[1] Allgöwer, F., Zheng, A. (Eds.). (2012). “Nonlinear model predictive control”, (Vol. 26). Birkhäuser.
[2] Alruwaily, Y., Kharrat, M. (2025). “Adaptive neural control approach for switched nonlinear discrete-time systems with actuator faults and input dead zone”. Discrete Dynamics in Nature and Society, 2025(1), 2364395, doi:https://doi.org/10.1155/ddns/2364395.
[3] Ang, J.S.R., Sun, C.T., Mizutani, E. (1997). “Neuro-fuzzy and soft computing–A computational approach to learning and machine intelligence [Book review]”. IEEE Transactions on Automatic Control, 42(10), 1482-1484, doi:https://doi.org/10.1109/TAC.1997.633847.
[4] Astolfi, D., Praly, L., Marconi, L. (2022). “Harmonic internal models for structurally robust periodic output regulation”. Systems & Control Letters, 161, 105154, doi:https://doi.org/10.1016/j.sysconle.2022.105154.
[5] Åström, K.J., Hägglund, T. (2006). “Advanced PID Control”. Research Triangle Park, NC: ISA.
[6] Bechlioulis, C.P., Rovithakis, G.A. (2008). “Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance”. IEEE Transactions on Automatic Control, 53(9), 2090-2099, doi:https://doi.org/10.1109/TAC.2008.929402.
[7] Boiko, I.M. (2011). “Analysis of chattering in sliding mode control systems with continuous boundary layer approximation of discontinuous control”. In: Proceedings of the 2011 American Control Conference, 757-762, IEEE, doi:https://doi.org/10.1109/ACC.2011.5990793.
[8] Bucci, M.A., Semeraro, O., Allauzen, A., Wisniewski, G., Cordier, L., Mathelin, L. (2019). “Control of chaotic systems by deep reinforcement learning”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2231), 20190351, doi:https://doi.org/10.1098/rspa.2019.0351.
[9] Devaney, R.L. (1989). “An Introduction to Chaotic Dynamical Systems”. 2nd ed., Redwood City, CA: Addison-Wesley.
[10] Ding, H., Qian, J., Tian, D., Zeng, Y. (2025). “Norm-based adaptive control with a novel practical predefined-time sliding mode for chaotic system synchronization”.
Mathematics, 13(5), 748, doi:
https://doi.org/10.3390/math13050748.
[11] Ebrahimipour, M., Nezhadhosein, S., Mirhosseini-Alizamini, S.M. (2024). “Optimal adaptive sliding mode control for a class of nonlinear affine systems”. Control and Optimization in Applied Mathematics, 9(2), 123-138, doi:https://doi.org/10.30473/coam.2023.67868.1236.
12] Edwards, C., Spurgeon, S.K. (1998). “Sliding mode control: Theory and applications”. Taylor & Francis, doi:https://doi.org/10.1201/9781498701822.
[13] Erbatur, K., Kaynak, O., Sabanovic, A., Rudas, I. (1996). “Fuzzy adaptive sliding mode control of a direct drive robot”. Robotics and Autonomous Systems, 19(2), 215-227, doi:https://doi.org/10.1016/S0921-8890(96)00049-8.
[14] Fan, H.-Y., Lampinen, J. (2003). “A trigonometric mutation operation to differential evolution”. Journal of Global Optimization, 27(1), 105-129, doi:https://doi.org/10.1023/A:1024653025686.
[15] Feng, Y., Yu, X. (2009). “Sliding mode control of chaotic systems”. In: Control of Chaos in Nonlinear Circuits and Systems, 55-77.
[16] Flores-Padilla, M., Treesatayapun, C. (2024). “Data-driven adaptive controller based on hyperbolic cost function for non-affine discrete-time systems with variant control direction”. Applied System Innovation, 7(3), 38, doi:https://doi.org/10.3390/asi7030038.
[17] Fridman, E. (2014). “Introduction to time-delay systems: Analysis and control”. Birkhäuser Cham, doi:https://doi.org/10.1007/978-3-319-09393-2.
[18] Fridman, E., Shaked, U. (2002). “A descriptor system approach to H/sub /spl infin// control of linear time-delay systems”. IEEE Transactions on Automatic Control, 47(2), 253-270, doi:https://doi.org/10.1109/9.983353.
[19] Ge, S.S., Hong, F., Lee, T.H. (2004). “Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients”. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1), 499-516, doi:https://doi.org/10.1109/TSMCB.2003.817055.
[20] Gee, S.S., Lee, T.H., Harris, C.J. (1998). “Adaptive neural network control of robotic manipulators”. World Scientific Series in Robotics and Intelligent Systems: Volume 19, doi:https://doi.org/10.1142/3774.
[21] Gholami, M., Mirhosseini-Alizamini, S., Heydari, A. (2025). “Designing a sliding mode controller for a class of multi-controller COVID-19 disease model”. Iranian Journal of Numerical Analysis and Optimization, 15(1), 27-53, doi:https://doi.org/10.22067/ijnao.2024.85859.1355.
