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Abstract. This paper introduces a robust hybrid adaptive control framework
for stabilizing chaotic systems under persistent, potentially large time delays.
The controller is based on an enhanced Lyapunov—Krasovskii functional that
integrates an energy-capturing integral term with a bounded trigonometric
term. The integral term accounts for historical effects by quantifying cumu-
lative energy over the delay period, while the trigonometric term attenuates
nonlinear oscillations. Embedding these components in a single control law
yields stabilization of all state variables to the equilibrium despite substantial
delays. We establish uniform ultimate boundedness, showing that trajectories
enter a compact neighborhood of the equilibrium after a finite transient and
subsequently converge. Adjustable gains enable practitioners to determine
the convergence radius and the size of the attraction region according to
practical requirements. The method is validated on the delayed Lorenz system;
simulations with a 20-second delay demonstrate rapid convergence to a small
neighborhood of the equilibrium, with the Lyapunov functional derivative
remaining non-positive. A comparative study with established controllers
underscores the proposed approach’s favorable trade-offs among computational
Overall, the

proposed framework delivers a practical, robust, and high-performance solution

cost, oscillation suppression, and explicit stability guarantees.

for controlling chaotic systems in the presence of large time delays.
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1 Introduction

Chaotic dynamical systems, categorized by their intrinsic nonlinearity, extreme sensitivity to initial con-
ditions, and the occurrence of strange attractors, seem to be critically essential in modeling and studying
multifaceted spectacles across miscellaneous arenas such as control engineering, physics, biology, and
power networks. A momentous trial in their analysis and control, however, arises from the existence of
time delays. These delays can arise from hardware restrictions, like signal processing latency, or from
the system’s inherent dynamics, such as heat transfer in non-uniform media. In chemical reactors, for ex-
ample, sensor and actuator delays can activate chaotic behavior, highlighting the necessity for advanced
control strategies [48, 51, 54].

Both theoretical and experimental studies have established that even minor time delays (e.g., 7 = 0.1
seconds) can precipitate a transition from stability to chaos in nonlinear systems [17, 60]. This issue is
critically important in sensitive applications like smart power grids, robotics, and Internet of Things
(IoT) systems, where delays in data transmission or signal processing can disastrously destabilize con-
troller performance [38]. Recent years have witnessed substantial progress in controlling chaotic systems
with time delays, leading to a growing interest in hybrid methodologies [10]. For example, one study
employed neural adaptive control to manage input constraints in chaotic systems [2]. Concurrently,
machine learning-based techniques, chiefly deep reinforcement learning, have gathered considerable at-
tention. Researchers have, for instance, utilized a dual-controller framework to simultaneously address
both inherent instabilities and time delays [8], although this approach can be computationally tough.
Alongside these evolutions, extensive research has focused on the design and application of adaptive
and sliding mode controllers [11, 21, 26, 52, 53, 61]. These investigations clearly demonstrate the high
efficacy of such control strategies in both theoretical conditions and practical implementations, signifi-
cantly broadening the applicability of advanced control in managing the complex dynamics of chaotic
systems.

Within the control of nonlinear dynamical systems, a primary challenge is the emergence of un-
desirable nonlinear oscillations, which can degrade performance and jeopardize system stability. To
counteract this phenomenon, mathematical functions with promising geometric and dynamic properties
are often employed as key operators in control law design or in the construction of Lyapunov functions.
These include trigonometric functions like sin(6) and cos(f) [4, 6, 14, 37, 57] and hyperbolic functions
such as tanh(6) [16, 25, 39, 44]. Such functions are selected for their bounded and smooth nature, which
enables the effective suppression of nonlinear oscillations, improves transient response, and ultimately
facilitates the system’s convergence to its equilibrium. This approach provides a foundation for develop-
ing more sophisticated control strategies to tackle complex dynamics and ensure the stability of nonlinear
systems.

