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intraguild predators. Then, we analyze the dynamical behavior of
the proposed model by taking the harvesting rate as the bifurcation
parameter. We precisely outline the prerequisites for the proposed
model’s existence, stability, and bifurcation near the equilibrium points.
It contributes to a better understanding of the impacts of harvesting
on the survival or extinction of one or more species in the proposed
model. Furthermore, we derive the suggested model’s bionomic
equilibrium and optimum harvesting policy by using the Pontryagin's
maximum principle. Finally, we provide some numerical simulations
to validate the analytical results. In addition, we give some graphical

representations to validate our results.

Keywords. Local stability, Hopf-bifurcation, Intraguild predation,
Optimal harvesting.

MSC. 37C75; 34C23.

https://mathco.journals.pnu.ac.ir

©2026 by the authors. Lisensee PNU, Tehran, Iran. This article is an open access article distributed
under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY4.0)
(http:/creativecommons.org/licenses/by/4.0)


https://mathco.journals.pnu.ac.ir/article_12385.html
https://orcid.org/0000-0003-1544-0036
https://orcid.org/0000-0003-1721-4497
https://orcid.org/0000-0002-3966-6518
https://orcid.org/0000-0002-0170-6182
https://orcid.org/0000-0002-3327-5719

74 Optimal Harvesting of Three Species Intraguild Predation Model .../ COAM, 11 (1), Winter-Spring (2026)

1 Introduction

There are many issues that are biologically interesting in our environment that require a substantial un-
derstanding of the critical behavior and intrinsic nature of mathematical modeling. Instead of calculating
the change in a particular population , the main objective of the model’s development is to examine how
complex it is in an ecosystem. Mathematical modeling of predator and prey population dynamics has
emerged as an excellent research topic in the field of mathematical ecology. Model-based studies of
ecological problems were first developed by Lotka and Volterra [28, 49]. In the Lotka-Volterra model
[46], the predator population depends on the number of prey. This situation is not considered when there
is a scarcity of prey and the predator must look for new prey. In the investigation of the interaction of
population dynamics, a functional response plays an essential role in it, and the functional response is
the consumption rate of the predator as given by a function of prey density. There are numerous types
of functional responses effectively acting in population dynamics, they are Holling type I, II, and III
[13, 23, 30, 35, 48], Crowley-Martin [12, 47], Hassell-Varley [22], Beddington [6] and ratio-dependent
[4, 43].

The management of renewable resources, such as fisheries and forests, through science is the focus
of bioeconomic modeling. In recent times, the mathematical modeling of prey-predator models has
grown to be an extremely fascinating field of study for many economists, mathematicians, and ecologists.
Due to its significance, the issue of optimal harvesting in predator-prey systems rules both ecology and
bioeconomics. On the basis of Clark’s [10] demonstration of the concept of optimal equilibrium for the
combined harvest of two distinct species, other authors have created their own models. In the absence
of a harvest, each population adheres to a logistic growth law, whose yield level is proportionate to
both its share level and harvest effort. The population then manages to deliver more benefits and the
population remains stable. Jana etal. [24] discussed the two-dimensional prey-predator system, allowing
for prey refuge and harvesting in the prey species only. There are numerous works related to the effect
of harvesting on predator-prey interactions, the predator-prey model with selective harvesting on prey
was discussed in [8, 14, 16, 21, 26, 29, 34, 36, 38, 44]. The selective harvesting of predators has been
studied in [9, 45], and the selective harvesting effect for both species was investigated in [1, 5]. The
authors in [20] explored the impact of harvesting in the tri-trophic food chain model and, importantly,
discussed the existence of maximum sustainable yield when the top predator is harvested. Safuan et al.
investigated a predator-prey model in an environment enriched by a biotic resource [41].

The food chain model of a two-species population in the context of shared biological resources is
studied by Safuan et al. [40]. They analyzed the model, showing that during competition, death occurs
between competitors. It plays an important role in shaping ecological communities. Intraguild predation
is also known as exploitation competition or interference competition. Aside from the fact that both
species face the harvesting process, they must compete to gain shared resources. In [19], the optimal
harvest of an intraguild predation model with varying carrying capacities has been explored. The authors
came to the conclusion that the enrichment parameter has a significant influence on the dynamics of prey,
predation, and resources. The intraguild model’s low, moderate, and high concentrations give diverse
natures such as co-existence, destruction, and limit cycle. Collera and Balilo [11] discussed the dynamics
of an intraguild predation model with linear harvesting on three species. The authors in [1] studied
two species that compete for shared biological resources in the environment with harvesting effects.
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Further, the authors concluded that the harvesting parameter plays a vital role in the ecosystem because
harvesting activities reduce the population in an ecosystem. To prevent the extinction of the population,
harvesting activities need to be controlled. In this sense the control strategies are essential. For example,
Collera and Balilo [25] discussed the control mechanism for cancer-immune system interaction in an
avascular environment. Mustapha et al. [32] developed a control strategy for the transmission dynamics
of cholera. Different efficient control strategies were considered in the following studies: for corruption
dynamics [2], for vector-borne infections [7], for chickenpox transmission dynamics [37], for carbon
dioxide emissions [3], for Middle East respiratory syndrome transmission [17, 18], for HIV-1 model
related to cancer cells [33], for a class of nonlinear affine systems [15].

Based on the preceding research investigations, we are encouraged to conduct the current study;
we deal with exploitation strategies in an intraguild predation model with the ratio-dependent functional
response, although this differs from earlier works in some basic assumptions.

The main contributions of this study are as follows:

* We develop a new intraguild predation (IGP) model with a ratio-dependent functional response,
which more accurately reflects predator—prey interactions under limited encounter rates and
interference—unlike most previous IGP harvesting models that use prey-dependent responses.