[22] Grüne, L., Pannek, J. (2016). “Nonlinear model predictive control”. In: Nonlinear Model Predictive Control. Communications and Control Engineering. Springer, Cham, doi:https://doi.org/10.1007/978-3-319-46024-6_3.
[23] Gu, K., Kharitonov, V.L., Chen, J. (2003). “Stability of time-delay systems”. Birkhäuser Boston, MA, doi:https://doi.org/10.1007/978-1-4612-0039-0.
[24] Hornik, K., Stinchcombe, M., White, H. (1989). “Multilayer feedforward networks are universal approximators”. Neural Networks, 2(5), 359-366, doi:https://doi.org/10.1016/0893-6080(89)90020-8.
[25] Jiang, B., Li, J., Yang, S. (2022). “An improved sliding mode approach for trajectory following control of nonholonomic mobile AGV”. Scientific Reports, 12(1), 17763, doi:https://doi.org/10.1038/s41598-022-22697-w.
[26] Khaledi, G., Mirhosseini-Alizamini, S.M., Ghamgosar, M. (2025). “LQR technique-based SMC design for a class of uncertain time-delay Conic nonlinear systems”. Computational Methods for Differential Equations, 13(2), 505-523, doi:https://doi.org/10.22034/cmde.2024.57243.2394.
[27] Khalil, H.K. (2002). “Nonlinear Systems”. 3rd Edition, Prentice-Hall, Inc., Upper Saddle River.
[28] Khalili Amirabadi, R., Fard, O.S., Mansoori, A. (2021). “A novel fuzzy sliding mode control approach for chaotic systems”. Iranian Journal of Fuzzy Systems, 18(6), 133-150, doi:https//doi.org/10.22111/ijfs.2021.6338.
[29] Kharitonov, V.L. (2013). “Time-delay systems: Lyapunov functionals and matrices”. Birkhäuser Boston, MA, doi:https://doi.org/10.1007/978-0-8176-8367-2.
[30] Krasovskii, N.N. (1963). “Stability of Motion. Applications of Lyapunov’s second method to differential systems and equations with delay”. Stanford, CA: Stanford University Press.
[31] Lafay, J.F. (2013). “Delay systems: From theory to numerics and applications”. Tomas Vyhlidal, J.F. Lafay, R. Sipahi. Springer, pp.404, 2014, Advances in Delay and Dynamics, S.-I. Niculescu,978-3-319-01694-8, doi:https://dx.doi.org/10.1007/978-3-319-01695-5.
[32] Lakshmanan, M., Senthilkumar, D.V. (2011). “Dynamics of nonlinear time-delay systems”. Springer Berlin, Heidelberg, doi:https://doi.org/10.1007/978-3-642-14938-2.
[33] Lasri, R., Rojas, I., Pomares, H., Rojas, F. (2011). “A new methodology for adaptive fuzzy controller: Comparison performance against several control algorithms in a real-time control process”. In: Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2011), 470-474, doi:https://doi.org/10.5220/0003647204700474.
[34] Lee, H., Utkin, V.I. (2007). “Chattering suppression methods in sliding mode control systems”. Annual Reviews in Control, 31(2), 179-188, doi:https://doi.org/10.1016/j.arcontrol.2007.08.001.
[35] Leister, D.D., Koeln, J.P. (2024). “Robust model predictive control for nonlinear discrete-time systems using iterative time-varying constraint tightening”. 2025 American Control Conference (ACC), Denver, CO, USA, 2025, pp. 71-78, doi:https://doi.org/10.23919/ACC63710.2025.11108089.
[36] Levant, A. (2010). “Chattering analysis”. IEEE Transactions on Automatic Control, 55(6), 1380-1389, doi:https://doi.org/10.1109/TAC.2010.2041973.
[37] Liang, Y., Zhang, D., Li, G., Wu, T. (2022). “Adaptive chattering-free PID sliding mode control for tracking problem of uncertain dynamical systems”. Electronics, 11(21), 3499, doi:https://doi.org/10.3390/electronics11213499.
[38] Lin, W., Lin, Y. (2024). “A Lyapunov-Krasovskii method for semiglobal stabilization of a class of time-delay nonlinear systems with uncontrollable linearization by linear feedback”. IEEE Transactions on Automatic Control, 69(6), 4110-4117, doi:https://doi.org/10.1109/TAC.2023.3347340.
[39] Liu, Y.J., Xu, F., Tang, L. (2023). “Tangent barrier Lyapunov function-based adaptive event-triggered control for uncertain flexible beam systems”. Automatica, 152, doi:https://doi.org/10.1016/j.automatica.2023.110976.
[40] Long, F., Jiang, L., He, Y., Wu, M. (2019). ”Stability analysis of systems with time-varying delay via novel augmented Lyapunov–Krasovskii functionals and an improved integral inequality“. Applied Mathematics and Computation, 357, 325-337, doi:https://doi.org/10.1016/j.amc.2019.04.004.
[41] Lorenz, E.N. (1963). “Deterministic nonperiodic flow”. Journal of the Atmospheric Sciences, 20(2), 130-141, doi:https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2.
