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1 Introduction

There are many issues that are biologically interesting in our environment that require a substantial un-
derstanding of the critical behavior and intrinsic nature of mathematical modeling. Instead of calculating
the change in a particular population , the main objective of the model’s development is to examine how
complex it is in an ecosystem. Mathematical modeling of predator and prey population dynamics has
emerged as an excellent research topic in the field of mathematical ecology. Model-based studies of
ecological problems were first developed by Lotka and Volterra [28, 49]. In the Lotka-Volterra model
[46], the predator population depends on the number of prey. This situation is not considered when there
is a scarcity of prey and the predator must look for new prey. In the investigation of the interaction of
population dynamics, a functional response plays an essential role in it, and the functional response is
the consumption rate of the predator as given by a function of prey density. There are numerous types
of functional responses effectively acting in population dynamics, they are Holling type I, II, and III
[13, 23, 30, 35, 48], Crowley-Martin [12, 47], Hassell-Varley [22], Beddington [6] and ratio-dependent
[4, 43].

The management of renewable resources, such as fisheries and forests, through science is the focus
of bioeconomic modeling. In recent times, the mathematical modeling of prey-predator models has
grown to be an extremely fascinating field of study formany economists, mathematicians, and ecologists.
Due to its significance, the issue of optimal harvesting in predator-prey systems rules both ecology and
bioeconomics. On the basis of Clark’s [10] demonstration of the concept of optimal equilibrium for the
combined harvest of two distinct species, other authors have created their own models. In the absence
of a harvest, each population adheres to a logistic growth law, whose yield level is proportionate to
both its share level and harvest effort. The population then manages to deliver more benefits and the
population remains stable. Jana et al. [24] discussed the two-dimensional prey-predator system, allowing
for prey refuge and harvesting in the prey species only. There are numerous works related to the effect
of harvesting on predator-prey interactions, the predator-prey model with selective harvesting on prey
was discussed in [8, 14, 16, 21, 26, 29, 34, 36, 38, 44]. The selective harvesting of predators has been
studied in [9, 45], and the selective harvesting effect for both species was investigated in [1, 5]. The
authors in [20] explored the impact of harvesting in the tri-trophic food chain model and, importantly,
discussed the existence of maximum sustainable yield when the top predator is harvested. Safuan et al.
investigated a predator-prey model in an environment enriched by a biotic resource [41].

The food chain model of a two-species population in the context of shared biological resources is
studied by Safuan et al. [40]. They analyzed the model, showing that during competition, death occurs
between competitors. It plays an important role in shaping ecological communities. Intraguild predation
is also known as exploitation competition or interference competition. Aside from the fact that both
species face the harvesting process, they must compete to gain shared resources. In [19], the optimal
harvest of an intraguild predation model with varying carrying capacities has been explored. The authors
came to the conclusion that the enrichment parameter has a significant influence on the dynamics of prey,
predation, and resources. The intraguild model’s low, moderate, and high concentrations give diverse
natures such as co-existence, destruction, and limit cycle. Collera and Balilo [11] discussed the dynamics
of an intraguild predation model with linear harvesting on three species. The authors in [1] studied
two species that compete for shared biological resources in the environment with harvesting effects.
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Further, the authors concluded that the harvesting parameter plays a vital role in the ecosystem because
harvesting activities reduce the population in an ecosystem. To prevent the extinction of the population,
harvesting activities need to be controlled. In this sense the control strategies are essential. For example,
Collera and Balilo [25] discussed the control mechanism for cancer-immune system interaction in an
avascular environment. Mustapha et al. [32] developed a control strategy for the transmission dynamics
of cholera. Different efficient control strategies were considered in the following studies: for corruption
dynamics [2], for vector-borne infections [7], for chickenpox transmission dynamics [37], for carbon
dioxide emissions [3], for Middle East respiratory syndrome transmission [17, 18], for HIV-1 model
related to cancer cells [33], for a class of nonlinear affine systems [15].

Based on the preceding research investigations, we are encouraged to conduct the current study;
we deal with exploitation strategies in an intraguild predation model with the ratio-dependent functional
response, although this differs from earlier works in some basic assumptions.

The main contributions of this study are as follows:

• We develop a new intraguild predation (IGP) model with a ratio-dependent functional response,
which more accurately reflects predator–prey interactions under limited encounter rates and
interference—unlike most previous IGP harvesting models that use prey-dependent responses.

• We incorporate dual harvesting on both prey and predator populations, capturing realistic exploita-
tion strategies. Previous studies typically harvest only one species or treat harvesting implicitly.

• We conduct a complete bioeconomic analysis by deriving the bionomic equilibrium, sustainable
yield, profit function, and optimal harvesting policy under economic constraints—features rarely
integrated into IGP systems.

• We identify complex dynamical behavior, including multiple local equilibria, transcritical and
Hopf bifurcations, stability switches, and possible cycles, and we relate these mathematical out-
comes to ecological mechanisms and management implications.

• We provide ecological and economic interpretations of all mathematical conditions, ensuring that
stability results, threshold parameters, and bifurcation conditions are biologically meaningful for
real-world resource management.

Also, we address the following concerns in this paper:

1. The factors might lead to the extinction of the species,

2. The factors encourage the coexistence of all three species,

3. Do both persist as a stable state or oscillations.

Further, we explore the possibilities of bionomic equilibrium and obtain the optimal principle of
exploitation by using Pontryagin’s maximum principle.

The rest of this paper is organized as follows: In Section 2, we formulate the three-species intraguild
predation model with individual harvesting and ratio-dependent functional response. In Section 3 some
needed preliminaries are discussed. in Section 4, we discuss the existence and local stability of the
feasible equilibrium points. Bifurcation analysis for the constructed model is carried out in Section 5.
The bionomic equilibrium and optimal harvesting of the proposed model are given in Section 6. We
provide the numerical results in Section 7 and finally, we discuss and give the short conclusion of this
paper in Section 8.
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Figure 1: Schematic diagram of intraguild predation model

2 Model formulation

In this section, we propose the intraguild predation model with a ratio-dependent functional response
and individual harvesting effects, which is an extension of the model proposed in Refs. [1, 19, 40, 41].
In [19], the authors studied the predator-prey model with variable carrying capacity and extended it with
independent harvesting techniques as a possible extension of new inventions. The model is of the form:

dX

dt
= c1X

(
1− X

pZ

)
− αXY − E1X,

dY

dt
= c2Y

(
1− Y

qZ

)
+ βXY − E2Y,

dZ

dt
= Z (c− uX − vY ) ,

X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, and Z(0) = Z0 ≥ 0.