* We incorporate dual harvesting on both prey and predator populations, capturing realistic exploita-
tion strategies. Previous studies typically harvest only one species or treat harvesting implicitly.

* We conduct a complete bioeconomic analysis by deriving the bionomic equilibrium, sustainable
yield, profit function, and optimal harvesting policy under economic constraints—features rarely
integrated into IGP systems.

* We identify complex dynamical behavior, including multiple local equilibria, transcritical and
Hopf bifurcations, stability switches, and possible cycles, and we relate these mathematical out-

comes to ecological mechanisms and management implications.

» We provide ecological and economic interpretations of all mathematical conditions, ensuring that
stability results, threshold parameters, and bifurcation conditions are biologically meaningful for

real-world resource management.
Also, we address the following concerns in this paper:
1. The factors might lead to the extinction of the species,
2. The factors encourage the coexistence of all three species,
3. Do both persist as a stable state or oscillations.

Further, we explore the possibilities of bionomic equilibrium and obtain the optimal principle of
exploitation by using Pontryagin’s maximum principle.

The rest of this paper is organized as follows: In Section 2, we formulate the three-species intraguild
predation model with individual harvesting and ratio-dependent functional response. In Section 3 some
needed preliminaries are discussed. in Section 4, we discuss the existence and local stability of the
feasible equilibrium points. Bifurcation analysis for the constructed model is carried out in Section 5.
The bionomic equilibrium and optimal harvesting of the proposed model are given in Section 6. We
provide the numerical results in Section 7 and finally, we discuss and give the short conclusion of this
paper in Section 8.



76  Optimal Harvesting of Three Species Intraguild Predation Model .../ COAM, 11 (1), Winter-Spring (2026)

Prey Predator

Biotic resource

Figure 1: Schematic diagram of intraguild predation model

2 Model formulation

In this section, we propose the intraguild predation model with a ratio-dependent functional response
and individual harvesting effects, which is an extension of the model proposed in Refs. [1, 19, 40, 41].
In [19], the authors studied the predator-prey model with variable carrying capacity and extended it with
independent harvesting techniques as a possible extension of new inventions. The model is of the form:

dXx X

E—ClX (1_pZ) _CYXY_ElX,

dy Y

— =Y |[1-— XY — EyYY,

a2 < qZ)+B 25 (1)
dz

E—Z(C—’U,X—’UY),

X(0) =X >0,Y(0) =Yy >0, and Z(0) = Zo > 0.

In this paper, we extended the above model by considering that the predator consumes its prey in
the form of a ratio-dependent type functional response. We formulate the model as follows:

X X Xy
X _ . x (1-) a —E\X,

dt pZ) X +aY

dy Y BXY

=Y (1- =)+ S By,

dt CQ( qZ)+X+aY 25 ©)
dz

E:Z(C—U;X—UY),

X(0)=Xp>0,Y(0) =Y, >0, and Z(0) = Zp > 0,

where parameters «, 3, a, ¢, ¢1,C2, P, q, E1, Fo, u and v are positive constants, X and Y be the size of
prey and predator population, respectively, and Z be the size of biotic resources. The parameter a be
the half-saturation constant, F'; and E5 are the independent harvesting effects of prey and predator,
¢i, (1 = 1,2) stands growth rates of prey and predator, respectively; pZ and ¢Z be the environmental
carrying capacities of prey and predator, respectively. It is assumed that 0 < p < 1 and 0 < ¢ < 1 with
p+q = 1sothat pZ + gZ (total carrying capacity). In our model, p and g represent the proportions of a
shared limited resource allocated or utilized by two interacting species. The constraint p+ g = 1 ensures
that the entire available resource is partitioned between the two species, with no unused or “extra” re-
source. This reflects a biologically realistic scenario where resources are fully exploited in competitive
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environments.The conditions p, ¢ € (0, 1) exclude trivial or ecologically unrealistic cases of exclusive
monopolization(e.g., p = 1, = 0) or no resource use. Thus, the model focuses on partial resource
sharing, which is central in ecological theories of niche partitioning and coexistence. If p > ¢, the pop-
ulation of prey gets a larger proportion of biotic resources, resulting in a greater carrying capacity. That
means prey can grow more than predators. Biotic resources with growth rate ¢ are absorbed respectively
by prey and predator for o X and 3Y, with « and v being constant. Because Z is a biotic resource, rises
or reduces in its size could affect one or both prey and predator populations. The constants « and 3 stand
for the capturing rate and the conversion rate of the consumed prey to predator, respectively.

To simplify the dynamical analysis and facilitate interpretation of the results, we nondimensionalize
the model system (2) using the following transformation: X — %, Y — %, Z — %,t — i, then

the model (2) reduces the following form

() me
Cciit z r+y
asx
Yty (1—ﬂ)+27y—hzy, A3)
dt z T4y
%—z(l—mx—n )
dt_ y7

where a; = %74, hy = Bio pi=c =14, = @B phy = B0 | = < ;= Yandp = L with
q q 1 q aq aq 1 P Pq
initial conditions z(0) = z¢ > 0,y(0) = yo > 0, and 2(0) = zp > 0. Because of the mathematical
complexity at the singular point (0, 0,0), the ratio-dependent models create richer and more complex
dynamics. Next, we follow the idea in [27], that is, since lim(, ) — (0,0), the domain of % to
{(z,y,2)} : x> 0,y > 0,z > 0 may be extended so that (0, 0, 0) becomes a trivial solution to (3). The

aim of this study is to examine and illustrate the complexity of the model described above.

