kar, T.K. (2018). “Harvesting induced stability and instability in a tri-trophic food chain”. Mathematical Biosciences, 304, 89-99, doi: https://doi.org/10.1016/j.mbs.2018.08.003.
[21] Gupta, R., Banerjee, M., Chandra, P. (2012). “Bifurcation analysis and control of Leslie–Gower predator–prey model with Michaelis–Menten type prey-harvesting”. Differential Equations and Dynamical Systems, 20(3), 339–366, doi: https://doi.org/10.1007/s12591-012-0142-6.
[22] Hassell, M., Varley, G. (1969). “New inductive population model for insect parasites and its bearing on biological control”.Nature, 223(5211), 1133–1137, doi:https://doi.org/10.1038/2231133a0.
[23] Holling, C.S. (1959). “The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly”. The Canadian Entomologist, 91(5), 293–320, doi: https://doi.org/10.4039/Ent91293-5.
[24] Jana, S., Guria, S., Ghorai, A., Kar, T.K. (2021). “Complex dynamics of a prey-predator system incorporating functional response dependent prey refuge with harvesting”. Journal of Applied Nonlinear Dynamics, 10(3), 493–512, doi: https://doi.org/10.1155/2025/354998343.
[25] Joshi, H., Yavuz, M. (2026). “A novel fractional-order model and analysis of cancer-immune system interaction in an avascular environment with an efficient control mechanism”. Journal of Computational and Applied Mathematics, 473, 116888, doi: https://doi.org/10.1016/j.cam.2025.116888.
[26] Kar, T., Chattopadhyay, S.K. (2010). “A dynamic reaction model of a prey-predator system with stage-structure for predator”. Modern Applied Science, 4(5), 183, doi: https://doi.org/10.5539/mas.v4n5p183.
[27] Kuang Y., Beretta, E. (1998). “Global qualitative analysis of a ratio-dependent predator–prey system”. Journal of Mathematical Biology, 36, 389–406. doi: https://doi.org/10.1007/s002850050105.
[28] Lotka, A.J. (1925). “Elements of physical biology”. Nature, 116, 461, doi:https://doi.org/10.1038/116461b0.
[29] Lv, Y., Zhang, Z., Yuan, R., Pei, Y. (2014). “Effect of harvesting and prey refuge in a prey–predator system”. Journal of Biological Systems, 22(01), 133–150, doi: https://doi.org/10.1142/S0218339014500089.
[30] Magudeeswaran, S., Vinoth, S., Sathiyanathan, K., Sivabalan, M. (2022). “Impact of fear on delayed three species food-web model with Holling type-II functional response”. International Journal of Biomathematics, 15(4), doi: https://doi.org/10.1142/S1793524522500140.
[31] Murray, J.D. (2002). “Mathematical biology: I. An introduction (3rd ed.)”. Springer New York, NY, doi: https://doi.org/10.1007/b98868.
[32] Mustapha, U.T., Maigoro, Y.A., Yusuf, A., Qureshi, S. (2024). “Mathematical modeling for the transmission dynamics of cholera with an optimal control strategy”. Bulletin of Biomathematics, 2(1), 1-20, doi: https://doi.org/10.59292/bulletinbiomath.2024001.
[33] Nabil, H., Hamaizia, T. (2024). “A three-dimensional discrete fractional-order HIV-1 model related to cancer cells, dynamical analysis and chaos control”. Mathematical Modelling and Numerical Simulation with Applications, 4(3), 256-279, doi: https://doi.org/10.53391/mmnsa.1484994.
[34] Naik, P.A., Eskandari, Z., Shahkari, H.E., Owolabi, K.M. (2023). “Bifurcation analysis of a discrete-time prey-predator model”. Bulletin of Biomathematics, 1(2), 111-123, doi: https://doi.org/10.59292/bulletinbiomath.2023006.