Despite these inspiring progressions, ensuring the stability of dynamical systems in the presence
of large time delays remains a fundamental challenge in modern control theory. This challenge is pro-
foundly amplified in nonlinear systems with chaotic dynamics, which are intrinsically sensitive to initial
conditions and exhibit complex behaviors, thereby imposing severe limitations on the design of effec-
tive and practical controllers. In response to this problem, this paper introduces a novel controller design
framework founded on the construction of a hybrid-structured Lyapunov-Krasovskii Functional (LKF).
This integrated approach concurrently addresses the difficulties arising from both time delay and system
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nonlinearity, ensuring practical convergence to the equilibrium, particularly for chaotic systems with
substantial time delays. The core innovation of this method lies in the intelligent fusion of two distinct
mechanisms within the LKF structure:

* An integral term: This component incorporates the history of the system’s states, compensat-
ing for the destabilizing effects of the delay based on the theoretical principles of Lyapunov-
Krasovskii functionals ([17, 30]).

* A trigonometric term: A bounded trigonometric term is employed to effectively constrain the
system’s nonlinear dynamics. This limits the amplitude of nonlinear oscillations, enhances the

transient response, and facilitates convergence to the equilibrium point.

This work extends beyond a mere claim of stability by providing a rigorous theoretical analysis. We
present a mathematical proof that guarantees Uniform Ultimate Boundedness (UUB) for the closed-loop
system. Specifically, it is shown that by systematically adjusting the controller gains, the dimensions
of the ultimate bound set can be controllably reduced. This implies that all system state trajectories,
after a finite time, enter and then remain within a compact set in the neighborhood of the equilibrium,
eventually converging to it. This theoretical achievement provides a solid foundation for the outstanding
performance observed in simulations, where the state variables of the Lorenz chaotic system converge
rapidly to a very small vicinity of the origin, even when subjected to significant input delays (e.g., 20
seconds). The validity of the stability analysis is further corroborated empirically, as the derivative of the
Lyapunov functional remains non-positive throughout the simulations, attesting to energy dissipation and
system stability. To lay the groundwork for these achievements, a comparative analysis is also presented,
contrasting the proposed framework with prominent methods such as Sliding Mode Control (SMC),
Model Predictive Control (MPC), and Adaptive Intelligent Control (AIC), highlighting its unique trade-
offs and advantages. Ultimately, this research bridges the gap between rigorous theoretical guarantees
and practical engineering requirements in the adaptive and robust control of chaotic systems with time
delays.

The remainder of this paper is organized as follows. Section 2 introduces important notions and the
system model. Section 3 is devoted to the formulation of the enhanced Lyapunov function and the design
and rigorous stability analysis of the hybrid adaptive controller. Section 4 presents simulation results and
a discussion linking them to the theoretical findings. The final section bids a summary, conclusions, and

recommendations for future research.

2 Key Definitions

Definition 1. Chaotic systems are nonlinear and deterministic dynamical systems that, despite following
deterministic laws, exhibit random long-term behavior due to exponential sensitivity to initial conditions.
In other words, even a slight change in the initial conditions can lead to exponential differences in the
system’s evolutionary trajectory. Key characteristics of these systems include extreme sensitivity to
initial conditions, topological transitivity, and dense periodic orbits [9].

Definition 2. The Lorenz chaotic system, serving as a classical and prototypical model in the study of
turbulent atmospheric flows, exhibits nonlinear dynamical behavior through the equations
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@(t) = o(y(t) — =(t)),
() (p = 2(t) —y(1), (M
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where the state variables x(t), y(t), z(t) and the standard parameters ¢ = 10, 5 = 3§, and p = 28 are
specified. Due to its pronounced sensitivity to initial conditions and the resulting unpredictable behavior,
this system is recognized as a classical prototype for analyzing complex phenomena in meteorology,
physics, and applied mathematics [41].