(1)

In this paper, we extended the above model by considering that the predator consumes its prey in
the form of a ratio-dependent type functional response. We formulate the model as follows:

dX

dt
= c1X

(
1− X

pZ

)
− αXY

X + aY
− E1X,

dY

dt
= c2Y

(
1− Y

qZ

)
+

βXY

X + aY
− E2Y,

dZ

dt
= Z (c− uX − vY ) ,

X(0) = X0 > 0, Y (0) = Y0 > 0, and Z(0) = Z0 > 0,

(2)

where parameters α, β, a, c, c1, c2, p, q, E1, E2, u and v are positive constants, X and Y be the size of
prey and predator population, respectively, and Z be the size of biotic resources. The parameter a be
the half-saturation constant, E1 and E2 are the independent harvesting effects of prey and predator,
ci, (i = 1, 2) stands growth rates of prey and predator, respectively; pZ and qZ be the environmental
carrying capacities of prey and predator, respectively. It is assumed that 0 < p < 1 and 0 < q < 1 with
p+ q = 1 so that pZ+ qZ (total carrying capacity). In our model, p and q represent the proportions of a
shared limited resource allocated or utilized by two interacting species. The constraint p+q = 1 ensures
that the entire available resource is partitioned between the two species, with no unused or “extra” re-
source. This reflects a biologically realistic scenario where resources are fully exploited in competitive



Magudeeswaran, et al./ COAM, 11 (1), Winter-Spring (2026) 77

environments.The conditions p, q ∈ (0, 1) exclude trivial or ecologically unrealistic cases of exclusive
monopolization(e.g., p = 1, q = 0) or no resource use. Thus, the model focuses on partial resource
sharing, which is central in ecological theories of niche partitioning and coexistence. If p > q, the pop-
ulation of prey gets a larger proportion of biotic resources, resulting in a greater carrying capacity. That
means prey can grow more than predators. Biotic resources with growth rate c are absorbed respectively
by prey and predator for αX and βY , with u and v being constant. Because Z is a biotic resource, rises
or reduces in its size could affect one or both prey and predator populations. The constants α and β stand
for the capturing rate and the conversion rate of the consumed prey to predator, respectively.

To simplify the dynamical analysis and facilitate interpretation of the results, we nondimensionalize
the model system (2) using the following transformation: X → xc1

q , Y → yc1
aq , Z →

zc1
aq , t→

t
c1
, then

the model (2) reduces the following form

dx

dt
= x

(
1− x

z

)
− a1xy

x+ y
− h1x,

dy

dt
= r1y

(
1− γy

z

)
+
a2xy

x+ y
− h2y,

dz

dt
= z (l −mx− ny) ,

(3)

where a1 = αc1
aq , h1 = E1c1

q , r1 = c2
c1
, γ = 1

q , a2 = c1β
aq , h2 = E2c1

aq , l = c
c1
,m = u

p and n = v
pq , with

initial conditions x(0) = x0 > 0, y(0) = y0 > 0, and z(0) = z0 > 0. Because of the mathematical
complexity at the singular point (0, 0, 0), the ratio-dependent models create richer and more complex
dynamics. Next, we follow the idea in [27], that is, since lim(x,y) → (0, 0), the domain of xy

x+y to
{(x, y, z)} : x ≥ 0, y ≥ 0, z ≥ 0may be extended so that (0, 0, 0) becomes a trivial solution to (3). The
aim of this study is to examine and illustrate the complexity of the model described above.

3 Preliminaries

In this section, we will discuss the positive invariance and boundedness of solutions for the model (3).

3.1 Positive invariant

As the model in (3) describes prey-predator dynamics, it is crucial to demonstrate the positivity of the
solutions. In a biological sense, positivity means that the population remains non-negative (survival of
the species). To prove this, we invoke the following theorem from [42].

Theorem 1. All solutions of the model (3) with initial conditions x0 > 0, y0 > 0 and z0 > 0 are
positive.

Proof. From (3), we obtained
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x(t) = x0 exp
[∫ τ

0

((
1− x

z

)
− a1y

x+ y
− h1

)
dt

]
,

y(t) = y0 exp
[∫ τ

0

(
r1

(
1− γy

z

)
+

a2x

x+ y
− h2

)
dt

]
,

z(t) = z0 exp
[∫ τ

0

(l −mx− ny) dt
]
.

(4)

Here, for all t > 0:

{x0 > 0, y0 > 0, z0 > 0} ⇒ {x(t) > 0, y(t) > 0, z(t) > 0} ,

i.e., the positive octant is invariant.

3.2 Boundedness

Theorem 2. All solutions of model (3) which originates in R3
+ are uniformly bounded.

Proof. Let us define the function

Ω = a2x+ a2y + z, (5)

which implies that
dΩ

dt
= a2x−

a2x
2

z
− a2h1x+ a1r1y −

a1γr1y
2

z
−h2a1y + zl −mxz − nyz

= −(a2x+ a1y + z) + (2a2 − h1)x

+(a1r1 + a1 − h2)y + (1 + l)z − a2x
2

z

−a1γr1y
2

z
− (mx+ ny)z,

dΩ

dt
+Ω ≤ (2a2 − h1)2

4a2
+

(a1r1 − h2)2

4a1γr1
+

(l + 1)2

4

= M,

whereM = (2a2−h1)
2

4a2
+

(a1r1−h2)
2

4a1γr1
+ (l+1)2

4 .