[42] Maciejowski, J.M., Huzmezan, M. (1997). “Predictive control”. In: Magni, JF., Bennani, S., Terlouw, J. (eds) Robust Flight Control. Lecture Notes in Control and Information Sciences, vol 224. Springer, Berlin, Heidelberg, doi:https://doi.org/10.1007/BFb0113856.
[43] Mayne, D.Q. et al. (2000). “Constrained model predictive control: Stability and optimality”. Automatica, 36(6), 789-814, doi:https://doi.org/10.1016/S0005-1098(99)00214-9.
[44] Medina, L., Guerra, G., Herrera, M., Guevara, L., Camacho, O. (2024). “Trajectory tracking for non-holonomic mobile robots: A comparison of sliding mode control approaches”. Results in Engineering, 22, doi:https://doi.org/10.1016/j.rineng.2024.102105.
[45] Michalewicz, Z. (1996). “Genetic Algorithms + Data Structures = Evolution Programs”. Springer Berlin, Heidelberg, doi:https://doi.org/10.1007/978-3-662-03315-9.
[46] Michiels, W., Niculescu, S.-I. (2014). “Stability, control, and computation for time-delay systems: An eigenvalue-based approach”. Second Edition, SIAM, doi:https://doi.org/10.1137/1.9781611973631.
[47] Nicaise, S., Pignotti, C., Valein, J. (2011). “Exponential stability of the wave equation with boundary time-varying delay”. Discrete and Continuous Dynamical Systems-Series S, 4(3), 693-722, doi:https://doi.org/10.3934/dcdss.2011.4.693.
[49] Otto, A., Just, W., Radons, G. (2019). “Nonlinear dynamics of delay systems: An overview”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2153), 20180389, doi:https://doi.org/10.1098/rsta.2018.0389.
[50] Rawlings, J.B., Mayne, D.Q., Diehl, M. (2017). “Model predictive control: Theory, computation, and design”. vol. 2. Madison, WI: Nob Hill Publishing. [51] Richard, J.-P. (2003). “Time-delay systems: An overview of some recent advances and open problems”. Automatica, 39(10), 1667-1694, doi:https://doi.org/10.1016/S0005-1098(03)00167-5.
[52] Roldán-Caballero, A., Pérez-Cruz, J.H., Hernández-Márquez, E., García-Sánchez, J.R., Ponce-Silva, M., Rubio, J.D.J., Mendoza-Chegue, A. (2023). “Synchronization of a new chaotic system using adaptive control: Design and experimental implementation”. Complexity, 2023(1), doi:https://doi.org/10.1155/2023/2881192.
[53] Saeed, N.A., Saleh, H.A., El-Ganaini, W.A., Kamel, M., Mohamed, M.S. (2023). “On a new three-dimensional chaotic system with adaptive control and chaos synchronization”. Shock and Vibration, 2023(1), doi:https://doi.org/10.1155/2023/1969500.
[54] Schwenzer, M., Ay, M., Bergs, T., Abel, D. (2021). “Review on model predictive control: An engineering perspective”. International Journal of Advanced Manufacturing Technology, 117(5-6), 1327-1349, doi:https://doi.org/10.1007/s00170-021-07682-3.
[55] Shao, K., Zheng, J., Yang, C., Xu, F., Wang, X., Li, X. (2021). “Chattering-free adaptive sliding-mode control of nonlinear systems with unknown disturbances”. Computers & Electrical Engineering, 96(Part A), doi:https://doi.org/10.1016/j.compeleceng.2021.107538.
[56] Su, X., Philip Chen, C.L., Liu, Zh. (2021). “Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults. Information Sciences, 581, 553-566, doi:https://doi.org/10.1016/j.ins.2021.09.055.
[57] Tong, X., Cheng, S.S. (2023). “Global stabilization of antipodal points on n-sphere with application to attitude tracking”. IEEE Transactions on Automatic Control, 69(2), 1186-1193, doi:https://doi.org/10.1109/TAC.2023.3281341.
[58] Utkin, V.I. (2013). “Sliding modes in control and optimization”. Springer Berlin, Heidelberg, doi:https://doi.org/10.1007/978-3-642-84379-2.
[59] Wang, L.X. (1992). “Fuzzy systems are universal approximators”. [1992 Proceedings] IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, 1163-1170, doi:https://doi.org/10.1109/FUZZY.1992.258721.
[60] Wernecke, H., Sándor, B., Gros, C. (2019). “Chaos in time delay systems, an educational review”. Physics Reports, 824, 1-40, doi:https://doi.org/10.1016/j.physrep.2019.08.001.
[61] Zhang, M., Zang, H., Bai, L. (2022). “A new predefined-time sliding mode control scheme for synchronizing chaotic systems”. Chaos, Solitons & Fractals, 164, doi:https://doi.org/10.1016/j.chaos.2022.112745.
[62] Zhu, E., Xu, M., Pi, D. (2023). “Hopf bifurcation and stability of the double-delay Lorenz system”. International Journal of Bifurcation and Chaos, 33(2), doi:https://doi.org/10.1142. S0218127423500153.