Definition 3. Time delay, denoted by 7, is the interval between the introduction of a signal into the sys-
tem and the observation of its effect on the output. In dynamical systems, this phenomenon is typically
caused by physical limitations, such as processing time, information transmission delays, and response
times of system components, and is modeled by explicitly incorporating past state values into the gov-
erning equations [23, 51, 31]. Time delays can be intrinsic, as in biological systems, or artificial, as in
communication networks, and they play a crucial role in generating complex behaviors such as chaos,
sustained oscillations, or instability.

Definition 4. Chaotic systems with time delay are a subset of nonlinear dynamical systems whose gov-
erning equations explicitly incorporate dependence on the state history over the interval [ty — T, ¢o]. In
other words, the state of the system at time ¢ depends not only on the initial condition x(¢¢) but also on
the entire preceding history. This dependence results in an infinite increase in the dynamical dimension
even in single-variable systems, leading to phenomena such as delay-induced chaos or amplification of
nonlinear oscillations. The mathematical model for these systems is expressed as

m(t) :f<x(t)7x(t_7_)7t>7 (2)

where z:(t) € R"™ is the state vector, 7 > 0 represents the time delay (which may be constant or variable),
and f : R™ x R” — R" is a continuous and normalized function [32].

Theorem 1. [23] The Lyapunov—Krasovskii theorem for time-delay systems addresses the stability of
the zero equilibrium in nonlinear dynamical systems with delay. In this framework, the Lyapunov func-
tion is defined as

Vi) = Vi(z(t)) + Va(wr), ®)

where x; denotes the state history over the interval [t — 7, ], V4 (2(t)) is a classical positive definite
function, and Va(z;) is a term accounting for the state history in the interval [t — 7,¢]. The function
V() must satisfy the following conditions:

1. Positive Definiteness: There exist constants a1, as > 0 such that
arllz(t)]|* < V(ae) < asllael2, 4)
where,

[zellc = sup |la(t+0)].
oe[—T,0]
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2. Negative Definiteness of the Time Derivative: The time derivative of V' (x;) along the system
trajectories satisfies
V() < —asllz(®)]?, )

with aig > 0.

Under these conditions, the zero equilibrium of the time-delay system is globally asymptotically stable.

Remark 1. Recent work by Yan et al. [40] introduced novel Lyapunov—Krasovskii functions that pro-
vide less conservative stability conditions for systems with time-varying delays. This approach has

inspired the development of the enhanced Lyapunov function in the present study.

2.1 Lorenz System Model with Constant Delay

Using the Lorenz system (2) and the definition of chaotic systems with time delay (4), in this study the
Lorenz system with constant delay is employed as a classical model for investigating chaotic behavior
in the presence of time delays. In this model, by modifying the standard Lorenz equations, a delay 7 is
added to the state variable y(t). The dynamic equations of the system are defined as follows:

() = oyt — ) — (1)),
y(t) =z(t)(p — 2(t)) —y(t — 1), (6)
(1) = z(t)y(t —7) = Bz(1),

where the state variables x(t), y(t), and z(t) are defined, and the standard parameters are set as o = 10,

B = £, and p = 28. Additionally, the time delay 7 > 0 is applied as a constant to y(t).

2.2 Formulation of the Control Problem

The primary objective of this research is to design an adaptive control law u(t) to guarantee the Practical
convergence of the state variables x(t), y(t), and z(¢) to the equilibrium point (0, 0, 0) in the presence
of the time delay 7 and the inherent nonlinearity of the system.

2.2.1 Main Challenges

1. Time Delay (7): As the time delay increases from zero, the system initially maintains stability
at the zero equilibrium. However, when the delay approaches a critical value, a pair of complex
conjugate roots with purely imaginary parts appears, and with further increases in the delay, the
system experiences severe instability [62].