Integrating the above equation and applying the differential inequality theorem, we have

0 < Ω < M
(
1− e−t

)
+Ω(x(0), y(0), z(0)),

for t→∞ then we have

0 < Ω < M +Ω(x(0), y(0), z(0)).

Thus, the solution space (x, y, z) is bounded in the region R3
+.

4 Existence and Local Stability of Equilibria

In this section, we discuss the existence and local stability of the biologically feasible equilibrium points
for the model (3) as follows:
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4.1 Existence of Equilibria

For Model (3), we have the following equilibrium points.

1. The trivial equilibrium point C0(0, 0, 0) always exists.

2. The prey free equilibrium point C1

(
0, l

n ,
r1γl

(r1−h2)n

)
.

3. The predator free equilibrium point C2

(
l
m , 0,

l
m(1−h1)

)
.

4. The interior equilibrium point C∗ (x∗, y∗, z∗) , where

y∗ =
l −mx∗

n
,

z∗=
nr1lγx

∗+r1γl
2+r1m

2γx∗2−nr1γmx∗2−2rlmr1x∗

r1n2x∗+r1nl−r1nmx∗+a2n2x∗−h2n2x∗−lnh2+h2nmx∗
,

and x∗ is the positive root of the following cubic equation,

σ1x
∗3 + σ2x

∗2 + σ3x
∗ + σ4 = 0, (6)

where

σ1 =−mn2a2 + n3a2 −m2nh2 + 2mn2h2

− n3h2 +m2nr1 − 2mn2r1 + n3r1 −m2γr1

+ 2m2nγr1 +m3γa1r1 −m2nγa1r1

+m3γh1r1 − 2m2nγh1r1 +mn2γh1r1,

σ2 =lmnh2 − ln2h2 − lmnr1 + ln2r1 + 3lm2γr1

− 4lmnγr1 + ln2γr1 − 3lm2γa1r1

+ 2lmnγa1r1 − 3lm2γh1r1 + 4lmnγh1r1

− ln2γh1r1,

σ3 =ln3a2 + lmn2h2 − ln3h2 − lmn2r1 + ln3r1

− 3l3mγr1 + 3l2mγa1r1 − l2nγa1r1
+ 3l2mγh1r1 − 2l2nγh1r1,

σ4 =− l2n2h2 + l2n2r1 + l3γr1 − l3γa1r1 − l3γh1r1.

It is difficult to say anything about the number of positive roots of Equation (6). We discuss it numer-
ically in the numerical section. Let us assume x∗ is the positive root of Equation (6), thenC∗(x∗, y∗, z∗)

be the interior equilibrium point of the model (3).

Theorem 3. [39] For Model (3), we have

(i). The equilibrium C1 exists only if r1 > h2. Similarly, the equilibrium C2 exists only if 1 > h1.

(ii). The interior equilibrium C∗ exists, such that x∗ is the positive root of Equation (6), and also
satisfies l > mx∗.
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4.2 Local Stability Analysis

First, we consider the conditions for the possibilities of trajectories tending to (0, 0, 0). For this, we
introduce u = x/y and v = y/z and the change of variables (x, y, z) → (u, v, z). Then, the model (3)
can be written as:

du

dt
= u

(
1− uv − a1

u+ 1
− h1 − r1 + r1γv −

a2u

u+ 1
+ h2

)
,

dv

dt
= v

(
r1 − r1γv +

a2u

u+ 1
− h2 − l +muvz + nvz

)
,

dz

dt
= z (l −muvz − nvz) ,

u(0) > 0, v(0) > 0, z(0) > 0,

(7)

The system (7) has the the equilibrium C0(0, 0, 0) and the Jacobian matrix is given by

JC0
=

 1− a1 − h1 − h2 0 0

0 r1 − 2r1γ − h2 − l 0

0 0 l

 . (8)

Since one of the eigenvalue, say λ1 = l > 0, C0 is always unstable. A similar analysis can be carried
out for other singular points. Further, assume x∗ be the positive root of (6) and C∗(x∗, y∗, z∗) be the
interior equilibrium point of the model (3). Now, we calculate the Jacobian matrix of the model (3)
to analyze the local stability behavior of the model (3) at some arbitrary equilibrium point C(x, y, z),
which is given by

J(x, y, z) =

 P11 P12 P13

P21 P22 P23

P31 P32 P33

 , (9)

where each entryPij represents the partial derivative of the corresponding functional responsemultiplied
by its interaction coefficient, ensuring consistency with standard partial derivative notation.

P11=1− 2x

z
− a1y

2

(x+ y)2
−h1, P12=−

a1x
2

(x+ y)2
,

P13=
x2

z2
, P21=

a2y
2

(x+ y)2
,

P22=r1 −
2r1γy

z
+

a2x
2

(x+ y)2
− h2, P23 =

r1γy
2

z2
,

P31 = −mz, P32 = −nz, P33 = l −mx− ny.

Theorem 4. For Model (3),

i. The prey free equilibrium point C1 is locally asymptotically stable if 1 < a1 + h2.

ii. The predator-free equilibrium point C2 is locally asymptotically stable, if h2 > r1 + a2 and
undergoes a transcritical bifurcation if h2 = r1 + a2.
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Proof. i. The Jacobian matrix at C1 is given below

JC1
=

 1− a1 − h1 0 0

a2 h2 − r1 (r1−h2)
2

r1γ
−mr1γl
(r1−h2)n

−r1γl
(r1−h2)

0

 ,

the eigenvalues of the Jacobian matrix at C1 are

λ1 = 1− a1 − h1,

λ2,3=
1

2

(
(h2−r1)±

√
(r1−h2)2 − 4(r1−h2)l

)
.

Hence, C1 is locally asymptotically stable, if 1 < a1 + h2.

ii. The Jacobian matrix at C2 is

JC2 =

 h1−1 −a1 (1− h1)2

0 r1 + a2 − h2 0
−l

1−h1

−nl
m(1−h1)

0

 ,

the eigenvalues of the Jacobian matrix at C2 are

λ1 = r1 + a2 − h2,

λ2,3=
1

2

(
(h1−1)±

√
(h1−1)2−4 (1−h1) l

)
.