3 Preliminaries

In this section, we will discuss the positive invariance and boundedness of solutions for the model (3).

3.1 Positive invariant

As the model in (3) describes prey-predator dynamics, it is crucial to demonstrate the positivity of the
solutions. In a biological sense, positivity means that the population remains non-negative (survival of
the species). To prove this, we invoke the following theorem from [42].

Theorem 1. All solutions of the model (3) with initial conditions zy > 0, yo > 0 and zy > 0 are
positive.

Proof. From (3), we obtained
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Here, for all t > 0:

T x ayy
t) = 1-=) - —hy | dt
z(t) = xg exp /OT <( z) Tty 1) ]»
— _ ot _
y(t) = yo exp /0 <7“1 (1 " ) + ” h2> dt] )

z(t) = zp exp / (I —mx —ny)dt| .
0

{zog > 0,y0 > 0,20 > 0} = {z(t) > 0,y(t) > 0, 2(¢t) > 0},

i.e., the positive octant is invariant.

3.2 Boundedness

Theorem 2. All solutions of model (3) which originates in Ri are uniformly bounded.

Proof. Let us define the function

which implies that

Q=asx+ ay + 2z,

dQ) aox> aryriy?
— = ayr — —aghiz +a1my — ——
dt z z

—hoary + 2zl — mxz — nyz

= —(asz+a1y+ 2) + (2a2 — hy)x

a2x2
+ar +ar —h)y+ 1 +1)z—
2
BV g+ ny)z,
z
_ 2 _ 2 2
@ 4 0 S (2(12 hl) + (a17"1 hg) + (l -+ 1)
dt 4ao 4a1yry 4
= M

)

_ (ap-m)? | (ari—he)® | 41)?
where M = ~—=—1 + S

4(12

Integrating the above equation and applying the differential inequality theorem, we have

Zaiyr

0<Q<M(1—e")+Q(2(0),y(0), 2(0)),

for ¢ — oo then we have

0 < Q < M+ Q(z(0), y(0), 2(0)).

. . . . 3
Thus, the solution space (x, ¥, z) is bounded in the region R:} .

4 Existence and Local Stability of Equilibria

“)

®)

In this section, we discuss the existence and local stability of the biologically feasible equilibrium points
for the model (3) as follows:
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4.1 Existence of Equilibria

For Model (3), we have the following equilibrium points.
1. The trivial equilibrium point Cy(0, 0, 0) always exists.

2. The prey free equilibrium point C; (0, L %) .

57 (rl—hg)n

3. The predator free equilibrium point Cy ( Lo +> .

m? Y m(1—hy)

4. The interior equilibrium point C* (z*, y*, 2*) , where

*
«  l—mx
Yy = )
n

nrlyz Y2 m2y et 2nr yma 2 —2rlmr o

*_

rin2x*Hrinl—rinma*+asn2x*—hon2ax*—Inhothonma*’

and z* is the positive root of the following cubic equation,
o122 + oo™ + 032" + 04 =0, 6)
where

o1 = — mn2ay + ndas — m*nhs + 2mn2hs
— n3hy + m2nr; — 2mn’r +nry — m27r1
+ 2m2n’yr1 + mS’yalrl — mzn'yalrl
+ m?"yhlrl — 2m2n’yh1r1 + anfythl,

oo =lmnhs — In%hs — lmnry + In’ry + 3lm2'yr1
— 4lmnyr; + ln27r1 — 3lm2fya1r1
+ 2lmnyair, — 3lm2’yh1r1 + dlmnyhyry
— ln27h1r1,

o5 =Ilnas + lmn%hs — Inhy — Imn?ry + Inr;
— 3l3m77"1 + 312m’ya1r1 — lzn'yalrl
+ 302mAyhyry — 20%nyhr,

o4 = — 1°n%hy + Pn?r| + l3fy7"1 — 137a17’1 — l3fyh1r1.

It is difficult to say anything about the number of positive roots of Equation (6). We discuss it numer-
ically in the numerical section. Let us assume x* is the positive root of Equation (6), then C*(x*, y*, 2*)

be the interior equilibrium point of the model (3).

Theorem 3. [39] For Model (3), we have
(i). The equilibrium C; exists only if r; > hs. Similarly, the equilibrium C exists only if 1 > h;.

(i1). The interior equilibrium C* exists, such that x* is the positive root of Equation (6), and also
satisfies [ > ma™.
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4.2 Local Stability Analysis

First, we consider the conditions for the possibilities of trajectories tending to (0,0,0). For this, we
introduce u = z/y and v = y/z and the change of variables (x,y, z) — (u, v, z). Then, the model (3)

can be written as:

d
u:U<1—uv— ai —h1—7’1+7’1'}/v_a2u+h2>7

dt u+1 u+1

dﬁ_v r—1r v+ﬂ—h — 4+ muvz + nuz

dt ! Y u+1 2 ’ )
<L )

dt_Z muvz — nuz) ,

u(0) > 0,v(0) > 0,2(0) > 0,

The system (7) has the the equilibrium Cj (0, 0, 0) and the Jacobian matrix is given by

1—a1—h1—h2 0 0
JCO = 0 1 —2T1’y—h2—l 0 . (8)
0 0 l

Since one of the eigenvalue, say Ay = [ > 0, Cj is always unstable. A similar analysis can be carried
out for other singular points. Further, assume x* be the positive root of (6) and C*(x*, y*, 2*) be the
interior equilibrium point of the model (3). Now, we calculate the Jacobian matrix of the model (3)
to analyze the local stability behavior of the model (3) at some arbitrary equilibrium point C(z, y, 2),

which is given by
Py Py Pi3
J(x,y,2) = | Pu Py Py |, )
P31 P Ps3

where each entry P;; represents the partial derivative of the corresponding functional response multiplied
by its interaction coefficient, ensuring consistency with standard partial derivative notation.