2. Emergence of History-Dependent Nonlinear Terms: The introduction of a constant delay 7 in the
state variable y(t) results in the appearance of history-dependent nonlinear terms such as y(t —7)
in the dynamic equations, which adversely affect the system’s stability [17].
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3. Intrinsic Nonlinearity of the System: The presence of nonlinear terms such as z(¢)y(t — 7) and
x(t)(p—z(t)) increases the sensitivity of the system to initial conditions and renders linear control
methods, such as PID or MPC, ineffective under high-delay conditions [5, 43].

2.2.2 Mathematical Formulation of the Controlled System

By introducing the control signal u(t) into the ¢(t) equation, the controlled system model is defined as:
By adding the control signal u(¢) to the (¢) equation, the controlled Lorenz system with constant delay
(7) is defined as follows:

#(t) = o(y(t — 1) — a(1)),
gt) =z@t)(p— 2(t)) —y(t — 1) + u(t), (7
2(t) = x(t)y(t — 1) — Bz(t).

where the state variables x(t), y(¢), and z(t) are defined, and the standard parameters are set as ¢ = 10,
B = %, and p = 28. Additionally, the time delay 7 > 0 is applied as a constant to y(¢). To achieve
Practical stability, the following conditions must be satisfied:

lim [l2()]| =0, lim [y(t)] =0, lim [l2(6)] =0. (8)

t—o0 t—o0 t—o0

2.2.3 Analysis of the Selection of the §(¢) Equation for Controller Insertion

1. Direct Control of the Source of Instability: The system’s instability primarily arises from the
nonlinear interactions in the §(¢) equation; for example, the term 2:(¢)(p — 2(¢)) and the effect of
the delay y(¢t — 7) are the main contributors to this instability. Inserting the control signal here
enables direct regulation of these components, thereby facilitating optimal instability management
[17].

2. Faster Impact on the Entire System: Since the variable y(t) appears in both the ©(¢) and 2(t)
equations, applying the control signal u(t) in the y(¢) equation has a simultaneous effect on all
state variables, which accelerates the convergence of the system [27].

3. Prevention of Exacerbated Nonlinear Interactions: Adding the controller to the (t) equation
helps to prevent the amplification of nonlinear interactions in the other equations, particularly in
the term = (¢)y(t — 7) in the 2(t) equation. This approach reduces the required control energy and
enhances the overall stability of the system [51].
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3 Hybrid Adaptive Controller Design: Enhanced Lyapunov Function
3.1 Structure of the Enhanced Lyapunov Function

According to the Lyapunov—Krasovskii Theorem 1, the enhanced Lyapunov function V' (z;) is designed
by combining two key mechanisms: an integral term for recording the state history and a trigonometric

term for suppressing nonlinear oscillations, as follows:
Vi(ze) = Vi(ze) + Va(zy), ©)

where the first component represents the current state energy of the system:

1
Vi) = 5 (220 + %) + (1)) (10)
augmented by two additional terms:

1. Integral term (state history):

A t
IRCE (an

-7

which records the state history and accounts for the delay effect.

2. Trigonometric term (nonlinear oscillation suppression).:

1 sin? (y(t)), (12)
which is designed to limit the amplitude of the nonlinear oscillations in y(t).
Thus, the second component is given by

A

Va(zy) = 5/? y?(s) ds + psin®(y(t)), (13)

and the complete enhanced Lyapunov function becomes

Vi(xy) = 1(xQ(t) + 2 (t) + zz(t)) + % /ti y2(s) ds + psin® (y(t)). (14)

2
In this expression, 7 > 0 is the constant time delay, x; denotes the state history over the interval [t — 7, t],
A > 0 is the tuning parameter for the delay effect (integral term), and p > 0 is the gain parameter for
the nonlinear effect (trigonometric term).