Thus, if h2 > r1 + a2, then C2 is locally asymptotically stable. Further, the model undergoes a
transcritical bifurcation if

h2 = r1 + a2.

Theorem 5. The interior equilibrium pointC∗(x∗, y∗, z∗) locally asymptotically stable if a1xy
(x+y)2 −

x
y −

r1γy
z − a2xy

(x+y)2 < 0, a1 < a2 and 2a1r1γx
2y2(x+ y)2 + a2x

3y2z > a1r1γx
2y3z.

Proof. The Jacobian matrix at C∗ is given by

JC∗ =

 c11 c12 c13

c21 c22 c23

c31 c32 0

 ,

and the characteristic equation is

λ3 + n1λ
2 + n2λ+ n3 = 0, (10)

where

n1 =− c11 − c22,

n2 =c11c22 − c23c32 − c21c12 − c13c31,



82 Optimal Harvesting of Three Species Intraguild Predation Model .../ COAM, 11 (1), Winter-Spring (2026)

n3 =c11c22c32 + c13c22c31 − c12c23c31 − c13c21c32,

c11 =
a1x

∗y∗

(x∗ + y∗)2
− x∗

z∗
, c12 =

−a1x∗2

(x∗ + y∗)2
, c13 =

x∗2

z∗2
,

c21 =
a2y

∗2

(x∗ + y∗)2
, c22 =

−r1γy∗

z∗
− a2x

∗y∗

(x∗ + y∗)
,

c23 =
r1γy

∗2

z∗2
, c31 = −mz∗, c32 = −nz∗.

Therefore,

n1n2−n3=(a2 − a1)
[
2a1r1γx

∗2y∗2

(x∗ + y∗)2z∗2
+

a2x
∗3y∗2

(x∗ + y∗)4z∗
−a1r1γx

∗2y∗3

(x∗ + y∗)4z∗

]
+
3x∗3

z∗2
+
r1γx

∗2y∗

z∗3
+

mx∗2y∗

(x∗ + y∗)2z∗
(a1r1y

∗−a2x∗)

+
a2x

∗2y∗

(x∗ + y∗)2z∗

(
x∗

z∗
− ny∗

)
+

r21γ
2x∗y∗2

(x∗ + y∗)2z∗2
.

Now, n1 > 0, n3 > 0 and n1n2 − n3 > 0 if

a1x
∗y∗

(x∗ + y∗)2
− x∗

y∗
− r1γy

∗

z∗
− a2x

∗y∗

(x∗ + y∗)2
< 0, a1 < a2,

and
2a1r1γx

∗2y∗2(x∗ + y∗)2 + a2x
∗3y∗2z∗ > a1r1γx

∗2y∗3z∗.

Ecologically, This implies that the prey population must grow sufficiently to withstand predation and
harvesting, while predator efficiency and resource conversion rates must be high enough relative to
predator mortality. Together, these conditions ensure that both prey and predator populations persist at
stable levels, avoiding extinction or uncontrolled growth. Therefore, by Routh-Hurwitz criteria [31], the
interior equilibrium point C∗(x∗, y∗, z∗) is locally asymptotically stable.

5 Bifurcation Analysis

In this section, we analyze the bifurcation of the model (3) analytically, according to the harvesting
effect.

5.1 Hopf-Bifurcation

The local birth or death of a periodic solution around the equilibrium is known to be a Hopf bifurcation.
The following theorem provides the condition for the existence of Hopf-bifurcation with respect to the
harvesting parameter as a bifurcation parameter.

Theorem 6. The model (3) is subject to a Hopf-bifurcation if the bifurcation parameter h∗ (as a harvest
parameter) exceeds a critical value. The condition for the occurrence of the Hopf-bifurcation at h = h∗

is as follows
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1. n1(h∗)n2(h∗)− n3(h∗) = 0,

2. d
dh∗ (Re(λ(h

∗)))
∣∣
h=h∗ ̸= 0,

where λ is the root of the characteristic equation associated with interior equilibrium point E∗.

Proof. For h = h∗, let the characteristic Equation (10) is in the form of(
λ2(h∗) + n2(h

∗))
)
(λ(h∗) + n1(h

∗)) = 0. (11)

Thus, ±i
√
n2(h∗) and −n1(h∗) are the roots of (11). For the occurrence of the Hopf-bifurcation, at

h1 = h∗, it must meet the following transversality condition

d

dh∗
(Re(λ(h∗)))

∣∣∣∣
h=h∗

̸= 0.

For all h, the roots are generally in the form

λ1,2(h) = e(h)± if(h),

λ3(h) = −n2(h).

Substituting, λ1,2(h) = e(h) + if(h) in (11), we have

M(h) + iN(h) = 0,

where

M(h)=e3(h) + e2(h)n1(h)− 3e(h)f2(h)

−f2(h)n1(h)+n2(h)e(h)+n1(h)n2(h),

N(h)=n2(h)f(h) + 2e(h)f(h)n1(h)

+ 3e2(h)f(h)− f3(h).

To accomplish Equation (11), we should haveM(h) = 0 and N(h) = 0, then differentiateM and N
with respect to h, we get

dM

dh
= ρ1(h)e

′(h)− ρ2f ′(h) + ρ3(h) = 0, (12)

dN

dh
= ρ2(h)e

′(h) + ρ1(h)f
′(h) + ρ4(h) = 0, (13)

where

ρ1(h) =3e2(h) + 2e(h)n1(h)− 2f ′(h) + n2(h),

ρ2(h) =6e(h)f(h) + 2f(h)n1(h),

ρ3(h) =e
2(h)n′1(h)− f2(h)n′1(h) + n′2(h)e(h),

ρ4(h) =2e(h)f(h)n′1(h) + n′2(h)f(h).