2

2 ary ai1T
Ph=1-——-—"-h, Po=—7"-,
2 (z+y)? (z +y)?
2 2
x asy
P Q= — P =,
1B= 75, 21 @+
2r1vy | aga® 1y’
Poy =11 — — ho, Pyy = 1
22="T1 B + @ +y)° 2, 1723 2
P3y = —mz, Py = —nz, P33 =101—mx —ny.

Theorem 4. For Model (3),
i. The prey free equilibrium point C; is locally asymptotically stable if 1 < a; + hs.

ii. The predator-free equilibrium point C is locally asymptotically stable, if ho > 71 + a2 and
undergoes a transcritical bifurcation if hy = r1 + as.
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Proof. i. The Jacobian matrix at C; is given below
1-— a]; — h1 0 0
Jo, = | az hy—m (olel ]
—mriyl —r17l 0

(7‘1 7}12)71 (’I‘lth)

the eigenvalues of the Jacobian matrix at C are
)\1 =1- ayp — hl,
1
)\2’3 = 5 ((hg —T‘l)i \/(7‘1 —h2)2 — 4(7‘1 —hg)l) .
Hence, C; is locally asymptotically stable, if 1 < a; + ha.
ii. The Jacobian matrix at C5 is
hl—l —aq (1 —h1>2

Jo, =1 0 r1+az—hy O ;
—1 —nl 0
1—h1 m(1—hy)

the eigenvalues of the Jacobian matrix at C'y are

A1 =71+ az — ha,

A 3=

((hl—l)i\/(h1—1)2—4(1—h1) l) .

Thus, if ho > 71 + a2, then C5 is locally asymptotically stable. Further, the model undergoes a

N =

transcritical bifurcation if

hz =171+ as.

O
Theorem 5. The interior equilibrium point C*(x*, y*, z*) locally asymptotically stable if (gj_zgz -5
i % <0,a1 < ag and 2a17172%y? (x + y)? + axx®y?2 > ayriyatytz.
Proof. The Jacobian matrix at C* is given by
€11 Ci2 €13
Jo- = C21  C22 (23 )
cz1 cz2 0
and the characteristic equation is
N+ 1A%+ noX +ng =0, (10)

where

Ny = — C11 — C22,

N2 =C11C22 — C23C32 — C21C12 — C13C31,
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N3 =C11C22C32 + €13C22C31 — C12€23C31 — C13C21C32,

a1 x*y* x* —a1x*? a2

(& - - C = , C13 = —%5

11 (I‘* +y*)2 2* 12 (1'* _|_y*)2 13 Z*Q

. B a2y*2 . B 77’1’7@/* CLQZE*y*

21 =75, C22 = -
(z* +y*)? z* (z* +y*)’
r1 y*Q

Co3 = , €31 = —mz", 32 = —nz

*2
Therefore,
( ) 2&17”1’}/.13*22./*2 an*Sy*Q a17“17x*2y*3
nins—ng=(as —a —
1752 3 2 1 ((E* + y*)22*2 (fE* + y*)4z* (.’E* + y*)4z*
3x*3 piya* iy ma*2y*
+ + + army* —agx”
2*2 Z*S (1.* +y*)22*( 171y 2 )
asT*?y* zt ) + r2yirry*?
(m* +y*)2z* ok (l’* +y*)22*2'
Now, n1 > 0,n3 > 0and nynyg — ng > 0 if
arx*y* ¥ ryyy* asx*y*

—_— <0, < ag,
(iC*'f‘y*)? y* ok ((E* +y*)2 ay az

and

2G1T1’7$*2y*2<$* +y*>2 +a2x*3y*2z* > a]'f“l’}/ﬂ?*zy*gz*.

Ecologically, This implies that the prey population must grow sufficiently to withstand predation and
harvesting, while predator efficiency and resource conversion rates must be high enough relative to
predator mortality. Together, these conditions ensure that both prey and predator populations persist at
stable levels, avoiding extinction or uncontrolled growth. Therefore, by Routh-Hurwitz criteria [31], the
interior equilibrium point C*(x*, y*, 2*) is locally asymptotically stable. O

5 Bifurcation Analysis

In this section, we analyze the bifurcation of the model (3) analytically, according to the harvesting
effect.

5.1 Hopf-Bifurcation

The local birth or death of a periodic solution around the equilibrium is known to be a Hopf bifurcation.
The following theorem provides the condition for the existence of Hopf-bifurcation with respect to the

harvesting parameter as a bifurcation parameter.

Theorem 6. The model (3) is subject to a Hopf-bifurcation if the bifurcation parameter 2* (as a harvest
parameter) exceeds a critical value. The condition for the occurrence of the Hopf-bifurcation at b = h*

is as follows
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1. nl(h*)HQ(h*) — ng(h*) = 07
2" dh* (R@( (h*)))|h:h* # Oa
where A is the root of the characteristic equation associated with interior equilibrium point E*.
Proof. For h = h*, let the characteristic Equation (10) is in the form of
(A2(h*) + na(h*))) (A(R*) + n1(h¥)) = 0. (11)

Thus, +iy/n2(h*) and —ny(h*) are the roots of (11). For the occurrence of the Hopf-bifurcation, at
hy = h*, it must meet the following transversality condition

d *
Zi (RO #0

For all h, the roots are generally in the form

/\1,2(h) e(h) £if(h),
h) = —Ngy h)

Substituting, A; 2(h) = e(h) +if(h) in (11), we have
M(h) +iN(h) =0,

where

To accomplish Equation (11), we should have M (h) = 0 and N(h) = 0, then differentiate M and N
with respect to h, we get

e = p1(h)e' (k) — paf'(h) + p3(h) = 0, (12)
C% = pa(h)e(h) + pr(h) f'(h) + pa(h) = 0, (13)
where
p1(h) =3€*(h) + 2e(h)ni(h) — 2f'(h) + na(h),
p2(h) =6e(h) f(h) + 2f(h)ni(h),
ps(h) =e*(h)n} (h) — f2(h)nf (k) + nh(h)e(h),
pa(h) =2e(h) f(h)n (h) +n5(h) f(h).