3.1.1 Theoretical Foundations of the Integral and Trigonometric Terms

1. Integral Term (11):This term measures the cumulative energy induced by the delay over the in-
terval [t — 7,t] and is based on Theorem 1. The parameter A > 0 adjusts its influence [23, 29].
According to Theorem 1, the derivative of this term appears in V as —% y?(t—7), which prevents
the accumulation of energy over the delay interval.
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2. Trigonometric Term (12): The inclusion of the trigonometric term, 1 sin®(y(t)), serves a pro-
found strategic purpose that extends beyond the high-level objective of merely “suppressing os-
cillations”. Its primary function is revealed through the systematic derivation of the control law,
which is engineered to exploit the mathematical structure of this term.

The mechanism is elucidated by examining the time derivative of the Lyapunov functional, V.

The derivative of the trigonometric component is given by

%(u sin’(y(1))) = psin(2y)y-

When the system dynamics are substituted for ¢, this expression introduces into V' several com-

plex nonlinear terms, such as
psin(2y) - [z(p — 2) —y(t — 7) +ul.
To counteract these destabilizing effects and actively introduce damping, the control law w(t) is

strategically synthesized to include the component —p sin(2y).

Consequently, upon substituting the full control law into the 1% equation, the term p sin(2y) - u

generates a powerful, stabilizing, and negative-semidefinite quadratic damping term:
—u? sin®(2y).

This demonstrates that the selection of the sin®(y) function is a deliberate and intelligent design
choice, predicated on the properties of its derivative. The resulting sin(2y) term provides the ideal
mathematical structure for the controller to inject targeted nonlinear damping into the system.
This design offers two distinct advantages inherent to sophisticated nonlinear control:

(a) Effective Damping Near Equilibrium: In the vicinity of the equilibrium point, the approx-
imation sin(2y) =~ 2y ensures that the control action is potent and behaves similarly to

high-gain linear feedback, facilitating rapid convergence.

(b) Inherent Boundedness Far from Equilibrium: The bounded nature of the sine function en-
sures that the control effort remains constrained even when the state y(¢) is large. This
property is critical for practical implementations as it inherently mitigates the risk of actu-

ator saturation.

3.1.2 Stability Conditions of the Enhanced Lyapunov Function

If enhanced Lyapunov function (14) satisfies the two conditions below simultaneously, then, based on
Theorem 1, the practical stability of the equilibrium point (0, 0, 0) is ensured.

1. Positive Definiteness of V (x¢)

* Lower Bound:
Vixy) > a1||a:(t)||2, ay > 0. (15)

» Upper Bound:
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Vi(ze) < asllzel|s, a2 >0, (16)

where

|z¢]]lc = sup \/:cz s)+2%(s)= sup |z(s)], 17)

sEt—T,t] s€[t—,t]

which is the continuous norm of the system.

2. Negative Definiteness of V ()
V(z) < —asllz@®)|? a3 > 0. (18)

This condition ensures that the system’s energy decreases over time and converges to the equilib-

rium.

Theorem 2 (Positive definiteness of the enhanced lyapunov functional). Consider the Lyapunov func-

tional

Ve = 5 (20 +70 +20) + 5 [ 126 ds+psin (40), (19)

where 7 > 0 is a constant time delay, z;; denotes the state history over the interval [t — 7,¢], A > Oisa
tuning parameter for the delay effect, and ;> 0 is a gain parameter for the nonlinear effect. Denote by

lz(®)]l = v/22() + y2() + 22(1), (20)
the Euclidean norm of the state vector and define the supremum norm over the delay interval as

[zillc = sup [lz(s)]. @1

sEt—T,t]

Then, V() is positive definite in the sense that there exist constants a1, ao > 0 such that

arllz(t)|> < V() < szl (22)
with ) ) \
-
04115, a2:§+?+u. (23)

Proof. We decompose V () into three components and derive appropriate bounds for each.