On multiply, (12) and (13) by ρ1(h) and ρ2(h) respectively, then add those equations, we get
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e′(h) = −ρ1(h)ρ3(h) + ρ2(h)ρ4(h)

ρ21(h) + ρ22(h)
, (14)

substituting, ρ1(h) = 0 and f(h)=
√
n2(h) on ρ1(h), ρ2(h), ρ3(h) and ρ(h)at h = h∗, we obtain

ρ1(h
∗) = −2n2(h∗), ρ2(h∗) = 2n1(h

∗)
√
n2(h∗),

ρ2(h
∗) = n′3(h

∗)− n2(h∗)n′1(h∗),

ρ4(h
∗) = n′2(h

∗)
√
n2(h∗).

Equation (14) implies

e′(h∗) =
n′3(h

∗)− (n1(h
∗)n2(h

∗))′

2(n22(h
∗) + n21(h

∗))
.

If n′3(h∗) − (n1(h
∗)n2(h

∗))′ ̸= 0, which implies that d
dh∗ (Re(λ(h

∗)))
∣∣
h=h∗ ̸= 0, j = 1, 2. This

indicates that oscillatory dynamics (population cycles) emerge when the interaction strengths and growth
rates cross a critical threshold. For example, if predation efficiency or harvesting rate exceeds certain
values, the system shifts from stable coexistence to sustained oscillations.Hence, the above condition
is guaranteed the transversality condition, i.e., the model (3) exhibits the Hopf-bifurcation at h = h∗.
The numerically determined critical value h∗2 confirms the predicted Hopf bifurcation condition in this
Theorem, showing how the loss of equilibrium stability depends on the harvesting parameter.

5.2 Transcritical Bifurcation

In the following theorems, the existence of transcritical bifurcation has been established using So-
tomayor’s theorem [39] about the two equilibrium points C2(

l
m , 0,

l
m(1−h1)

) and C∗(x∗, y∗, z∗).

Theorem 7. The model (3) undergoes a transcritical bifurcation aboutC2(
l
m , 0,

l
m(1−h1)

) as the param-
eter h2 crosses the critical value h∗2 = r1 + a2.

Proof. Let X = (x, y, z) and

f(X,h2) =

 x
(
1− x

z

)
− a1xy

x+y − h1x
r1y

(
1− γy

z

)
+ a2xy

x+y − h2y
z (l −mx− ny)

 ,

fh2(C2, h2) =

 0

0

0

 ,

Dfh2
(X,h2) =

 0 0 0

0 −1 0

0 0 0

 ,
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A = Df(C2, h
∗
2) :=

 −1 + h1 −a1 (1− h1)2

0 0 0
−l

1−h1

−ln
m(1−h1)

0

 .

Let V = (v1, v2, v3)
T with v1 = −ln

m , v2 = 1, and v3 = a1m−ln(1−h1)
m(1−h1)2

andW = (0, 1, 1)T , be the
eigenvectors of A and AT , respectively corresponding to zero eigenvalue. Now, the three conditions of
Sotomayor’s theorem are computed below:

(i) WT fh2
(C2, h

∗
2) = 0,

(ii) WT [Dfh2
(C2, h

∗
2)V ] =

(
0 1 1

)
 0 0 0

0 −1 0

0 0 0


 v1

1

v3


 = −1 ̸= 0

(iii) WT [D2f(C2, h
∗
2)(V, V )] = −2nv3 − 2a2m

l − 2r1γm(1−h1)
l ̸= 0.

By Sotomayor Theorem [39], Model (3) undergoes a transcritical bifurcation at the equilibrium point
C2 as the parameter h2 varies through the bifurcation value h2 = h∗2.

Theorem 8. Model (3) undergoes a transcritical bifurcation about C∗(x∗, y∗z∗) as the parameter h2
crosses the critical value h∗2 = r1 + a2.

Proof. Let X and f(X,h2) are same as in Theorem 7.

fh2
(C∗, h2) =

 0

−y∗

0

 ,

Dfh2
(X,h2) =

 0 0 0

0 −1 0

0 0 0

 ,

B = Df(C∗, h∗2)

=


a1x

∗y∗

(x∗+y∗)2 −
x∗

z∗
−a1x

∗2

(x∗+y∗)2
x∗2

z∗2

a2y
∗2

(x∗+y∗)2
−r1γy

∗

z∗ − a2x
∗y∗

(x∗+y∗)
r1γy

∗2

z∗2

−mz∗ −nz∗ 0

 .

Let V̄ = (v̄1, v̄2, v̄3)
T and W̄ = (w̄1, w̄2, w̄3)

T , be the eigenvectors of B and BT , respectively
corresponding to zero eigenvalue. Now the three conditions of Sotomayor’s theorem are computed
below:

(i) W̄T fh2
(C∗, h∗2) = 0,

(ii) W̄T [Dfh2
(C∗, h∗2)V̄ ] ̸= 0

(iii) W̄T [D2f(C∗, h∗2)(V̄ , V̄ )] ̸= 0.

We see that h2 = r1 + a2, the equilibrium C∗ becomes C2. Then the values of is (i), (ii), and (iii)
are similar to the Theorem 7. By Sotomayor Theorem [39], the model (3) undergoes a transcritical
bifurcation at the equilibrium point C∗ as the parameter h2 varies through the bifurcation value h2 =

h∗2.
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6 Bionomic Equilibrium and Optimal Harvesting

6.1 Bionomic Equilibrium

The term bionomic equilibrium is a combination of the concepts of biological equilibrium and economic
equilibrium [22]. From the model (2), a biological equilibrium is provided by

dX

dt
=
dY

dt
=
dZ

dt
= 0.

Let s1, s2 be the cost of harvesting per unit effort of intraguild prey and intraguild predator, respec-
tively, and p1p2 be the price per unit biomass of the intraguild prey and intraguild predator. Then, the
economic rent at any time is given by

π =(p1x− s1)E1 + (p2y − s2)E2

=π1 + π2.