On multiply, (12) and (13) by p1 (k) and p2(h) respectively, then add those equations, we get
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¢(h) = _pi(h)ps(h) + Pz(h)m(h)’ (14)

pi(h) + p3(h)
substituting, p;(h) = 0 and f(h)=+/n2(h) on pi(h), p2(h), p3(h) and p(h)at h = h*, we obtain
p1(h") = =2na(h7), p2(h*) = 2n1 (R*)\/na(h*),
pa(h") = na(h*) = na(h")my (A7),

pa(h*) = ny(h*)\/na(h*).

Equation (14) implies

ey () — (W) ma(1))
) = g + ()

dah*
indicates that oscillatory dynamics (population cycles) emerge when the interaction strengths and growth

If nf(h*) — (n1(h*)na(h*))’ # 0, which implies that = (Re(A(h*)))|,_,. # 0,j = 1,2. This

rates cross a critical threshold. For example, if predation efficiency or harvesting rate exceeds certain
values, the system shifts from stable coexistence to sustained oscillations.Hence, the above condition
is guaranteed the transversality condition, i.e., the model (3) exhibits the Hopf-bifurcation at h = h*.
The numerically determined critical value h3 confirms the predicted Hopf bifurcation condition in this
Theorem, showing how the loss of equilibrium stability depends on the harvesting parameter. O

5.2 Transcritical Bifurcation

In the following theorems, the existence of transcritical bifurcation has been established using So-
tomayor’s theorem [39] about the two equilibrium points Cg(#, 0, ﬁ) and C*(x*,y*, 2*).

Theorem 7. The model (3) undergoes a transcritical bifurcation about Cs ( %, 0 as the param-

l
’ m(lfhl) )
eter hy crosses the critical value h3 = r; + as.

Proof. Let X = (z,y, z) and

f(XahQ): le( —ﬂ)+w_h2y ,

z z+y
z (Il — mzx — ny)

0
Jno(Co,ho) = | 0 |,
0
0o 0 O
thz(thQ): 0 -1 0 5
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—1+4+hy  —a;  (1—hy)?
A= Df(Cy,h}) = 0 0 0
—1 —In 0
1—hy m(1—hy)

. _ m—In(1—h
Let V = (v1,v2,v3)" withv; = =2, vy = 1, and vz = %%1)2‘1) and W = (0,1,1)7, be the
eigenvectors of A and A7, respectively corresponding to zero eigenvalue. Now, the three conditions of

Sotomayor’s theorem are computed below:

(1) WTth (027 h;) = 09

00 0\ /[ w
i) WIIDfun(Cohg)VI=(0 1 1) || 0 -1 0 1 || =-1#0
00 0/ \ v

(ifi) W7 [D?f(Ca,h3)(V, V)] = —2nvg — 22m — Zoamilind o4 q,

By Sotomayor Theorem [39], Model (3) undergoes a transcritical bifurcation at the equilibrium point
C5 as the parameter ho varies through the bifurcation value ho = h3. O

Theorem 8. Model (3) undergoes a transcritical bifurcation about C*(z*, y*2*) as the parameter ho

crosses the critical value h5 = r; + as.

Proof. Let X and f(X, ho) are same as in Theorem 7.

0
.fh2 (C*a h?) - _y* 9
0
0 0 O
thz(thz): 0 7]- 0 9
0 0 0
B = Df(C*hj)
az*y* o —a1z*? 22
(z*+y*)i o (x**+y*)2 . 2*2*2
— azy —rmyy . a2 Yy Y
(:L’*+y*)2 o (x*+y*) 2*2
—mz* —nz* 0

Let V = (v1,v2,v3)7 and W = (wy, s, w3)T, be the eigenvectors of B and BT, respectively
corresponding to zero eigenvalue. Now the three conditions of Sotomayor’s theorem are computed
below:

(@) W7 fn(C*, h3) = 0,
(i) WT[Dfny(C*, h3)V] #0
(iii) WT[D2f(C*, h3)(V, V)] # 0.
We see that ho = r1 + ag, the equilibrium C* becomes C. Then the values of is (i), (ii), and (iii)
are similar to the Theorem 7. By Sotomayor Theorem [39], the model (3) undergoes a transcritical

bifurcation at the equilibrium point C* as the parameter hy varies through the bifurcation value hy =
h3. O
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6 Bionomic Equilibrium and Optimal Harvesting

6.1 Bionomic Equilibrium

The term bionomic equilibrium is a combination of the concepts of biological equilibrium and economic
equilibrium [22]. From the model (2), a biological equilibrium is provided by
dX dY dZ
dr T ode dt
Let s1, so be the cost of harvesting per unit effort of intraguild prey and intraguild predator, respec-
tively, and p;p2 be the price per unit biomass of the intraguild prey and intraguild predator. Then, the

economic rent at any time is given by

m =(p1x — 51)E1 + (p2y — s2)Eo

=7 + 7.