1. Current State Energy Term:

1

Via(t) = 3 (2 +92() + 2(0)) = Sl 24)

Since || (t)||? > 0 and equals zero if and only if z(t) = y(t) = z(t) = 0, we immediately obtain
the lower bound 1

Viz) = 5 le@®]?, (25)
which shows that o = 3.
2. Integral Term (Delay Effect):
The functional V5 (z;) captures the cumulative effect of the delayed state y(s) over the interval

[t —7,t]:
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Va(z) = %/t y*(s)ds.

—T

(26)

Since A > 0 and 3(s) > 0 forall s, Va(x) is nonnegative, as required for Lyapunov functionals.

To establish an upper bound, we systematically analyze the relationship between the state com-

ponents and the supremum norm ||x||¢. First, recall that the Euclidean norm of the state vector

x(s) = [w(s), y(s), z(s)]" is:

Ix(s)ll = v/22(s) + y2(s) + 2%(s)-

This implies that each individual component is bounded by the full state norm:

yi(s) < 2%(s) + 97 (s) + 2%(s) = Ix(s)|*, Vs € [t —7.4].

Furthermore, by the definition of the continuous norm

lzellc = sup |Ix(t+0)],
oe[—,0]

which represents the supremum of ||x(s)|| over s € [t — 7, t], we have:
Ix(s)Il < [lzellos Vs € [t — 7.t
Squaring both sides preserves the inequality:
Ix(8)[* < flellE-
Chaining these inequalities yields:
y*(s) < [x()1* < a2

Since this bound holds uniformly over the integration interval, we derive:

t t
[ s [ lalids
t—71 t—T1

t
ol [ as
t—7

= 7llaellE,

@7

(28)

29

(30)

€2))

(32)

(33)

(34

where the last equality follows from the definite integral of a constant. Substituting this result

into V5 (x;) gives the final upper bound:

Va(ay) <

| >

AT
Tlal|E = 7||f5t||2c~
3. Trigonometric Term (Nonlinear Effect):

Vy(a(t)) = psin® (y(t)).

Using the elementary inequality | sin(u)| < |u| for all u € R, it follows that
sin (y()) < w*(8) < o) < [/l

Hence,
Va(z(t)) < pu a2

(35)

(36)

(37

(3%
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By summing the bounds for each component, we have

1 AT
V(ze) = Va(e(t)) + Va(wo) + Va(2(t) < Sllaalle + 5 laalle + o 12 (39)
which simplifies to
1 A7 9
V() < 3T 5 tH |zl (40)

This establishes the upper bound with ais = % + % + .

Remark 2. Notice that V(z;) = 0 if and only if each term in (19) vanishes. Specifically:
1. Vi(z(t)) = 0ifand only if 2(¢) = 0, y(¢t) = 0, and z(t) = 0.
2. Vo(zy) =0ifand only if y(s) = 0 forall s € [t — 7, ¢].

3. Va(z(t)) = 0 ifand only if sin(y(t)) = 0; however, given y(t) = 0 from the first condition, this
is automatically satisfied.

Thus, the only solution for V(z;) = 0 is when the state is identically zero over the interval [t — 7, ¢],
confirming the positive definiteness of the functional.

O

3.2 Adaptive Hybrid Controller Law Based on the Enhanced Lyapunov Function

3.2.1 Design of the Controller by Combining Integral and Sine Terms

To design the controller based on the enhanced Lyapunov function (14), we consider the Lorenz system
with a constant delay under control (7). The primary objective is to design an adaptive control law u(t)
that satisfies:

* Practical convergence to the equilibrium with arbitrarily small bound

* Simultaneous management of both time-delay effects and the inherent nonlinearity of the system
[23, 46]

By differentiating the enhanced Lyapunov function (14) regarding the time and substituting the system

equations into V, we obtain:
V=iz+yy+ziz+ % (v*(t) — y*(t — 7)) + psin(2y) y
==z [U(y(t —-7)— x)} + y{x(p —z)—ylt—7)+ u] + z[a?y(t —-7)— Bz} 41)

A .
+5 (V70 =y (t = 7)) + psin(2y) [2(p — 2) = y(t = 7) +u].
Upon simplification, V takes the form

V = —oa? - 822 = \*(t — 7) + yu (1 + psin(2y)) + Interaction Terms, (42)



126 Robust Hybrid Adaptive Control .../ COAM, 11 (1), Winter-Spring (2026)

with

Interaction Terms = oz y(t — 7) + pry — xyz + psin(2y)x(p — z) — psin(2y)y(t — 7).