[35] Naik, P.A., Eskandari, Z., Yavuz, M., Huang, Z. (2025). “Bifurcation results and chaos in a two-dimensional predator-prey model incorporating Holling-type response function on the predator”. Discrete and Continuous Dynamical Systems-S, 18(5), 1212-1229, doi: https://doi.org/10.3934/dcdss.2024045.
[36] Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J. (2022). “Complex dynamics of a discrete-time Bazykin–Berezovskaya prey-predator model with a strong Allee effect”. Journal of Computational and Applied Mathematics, 413, 114401, doi: https://doi.org/10.1016/j.cam.2022.114401.
[37] Nkeki, C., Mbarie, I.a. (2025). “On a mathematical model and the efficacy of control measures on the transmission dynamics of chickenpox”. Bulletin of Biomathematics, 3(1), 37-61, doi: https://doi.org/10.59292/bulletinbiomath.1707079.
[38] Panja, P. (2021). “Dynamics of a predator–prey model with Crowley–Martin functional response, refuge on predator and harvesting of super–predator”. Journal of Biological Systems 29(03), 631–646, doi: https://doi.org/10.1142/S0218339021500121.
[39] Perko, L. (2013). “Differential equations and dynamical systems”. Springer New York, NY, doi: https://doi.org/10.1007/978-1-4613-0003-8.
[40] Safuan, H.M., Musa, S.B. (2016). “Food chain model with competition interaction in an environment of a biotic resource”, 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23), Malaysia, 1750, 030015, doi: https://doi.org/10.1063/1.4954551.
[41] Safuan, H.M., Sidhu, H., Jovanoski, Z., Towers, I. (2013). “Impacts of biotic resource enrichment on a predator–prey population”. Bulletin of mathematical biology, 75(10), 1798–1812, doi: https://doi.org/10.1007/s11538-013-9869-7.
[42] Samanta, S., Chattopadhyay, J. (2013). “Effect of kairomone on predator–prey dynamics—A delay model”. International Journal of Biomathematics, 6(5), doi: https://doi.org/10.1142/S1793524513500356.
[43] Sen, M., Banerjee, M., Morozov, A. (2012). “Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect”. Ecological Complexity, 11, 12-27, doi: https://doi.org/10.1016/j.ecocom.2012.01.002.
[44] Singh, M.K., Poonam, P. (2025). “Bifurcation analysis of an additional food-provided predator-prey system with anti-predator behavior”. Mathematical Modelling and Numerical Simulation with Applications, 5(1), 38-64, doi: https://doi.org/10.53391/mmnsa.1496827.
[45] Shang, Z., Qiao, Y., Duan, L., Miao, J. (2021).“ Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting. Mathematics and Computers in Simulation, 190, 976-1002, doi: https://doi.org/10.1016/j.matcom.2021.06.024.
[46] Valinejad, A., Babaei, A., Zarei, Z. (2024). “An adaptive time-stepping algorithm to solve a stochastic Lotka-Volterra competition system with time-variable delays”. Control and Optimization in Applied Mathematics, 9(2), 187-199, doi: https://doi.org/10.30473/coam.2024.67940.1237.
[47] Vinoth, S., Sivasamy, R., Sathiyanathan, K., Grienggrai Rajchakit, G., Hammachukiattikul, P., Vadivel, R., Gunasekaran, N. (2021). “Dynamical analysis of a delayed food chain model with additive Allee effect. Advances in Difference Equations, 54(2021), doi: https://doi.org/10.1186/s13662-021-03216-z.
[48] Vinoth, S., Sivasamy, R., Sathiyanathan, K., Unyong, B., Vadivel, R., Gunasekaran, N. (2022). “A novel discrete-time Leslie–Gower model with the impact of Allee effect in predator population”. Complexity, 2022(1), doi: https://doi.org/10.1155/2022/6931354.
[49] Volterra, V. (1926). “Fluctuations in the abundance of a species considered mathematically”. Nature, 118, 558-560, doi: http://dx.doi.org/10.1038/118558a0.