Here, 71 and 75 are the net revenues of intraguild prey and intraguild predator species, respectively. Bio-
nomic equilibrium (s, Yoo, Zoos Ploo, F2co) is obtained by solving the following simultaneous equa-
tions. (The XY, Z variables are uppercase in the model (2), now which are considered lowercase in

this section):

01 (1—”6)— Y _p=—o, (15)
pz xr + ay
s (“y)* o _m=o, (16)
qz T+ ay
(¢ —ux —vy) =0, 17)
7T = (p1x — 51)E1 + (p2y — 52) E2 = 0. (18)

To determine the bioeconomic equilibrium, we now consider the following cases.

* Case I: If s; > p;z, then the cost is greater than the revenue for intraguild prey species, the
intraguild prey harvesting will be closed i.e., F; = 0. Only intraguild predator harvesting will be
operational.

From (15)-(17), we have

s

Yoo = —, (19)
b2

Toy = w7 (20)

pau
~c1(ep2 —vs2) ((ep2 — vs2) + ausy)
Zoo = )
pups ((c1 (ep2 — vs2) + ause) — auss)

Using (19)-(21) in (15) we obtain

@n

B, _ccd (cpa — vs2) ((ep2 — vs2) + aucs)
200 —
gcy (epa — v82) (epa — vs2 + auss)
 Casapu ((c1 (ep2—vs2)+auss) —auss)
gcy (epa—vs2) (epa —vsa+auss)
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Bgci(cp2 — vs2)
qei (cpa — vsg) (cp2 — vsy + ausy)’

(22)
Therefore, Fono > 0, if

cic2q(cpe—vs2) (cp2 —vs2) +aucs)+ Bycr (cpa—vs2)

> casopu ((e1 (cp2—vs2)+auss)+auss)

+ Casell: If so > poy, that s, the cost exceeds the revenue for the intraguild predator, the intraguild
predator harvesting will be discontinued, i.e., F2 = 0. Only intraguild prey harvesting remains
active. Again, from Equations (15)-(17), we derive:

s
Yoo = — (23)
b1
Ty = w7 (24)
p1v
_ (ep1 — usy) (cas1v + caa (ep1 — usy)) 25)
7 qupy (c251v + coa (epy — usy) + Busy)
Using (23)-(25) in (15), we obtain
_c1p(epr—usy)(s1v+a (cpr—usy))
oo =
" pey (epi—usy) (s1v+a (cpr—usy))
B c151qv(cas1v+coa(cpr —usy HPvs1)
peo (ep1—usy) (s1v+a (epr—usy))
apca(cpri—usy) 26)

 pes (cpr—usy) (syv+a(cpy—usy))’
Therefore, F1o > 0, if

cip(epr—usy) (s1vta (ecpi—us1))> apez(cpr—usy)
+ c181qu(cas1vtesalepr—usy +Bvsy) .

e CaseIIl: If s; < pyx and s2 < poy, then the whole model will be in operation, and it gives

S1
Too = —»
b1
52
Yoo = —-
b2

Here, the biological parameters ¢, u, v and the economical parameters c1, ¢z, p1, p2 must satisfy

the relation
US1P1 + VS2P2

P1p2

From (15), we have

Pl VT N o ) 27)
S1p2 + ap1S2 1 p;m

Similarly, from (16), we obtain

O L T - (28)

S1p2 + ap1s2 ] qp2
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6.2 Optimal Harvesting Policy

We formulate the optimal harvesting problem for the nondimensionalized system, aiming to maximize
the discounted net revenue from harvesting both the prey and the intermediate predator.

oo

J(E1, Es) :/ e ((prx—s51) E1 4 (pay —s2) Ez) dt, 29
0

where z(t) and y(t) are prey and intermediate predator densities, E (¢) and E5(t) are harvesting efforts,
p1, P2 are unit prices, si, so are harvesting costs, and § > 0 is the discount rate.
Subject to the constraints of (2) is

0< Ei(t) < EM™ i=12. (30)
By Pontryagin’s maximum principle, we construct the Hamiltonian as follows for this problem:
H =" ((pra = s1) B1 + (p2y — 52) E»)
nforli5) )

+ A2 <C2y (1 - y) + Pry E2y>
qz T+ ay

+ A3 (2(c — ux —vy)),

where, the adjoint variable are A; = \;(¢), i=1,2,3.

Now, 8%{1 =0, % = 0, we have
_ S
A= (p =2, (1)
Ay = e~ 0 <p2 - ‘?) . (32)

Then, adjoint equations are

Do OH D OH D 0H -
d  ox’ dt Oy dt = 09z’

Using H and the third equation of (33), we obtain

dXs OH cra? 2y’
i </\1pZQ+)\2qZ2+/\3(c—ux—vy) )
which implies
@ _ c1x? _ ey
dt ! pz2 2 qz?

From (31) and (32), we get
d\s 5 ( 31> 1z st 52\ oy’
a € P1 z/) 22 € P2 Y 22 )

e S sz S C: 2
Az = — {(pll) 12+<p22> 2:"2} (34)
x/ pz v /) qz

which implies
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Let, the constant of integration vanishes, hence \;e® (i = 1,2, 3) of three species are bounded. Using

(31) and (32), we get from the first two adjoint equations in (33)

ge~* (Pl - il) = - (6_6tP1E1 + A <(amy - clx)

x x+ay)? pz
apy?
+ A2 @+ ay)? A3u2> , (35)
and
2
Se—ot 82 (oot 4 ox
e <P2 ” e pai2+ 1(x+ay)2
apry cy\
Ao <(x n ay)2 + . ) /\31)2’) . (36)

Applying the equilibrium condition and substituting values of A;, for+ = 1,2, 3 in (35) and (36), we get