To ensure practical convergence, the control law u(t) is designed

A B ox(t)y(t — )
2 y2(t) + €

where

* The term —3 y(t) — 2eyl=7) manages the delay effect,

VY2 (t)+e

e The term —pu sin(2y(t)) suppresses nonlinear oscillations.
The roles of the parameters are as follows:

* k: Gain for rapid damping of oscillations,

* \: Gain for neutralizing time-delay effects,

* p: Gain for suppressing nonlinear oscillations,

* ¢: Small positive constant to prevent division by zero.

3.2.2 Stability Analysis and Practical Convergence

as

— psin(2y(t)),

By substituting «(¢) into V and analyzing the resulting expression, we obtain:

. A
V < —oa® - B2% — ky? — §y2(t — 1) — psin®(2y)

|yl

N

+olzlly(t =) 11—

+ plzllyl + |=|ly||2]-

(43)

(44)

(45)

Using Young’s inequality and Lipschitz continuity arguments, we establish bounds for the interaction

terms:

Plar o, 2 o
< 2= =
p|$|y|_2<2x +a1y)7

|zlyllz] <

g

Liaz 5 5 2
2<2xz‘+@y ’

2
olelle— 7)) < 5 (S + 2= ).

Combining these bounds, we obtain the fundamental stability inequality:

V < —c12? — coy? — e32% — cay’(t —7)+ D,

where,

yyest (%)
4 4

[ofe%:]
=02 - g, - 2

(46)

7

(4%)

(49)
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p 1
co=k——— —
(€51 (&%)
03267
A o
oq =2 — —
4 2 (6 %3
2 2
uep
D = constant).
I ( )

The parameters «; > 0 are chosen such that all ¢; > 0. This leads to the following stability results:

2

Remark 3 (On energy dissipation). The energy-dissipating terms, represented by —c12? — coy? —
2

c32? — cyy*(t — 1), are sufficiently large to counteract the effect of the small positive term D within
the Lyapunov derivative V. This structure thereby guarantees global asymptotic stability, a principle
elaborated upon in the context of stability theory [27, see Ch. 9, Sec. 2 and Ch. 4, Sec. 9].

Theorem 3 (Practical stability). Under the control law (44) with sufficiently large k, A, u, the system
exhibits:

1. Uniform Ultimate Boundedness: All trajectories converge exponentially to the compact set:
Q= {(z,y,2) | 12® + coy® + c32° + cay?(t — 7) < D}.

2. Arbitrarily Small Convergence Region: The diameter of (2 satisfies:

diam(Q) ~ O | —F ] .
) ( min(ci)>

3. Controlled Convergence Region: The diameter of (2 is determined by the choice of control gains.
The final size of this region emerges from a fundamental trade-off: increasing the linear damping
gains (k, \) typically reduces the region, while the nonlinear suppression gain () directly impacts
the magnitude of the ultimate bound D.

Proof. The inequality (49) implies:
1. When ¢12% + coy? + c32% + c4y?(t — 7) > D, we have V <0.
2. This guarantees all trajectories enter €) in finite time.
3. The size of Q2 is controlled by D and ¢;.

4. Increasing k, A\, u reduces diam(€).

3.2.3 Analysis of Controller Components

1. Nonlinear Oscillation Suppression: The term —p sin(2y) provides bounded control effort that:

+ Counteracts nonlinear interactions like x sin(2y)z(p — z).

* Maintains smooth control action near equilibrium.
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ox(t)y(t—7).