Here, π1 and π2 are the net revenues of intraguild prey and intraguild predator species, respectively. Bio-
nomic equilibrium (x∞, y∞, z∞, E1∞, E2∞) is obtained by solving the following simultaneous equa-
tions. (The X,Y, Z variables are uppercase in the model (2), now which are considered lowercase in
this section):

c1

(
1− x

pz

)
− αy

x+ ay
− E1 = 0, (15)

c2

(
1− y

qz

)
+

βx

x+ ay
− E2 = 0, (16)

(c− ux− vy) = 0, (17)

π = (p1x− s1)E1 + (p2y − s2)E2 = 0. (18)

To determine the bioeconomic equilibrium, we now consider the following cases.

• Case I: If s1 > p1x, then the cost is greater than the revenue for intraguild prey species, the
intraguild prey harvesting will be closed i.e., E1 = 0. Only intraguild predator harvesting will be
operational.
From (15)-(17), we have

y∞ =
s2
p2
, (19)

x∞ =
cp2 − vs2
p2u

, (20)

z∞ =
c1 (cp2 − vs2) ((cp2 − vs2) + aus2)

pup2 ((c1 (cp2 − vs2) + aus2)− αus2)
. (21)

Using (19)-(21) in (15) we obtain

E2∞ =
c1c2q (cp2 − vs2) ((cp2 − vs2) + auc2)

qc1 (cp2 − vs2) (cp2 − vs2 + aus2)

− c2s2pu ((c1 (cp2−vs2)+aus2)−αus2)
qc1 (cp2−vs2) (cp2−vs2+aus2)
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+
βqc1(cp2 − vs2)

qc1 (cp2 − vs2) (cp2 − vs2 + aus2)
. (22)

Therefore, E2∞ > 0, if

c1c2q(cp2−vs2) ((cp2−vs2)+auc2)+βqc1(cp2−vs2)

>c2s2pu ((c1 (cp2−vs2)+aus2)+αus2)

• Case II: If s2 > p2y, that is, the cost exceeds the revenue for the intraguild predator, the intraguild
predator harvesting will be discontinued, i.e., E2 = 0. Only intraguild prey harvesting remains
active. Again, from Equations (15)-(17), we derive:

y∞ =
s1
p1
, (23)

x∞ =
cp1 − us1

p1v
, (24)

z∞ =
(cp1 − us1) (c2s1v + c2a (cp1 − us1))
qvp1 (c2s1v + c2a (cp1 − us1) + βvs1)

. (25)

Using (23)-(25) in (15), we obtain

E1∞ =
c1p(cp1−us1)(s1v+a (cp1−us1))
pc2 (cp1−us1) (s1v+a (cp1−us1))

− c1s1qv(c2s1v+c2a(cp1−us1)+βvs1)
pc2 (cp1−us1) (s1v+a (cp1−us1))

− αpc2(cp1−us1)
pc2 (cp1−us1) (s1v+a (cp1−us1))

. (26)

Therefore, E1∞ > 0, if

c1p(cp1−us1)(s1v+a (cp1−us1))> αpc2(cp1−us1)

+ c1s1qv(c2s1v+c2a(cp1−us1)+βvs1) .

• Case III: If s1 < p1x and s2 < p2y, then the whole model will be in operation, and it gives

x∞ =
s1
p1
,

y∞ =
s2
p2
.

Here, the biological parameters c, u, v and the economical parameters c1, c2, p1, p2 must satisfy
the relation

c =
us1p1 + vs2p2

p1p2
.

From (15), we have

z

[
E1 +

αs2p1
s1p2 + ap1s2

− c1
]
+
c1s1
pp1

= 0. (27)

Similarly, from (16), we obtain

z

[
E2 −

βs1p2
s1p2 + ap1s2

− c2
]
+
c2s2
qp2

= 0. (28)
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6.2 Optimal Harvesting Policy

We formulate the optimal harvesting problem for the nondimensionalized system, aiming to maximize
the discounted net revenue from harvesting both the prey and the intermediate predator.

J(E1, E2)=

∫ ∞

0

e−δt((p1x−s1)E1+(p2y−s2)E2) dt, (29)

where x(t) and y(t) are prey and intermediate predator densities,E1(t) andE2(t) are harvesting efforts,
p1, p2 are unit prices, s1, s2 are harvesting costs, and δ > 0 is the discount rate.

Subject to the constraints of (2) is

0 ≤ Ei(t) ≤ Emax
i , i = 1, 2. (30)

By Pontryagin’s maximum principle, we construct the Hamiltonian as follows for this problem:

H =e−δt ((p1x− s1)E1 + (p2y − s2)E2)

+ λ1

(
c1x

(
1− x

pz

)
− αxy

x+ ay
− E1x

)
+ λ2

(
c2y

(
1− y

qz

)
+

βxy

x+ ay
− E2y

)
+ λ3 (z(c− ux− vy)) ,

where, the adjoint variable are λi = λi(t), i = 1, 2, 3.

Now, ∂H
∂E1

= 0, ∂H
∂E2

= 0, we have

λ1 = e−δt
(
p1 −

s1
x

)
, (31)

λ2 = e−δt

(
p2 −

s2
y

)
. (32)

Then, adjoint equations are

dλ1
dt

= −∂H
∂x

,
dλ2
dt

= −∂H
∂y

,
dλ3
dt

= −∂H
∂z

. (33)

Using H and the third equation of (33), we obtain

dλ3
dt

= −∂H
∂x

= −
(
λ1
c1x

2

pz2
+ λ2

c2y
2

qz2
+ λ3(c− ux− vy)

)
,

which implies
dλ3
dt

= −λ1
c1x

2

pz2
− λ2

c2y
2

qz2
.