51 S1 axy c1x
B )+ 3) (G55
p1fa pr— +(P1 . @tay)?  pe

and
0.30)
012} -
o.1o—‘ |
0.20
0.08} '
* \ > 015
0.06/ )
[ I‘ | ]n N 010"
“-(’4'. I\ \UzV.'\\,’\/\;"\f\/vvv«vmm—w--w7-
(/]
o.oz—‘L Ul,l v 0.05)
o 200 00 600 800 1000 0 200 400 600 800 1000
time time
==
P ‘ -
‘ |
08"
\
|
|
0.6
[ |
N |
04 |
\
|
0.2+ o3
7
< | //o.z
0.0 . . . - . . 0.0 ‘ Sy
0 200 400 600 800 1000 . Ry S
time 00 ‘//

Figure 2: The locally asymptotically stable time series (a), (b), (¢) and phase portrait (d) for the model (3) param-
eters values in (39) with h; = 0.48 and he = 0.25 near C*(0.037733,0.0871706, 0.220599).

2
_ _ 52 I A
poby =0 (p2 y) * (pl x> ((af +ay)2>
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_< _5_2)<M_%>
b2 y (x +ay)?* qz

v clm2 S1 02y2 52
=52 (Ih——)-i—— p2—— 1]
z p T q Y

D1 x+ay)?: pz Spz
S o-3) (2 2)
and
2 2
B (( =37 <(x TP o )
)G e

Hence, solve the (37) and (38) together with steady-state equations we get an optimal solutions (x5, ys, 2s)
and the optimal harvesting efforts £; and Fs.

7 Numerical Results

0.20 ’ "] 030
[ 0.25"
0.15-
0.20
x 010/ > 0.15
[ 0.10
0.05- 1
[ 0.05"
0.00-, 4 : ] ‘ : ‘ ;
0 200 400 600 800 1000 0 200 400 600 800 1000

time time

L I T
3.0
25-
20
1.5F

1.0

05"

0.0} ; ) i : B 010 ;
i

0 200 400 600 800 1000 xoass |7

0.20

time

Figure 3: The occurrence of periodic solution in time series (a), (b), (c) and phase portrait (d) for the model (3)
with the parameter values in (39), h1 = 0.53, and h2 = 0.25 near C'*(0.0372941, 0.0873199, 0.3117236).
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0.46 0.48 0.50 0.52 0.54 E 0.46 0.48 0.50 052 0.54 046 048 0.50 0.52 0.54
hy hy hs

Figure 4: The bifurcation diagrams for the model (3) with parameter values in (39), ho = 0.25, and h; €
(0.1,0.6).
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Figure 6: The z, y, and 2z components of equilibria C> and C* for (3) with parameter values in (39), h1 = 0.48 and
ha € (0.1, 1). The red curves represent the stable and black curves represent the unstable branches of the equilibria
C5 and C*, respectively. The Hopf bifurcation occurs at h3, marked by the vertical dashed line, indicating the
transition from stable equilibrium to periodic oscillations.
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“
HB curve

02 03 04 05 06 07 08 09 10
3

0 0.2 04 i 0.6 0.8 1.0

Figure 7: The two-parameter bifurcation diagram for the model (3) in (a) h2 € (0.01,0.8) vs hy € (0.4,1.0),
(b) ! € (0.1,1.0) vs h1 € (0,0.6), and (c) I € (0,1) vs ha € (0,0.5) with other parameters are given in (39).
The blue color line denotes the Hopf bifurcation (HB) curve, which separates the stable and periodic regions. The
cyan color line separates the periodic and population extinction regions. The stable region is denoted in green, the
periodic region is given in red, and the brown color represents the region where the populations become extinct.

In order to verify the analytical findings and stability results obtained in the previous sections, we
numerically simulate the solutions of the model (3). We perform numerical tests for the model (3) with
a different set of parameter values. Now, we consider the set of values of the parameters as

ar = 0.50,71 = 0.019, az = 0.79, v = 1.02,

(39)
[ =0.25,m = 0.85, and n = 2.5.

The parameter 71 is the intrinsic (per-capita) growth rate of prey species, expressed per unit time. By
contrast, a9 is an attack/interaction coefficient (rate of successful encounters per predator per prey) and
has a different dimensional interpretation. Parameters of different types are not expected to have similar
numerical magnitudes because they measure different processes and have different units. If the time
unit in the model is years, 1 = 0.019 corresponds to a per-year growth rate of 1.9% which is entirely
plausible for long-lived species or populations under strong resource limitation or exploitation. If the
time unit is days, the value likewise represents a very slow-growing population (=1.9% per day integrated
rate), which may be appropriate for certain biological or managed populations. We now state the model’s
time units explicitly and note that an intrinsic growth rate of this order is consistent with species that
reproduce slowly or have strong density dependence/harvesting pressure.

Now, we investigate the harvesting parameters individually. In order to show the effect of harvesting
parameters in the considered model. Assume ~; = 0.48 and he = 0.25, and the model (3) is locally
asymptotically stable about the interior equilibrium point C*(0.037733, 0.0871706, 0.220599), with the
remaining parameter values in (39), as shown in the time series and phase portrait in Figure 3 The stable
behavior indicates that the small fluctuations in initial population size do not affect the population over
a longer period of time, i.e., the long-term survival of both species. When we increase the value of h; at
some critical value, h; = 0.51895, the model (3) loses its stability and undergoes Hopf bifurcation. Also,
satisfy the Theorem 6, i.e., n (h)ng(h})—ns(hi) = 0and ng (ht) — (n1 (h)na(ht)) = —0.024916 #
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0 which ensure the existence of Hopf bifurcation. The existence of a periodic solution in time serious
and phase portrait for the model (3) at h; = 0.53 near C*(0.0372941, 0.0873199, 0.3117236) is shown
in Figure 3. For clear representation, the one-parameter bifurcation diagram with parameters in (39),
he = 0.25,and hy € (0.45,0.55) is plotted in the Figure 4.