From (31) and (32), we get

dλ3
dt

= −e−δt
(
p1 −

s1
x

) c1x2
pz2

− e−δt

(
p2 −

s2
y

)
c2y

2

qz2
,

which implies

λ3 =
e−δt

δ

[(
p1 −

s1
x

) c1x2
pz2

+

(
p2 −

s2
y

)
c2y

2

qz2

]
. (34)
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Let, the constant of integration vanishes, hence λieδt(i = 1, 2, 3) of three species are bounded. Using
(31) and (32), we get from the first two adjoint equations in (33)

δe−δt
(
p1 −

s1
x

)
=−

(
e−δtp1E1 + λ1

(
αxy

(x+ ay)2
− c1x

pz

)
+λ2

aβy2

(x+ ay)2
− λ3uz

)
, (35)

and

δe−δt

(
p2 −

s2
y

)
=−

(
e−δtp2E2 + λ1

αx2

(x+ ay)2

−λ2
(

aβxy

(x+ ay)2
+
c2y

qz

)
− λ3vz

)
. (36)

Applying the equilibrium condition and substituting values of λi, for i = 1, 2, 3 in (35) and (36), we get

p1E1 =δ
(
p1 −

s1
x

)
+
(
p1 −

s1
x

)( αxy

(x+ ay)2
− c1x

pz

)
+

(
p2 −

s2
y

)
aβy2

(x+ ay)2

− u

δz

(
c1x

2

p

(
p1 −

s1
x

)
+
c2y

2

q

(
p2 −

s2
y

))
,

and

Figure 2: The locally asymptotically stable time series (a), (b), (c) and phase portrait (d) for the model (3) param-
eters values in (39) with h1 = 0.48 and h2 = 0.25 near C∗(0.037733, 0.0871706, 0.220599).

p2E2 =δ

(
p2 −

s2
y

)
+
(
p1 −

s1
x

)( αx2

(x+ ay)2

)
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−
(
p2 −

s2
y

)(
aβxy

(x+ ay)2
− c2y

qz

)
− v

δz

(
c1x

2

p

(
p1 −

s1
x

)
+
c2y

2

q

(
p2 −

s2
y

))
.

The above equations provide the optimal harvesting efforts as follows:

E1 =
1

p1

(
p1 −

s1
x

)(
δ +

αxy

(x+ ay)2
− c1x

pz
− uc1x

2

δpz

)
+

1

p1

(
p2 −

s2
y

)(
aβy2

(x+ ay)2
− uc2y

2

δqz

)
, (37)

and

E2 =
1

p2

((
p1 −

s1
x

)( αx2

(x+ ay)2
− vc1x

2

pδz

)
+

(
p2 −

s2
y

)(
δ −

(
aβxy

(x+ ay)2
+
c2xy

qz

)
− vc2y

2

δqz

))
. (38)

Hence, solve the (37) and (38) together with steady-state equationswe get an optimal solutions (xδ, yδ, zδ)
and the optimal harvesting efforts E1 and E2.

7 Numerical Results

Figure 3: The occurrence of periodic solution in time series (a), (b), (c) and phase portrait (d) for the model (3)
with the parameter values in (39), h1 = 0.53, and h2 = 0.25 near C∗(0.0372941, 0.0873199, 0.3117236).



Magudeeswaran, et al./ COAM, 11 (1), Winter-Spring (2026) 91

Figure 4: The bifurcation diagrams for the model (3) with parameter values in (39), h2 = 0.25, and h1 ∈
(0.1, 0.6).

Figure 5: The bifurcation diagrams for (3) with parameter values in (39), h1 = 0.48, and h2 ∈ (0.01, 0.25).

Figure 6: The x, y, and z components of equilibriaC2 andC∗ for (3) with parameter values in (39), h1 = 0.48 and
h2 ∈ (0.1, 1). The red curves represent the stable and black curves represent the unstable branches of the equilibria
C2 and C∗, respectively. The Hopf bifurcation occurs at h∗

2, marked by the vertical dashed line, indicating the
transition from stable equilibrium to periodic oscillations.
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Figure 7: The two-parameter bifurcation diagram for the model (3) in (a) h2 ∈ (0.01, 0.8) vs h1 ∈ (0.4, 1.0),
(b) l ∈ (0.1, 1.0) vs h1 ∈ (0, 0.6), and (c) l ∈ (0, 1) vs h2 ∈ (0, 0.5) with other parameters are given in (39).
The blue color line denotes the Hopf bifurcation (HB) curve, which separates the stable and periodic regions. The
cyan color line separates the periodic and population extinction regions. The stable region is denoted in green, the
periodic region is given in red, and the brown color represents the region where the populations become extinct.

In order to verify the analytical findings and stability results obtained in the previous sections, we
numerically simulate the solutions of the model (3). We perform numerical tests for the model (3) with
a different set of parameter values. Now, we consider the set of values of the parameters as

a1 = 0.50, r1 = 0.019, a2 = 0.79, γ = 1.02,

l = 0.25,m = 0.85, and n = 2.5.
(39)

The parameter r1 is the intrinsic (per-capita) growth rate of prey species, expressed per unit time. By
contrast, a2 is an attack/interaction coefficient (rate of successful encounters per predator per prey) and
has a different dimensional interpretation. Parameters of different types are not expected to have similar
numerical magnitudes because they measure different processes and have different units. If the time
unit in the model is years, r1 = 0.019 corresponds to a per-year growth rate of 1.9% which is entirely
plausible for long-lived species or populations under strong resource limitation or exploitation. If the
time unit is days, the value likewise represents a very slow-growing population (≈1.9%per day integrated
rate), which may be appropriate for certain biological or managed populations. We now state the model’s
time units explicitly and note that an intrinsic growth rate of this order is consistent with species that
reproduce slowly or have strong density dependence/harvesting pressure.

Now, we investigate the harvesting parameters individually. In order to show the effect of harvesting
parameters in the considered model. Assume h1 = 0.48 and h2 = 0.25, and the model (3) is locally
asymptotically stable about the interior equilibrium pointC∗(0.037733, 0.0871706, 0.220599), with the
remaining parameter values in (39), as shown in the time series and phase portrait in Figure 3 The stable
behavior indicates that the small fluctuations in initial population size do not affect the population over
a longer period of time, i.e., the long-term survival of both species. When we increase the value of h1 at
some critical value, h1 = 0.51895, themodel (3) loses its stability and undergoes Hopf bifurcation. Also,
satisfy the Theorem 6, i.e., n1(h∗1)n2(h∗1)−n3(h∗1) = 0 and n′

3(h
∗
1)−(n1(h∗1)n2(h∗1))

′
= −0.024916 ̸=



Magudeeswaran, et al./ COAM, 11 (1), Winter-Spring (2026) 93

0 which ensure the existence of Hopf bifurcation. The existence of a periodic solution in time serious
and phase portrait for the model (3) at h1 = 0.53 near C∗(0.0372941, 0.0873199, 0.3117236) is shown
in Figure 3. For clear representation, the one-parameter bifurcation diagram with parameters in (39),
h2 = 0.25, and h1 ∈ (0.45, 0.55) is plotted in the Figure 4.