It is also necessary to investigate the impact of another harvesting parameter ho. To validate the
bifurcation structure, we performed eigenvalue continuation and time-series simulations from multiple
initial conditions. The results show coexistence of a stable equilibrium and a stable limit cycle for
certain values of ho, confirming bistability. This indicates a subcritical Hopf bifurcation followed by
a fold of limit cycles. Accordingly, Figure 5 has been updated to display both the stable equilibrium
branch and the stable periodic orbit branch. For a detailed understanding of the dynamics. We chose
the parameter values in (39), h;y = 0.48 and vary he € (0.01,0.25), and plotted the one-parameter
bifurcation diagram in Figure 5. It shows that the model (3) is locally asymptotically stable for hy €
(0,0.04), periodic solution for hy € (0.04,0.195), and again become locally asymptotically stable near
for hy € (0.195,0.25) near C*. It is clear that the model (3) undergoes Hopf bifurcation at two points
within the parameter range ho € (0, 0.25). On further increasing the value ho in the range ho € (0.25,1),
the model (3) exhibits transcritical bifurcation behavior between the equilibrium points Co and C*.
First, the equilibrium C* is stable, whereas C5 is unstable as ho increases and crosses the critical value
ho = 11 + a9, then the equilibrium C* becomes unstable, and C5 becomes stable, which is depicted in
Figure 6. Also, the model (3) satisfy the Theorems 7 and 8 at ho = h5 = 71 + ag, which ensures the
existence of transcritical bifurcation between Cs and C*. When hy = r1 + a9 the model equilibrium
C™* becomes C3, which shows that a higher harvesting rate h2 in the second species causes to die out y
and results in the survival of only species x and z respectively. For a clear illustration, the dynamical
changes of the model (3) with the influence of harvesting effects, the two-parameter bifurcation diagrams
are plotted in Figure 7. In Figure 7(a) the two-parameter bifurcation diagram is plotted for ho and hq,
similarly for [ and h; in Figure 7(b) and [ and Ao in Figure 7(c). In which the green color represents the
stable region, the red color represents the unstable region, and the brown color represents the extinction
region. Furthermore, it is helpful to find extinction and survival regions of species with the choice of
harvesting parameters h; and he. Moreover, the nonzero bionomic equilibrium is found on the surface
encompassing the two curves, which is illustrated in Figure 8.

Here, we solve the model (2), we obtain the optimal solutions
(0.762046195,0.476130367, 1.928739577)
with corresponding optimal efforts are £; = 0.572646 and E5 = 0.809736. Taking

a=15, a=0.1 pB=15 ¢=16, «vu=085 v=2 ¢ =p=1,
ca=0.2, ¢=0.3, p =15 s =10, py =25, sy=10andd =>5.

Then, we get the maximum value of the net revenues

J = / e~ °12.52718923dt = 0.505437846.
0
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Figure 8: For the set parameters ¢; = 0.47, c2 = 0.5, p1 = 0.6, po = 0.7, p = 045, ¢ = 0.55 @ = 0.3,
B8 =0.5,s1 = 0.4, s2 = 0.5, a = 0.5 red curve indicates z vs. E'> and green curve indicates z vs. F

8 Conclusion

This study examines the population model of the three species, which are intraguild prey, intraguild
predators, and biotic resources. The process of population reduction by harvesting takes place in the
population. Changes in harvesting parameters in each population provide an understanding of the dy-
namics of harvesting in the considered model. Bifurcation and stability analysis help us determine the
Hopf-bifurcation in our model due to the change in the signs of the associated eigenvalues of the corre-
sponding model. Prey decline in our model is primarily influenced by predation, but because the variable
Z affects both prey and predator, extinction arises from their coupled dynamics rather than predation
alone. Thus, the mechanism of extinction depends on the parameter regime, with predation dominating
in some cases and resource effects amplifying it in others. The coexistence of prey, predator, and biotic
resource can exist only in a small parameter range, which is determined by the exact combination of
prey and predator assault rates on the resource, as well as the predator’s predation rate. We begin by
non-dimensionalizing the basic model and reducing the number of parameters. However, the original
model has been considered while dealing with the harvesting attempts of E'; and E». These results show
that the harvest affects the survival of one or more species in the ecosystem. In our model, we showed
how the harvesting parameters help have a greater impact on the survival of species by plotting vari-
ous bifurcation diagrams. Also, we described the existence of transcritical bifurcation in our considered
model, which is a danger sign for species extinction due to over-harvesting. Therefore, we must control
harvesting activities to stop population extinction in the ecosystem. Here, we investigated the dynamics
of the bionomic equilibrium. Finally, the optimal harvesting policy is derived using Pontryagin’s max-
imum principle. With the control of harvesting efforts, 0 < E; < E"%* has a definite condition, i.e.,
the internal equilibrium point is constant and gives maximum profit. Predators and prey populations can
coexist, although both populations are harvested by a sustained effort. Using Pontryagin’s maximization
policy, we found a certain value in the harvest effort, F'; and F», which is related to a fixed equilibrium

point that increases the net current revenue.

In this paper, we investigated the intraguild predation model with individual harvesting techniques
and ratio-dependent functional responses. As far as future research goes, there are several possibilities
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for this study. One important direction is that we can expand on the notion of this article by putting a
gestation time delay on the intraguild predator in our examined model. We leave it for future work.
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