It is also necessary to investigate the impact of another harvesting parameter h2. To validate the
bifurcation structure, we performed eigenvalue continuation and time-series simulations from multiple
initial conditions. The results show coexistence of a stable equilibrium and a stable limit cycle for
certain values of h2, confirming bistability. This indicates a subcritical Hopf bifurcation followed by
a fold of limit cycles. Accordingly, Figure 5 has been updated to display both the stable equilibrium
branch and the stable periodic orbit branch. For a detailed understanding of the dynamics. We chose
the parameter values in (39), h1 = 0.48 and vary h2 ∈ (0.01, 0.25), and plotted the one-parameter
bifurcation diagram in Figure 5. It shows that the model (3) is locally asymptotically stable for h2 ∈
(0, 0.04), periodic solution for h2 ∈ (0.04, 0.195), and again become locally asymptotically stable near
for h2 ∈ (0.195, 0.25) near C∗. It is clear that the model (3) undergoes Hopf bifurcation at two points
within the parameter range h2 ∈ (0, 0.25). On further increasing the value h2 in the range h2 ∈ (0.25, 1),
the model (3) exhibits transcritical bifurcation behavior between the equilibrium points C2 and C∗.
First, the equilibrium C∗ is stable, whereas C2 is unstable as h2 increases and crosses the critical value
h2 = r1 + a2, then the equilibrium C∗ becomes unstable, and C2 becomes stable, which is depicted in
Figure 6. Also, the model (3) satisfy the Theorems 7 and 8 at h2 = h∗2 = r1 + a2, which ensures the
existence of transcritical bifurcation between C2 and C∗. When h2 = r1 + a2 the model equilibrium
C∗ becomes C2, which shows that a higher harvesting rate h2 in the second species causes to die out y
and results in the survival of only species x and z respectively. For a clear illustration, the dynamical
changes of the model (3) with the influence of harvesting effects, the two-parameter bifurcation diagrams
are plotted in Figure 7. In Figure 7(a) the two-parameter bifurcation diagram is plotted for h2 and h1,
similarly for l and h1 in Figure 7(b) and l and h2 in Figure 7(c). In which the green color represents the
stable region, the red color represents the unstable region, and the brown color represents the extinction
region. Furthermore, it is helpful to find extinction and survival regions of species with the choice of
harvesting parameters h1 and h2. Moreover, the nonzero bionomic equilibrium is found on the surface
encompassing the two curves, which is illustrated in Figure 8.

Here, we solve the model (2), we obtain the optimal solutions

(0.762046195, 0.476130367, 1.928739577)

with corresponding optimal efforts are E1 = 0.572646 and E2 = 0.809736. Taking

a = 1.5, α = 0.1, β = 1.5, c = 1.6, u = 0.85, v = 2, c1 = p = 1,

c2 = 0.2, q = 0.3, p1 = 15, s1 = 10, p2 = 25, s2 = 10 and δ = 5.

Then, we get the maximum value of the net revenues

J =

∫ ∞

0

e−5t2.52718923dt = 0.505437846.
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Figure 8: For the set parameters c1 = 0.47, c2 = 0.5, p1 = 0.6, p2 = 0.7, p = 0.45, q = 0.55 α = 0.3,
β = 0.5, s1 = 0.4, s2 = 0.5, a = 0.5 red curve indicates z vs. E2 and green curve indicates z vs. E1

8 Conclusion

This study examines the population model of the three species, which are intraguild prey, intraguild
predators, and biotic resources. The process of population reduction by harvesting takes place in the
population. Changes in harvesting parameters in each population provide an understanding of the dy-
namics of harvesting in the considered model. Bifurcation and stability analysis help us determine the
Hopf-bifurcation in our model due to the change in the signs of the associated eigenvalues of the corre-
sponding model. Prey decline in our model is primarily influenced by predation, but because the variable
Z affects both prey and predator, extinction arises from their coupled dynamics rather than predation
alone. Thus, the mechanism of extinction depends on the parameter regime, with predation dominating
in some cases and resource effects amplifying it in others. The coexistence of prey, predator, and biotic
resource can exist only in a small parameter range, which is determined by the exact combination of
prey and predator assault rates on the resource, as well as the predator’s predation rate. We begin by
non-dimensionalizing the basic model and reducing the number of parameters. However, the original
model has been considered while dealing with the harvesting attempts ofE1 andE2. These results show
that the harvest affects the survival of one or more species in the ecosystem. In our model, we showed
how the harvesting parameters help have a greater impact on the survival of species by plotting vari-
ous bifurcation diagrams. Also, we described the existence of transcritical bifurcation in our considered
model, which is a danger sign for species extinction due to over-harvesting. Therefore, we must control
harvesting activities to stop population extinction in the ecosystem. Here, we investigated the dynamics
of the bionomic equilibrium. Finally, the optimal harvesting policy is derived using Pontryagin’s max-
imum principle. With the control of harvesting efforts, 0 ≤ Ei ≤ Emax

i has a definite condition, i.e.,
the internal equilibrium point is constant and gives maximum profit. Predators and prey populations can
coexist, although both populations are harvested by a sustained effort. Using Pontryagin’s maximization
policy, we found a certain value in the harvest effort, E1 and E2, which is related to a fixed equilibrium
point that increases the net current revenue.

In this paper, we investigated the intraguild predation model with individual harvesting techniques
and ratio-dependent functional responses. As far as future research goes, there are several possibilities
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for this study. One important direction is that we can expand on the notion of this article by putting a
gestation time delay on the intraguild predator in our examined model. We leave it for future work.
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