V() +e

« Intelligently manages sign uncertainty in ozy(t — 7).

2. Delay Compensation Strategy: The term —

* Prevents division-by-zero singularities.

 Attenuates history-dependent nonlinear interactions.
3. Gain Selection Guidelines:

* Increase k to improve convergence rate.
* Increase A to counteract larger delays.
* Increase u to suppress stronger oscillations.

* Set € < 1 to maintain continuity.

3.2.4 Practical Implementation Considerations

The proposed controller achieves:
* Robust Performance: Effective across wide delay range (7 = 0.5 — 20s).
* Computational Efficiency: Suitable for real-time implementation.
* Parameter Adaptability: Gains can be tuned for different operating conditions.

Simulation experiments presented in 4 demonstrate the controller’s practical convergence charac-
teristics. Even when subject to significant time delays, the state trajectories inexorably converge into a
compact neighborhood around the origin.

4 Simulation and Results of the Lorenz System
4.1 Simulation Settings

1. Simulation Environment: The Lorenz chaotic system with time delay (7) was simulated in MAT-
LAB.

2. Initial Conditions: The system was initialized with z(0)” = [111].

3. Parameter Determination Method: Due to the nature of the problem, the fixed control parame-
ters k, A, and p were automatically determined using a genetic algorithm (GA) as a metaheuristic
method [45]. The GA utilized a fitness function strategically formulated to enforce the Lyapunov
stability condition (V' < 0) with a significant penalty for violations, while secondarily minimiz-
ing the maximum norm of the state vector to enhance transient response and reduce the final

convergence region.

4. Time Delay: In the simulations, the time delay 7 was varied over different values, including 0.5,
1, 10, and 20 seconds.
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5. Simulation of Delay Differential Equations: Delay differential equations were simulated in MAT-
LAB. In addition, the control law (44) was designed and implemented based on the enhanced
Lyapunov function.

6. Expected Equilibrium: Based on the stability proof of the enhanced Lyapunov function (14) and
the Lyapunov—Krasovskii theorem (1), the equilibrium point (0, 0, 0) is expected to be Practical
stabilized. In other words, any deviation from this point decreases over time and the system auto-
matically returns to equilibrium. Furthermore, it is expected that the Lyapunov function satisfies
V' > 0 and its derivative Vv < 0 at all times.

4.2 Simulation Results without Delay

In the phase diagrams (Figure 1), the characteristic “butterfly” structure of the Lorenz attractor is clearly
observed, which illustrates the complex and chaotic behavior of the system. Moreover, the system does
not converge to the equilibrium point but remains confined within a chaotic attractor; this confirms the
inherent chaotic nature of the Lorenz system. In the absence of both control and delay, the system does
not exhibit Practical stability.

ol bt b ot st ot bt oGt i

Time(Second)

(a) State variable value (b) Phase space diagram

Figure 1: Lorenz system state without control (7 = 0 seconds).

4.3 Simulation Results with Delay and without Controller

Introducing a time delay of 7 = 0.2 seconds in the y(t) equation leads to significant changes in the system
dynamics. In chaotic systems like the Lorenz system, which are highly sensitive to initial conditions,
even a slight change in dynamic parameters can fundamentally alter the phase trajectories and cause
divergent behavior (Figure 2).

4.4 Simulation Results with Delay and with Controller

In this section, the simulation results of the controller based on the enhanced Lyapunov function under
different time delay conditions (0.5, 1, 10, and 20 seconds) are presented.
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Time{Sacond)

(a) State variable value (b) Phase space diagram

Figure 2: Lorenz system state without control (with delay 7 = 0.2 seconds).

i

(a) Lyapunov function (V' (£), V (t)) (b) State variable value

Figure 3: Lorenz system state with control (with delay 7 = 0.5 seconds).

o

(a) Lyapunov function (V (£), V (t)) (b) State variable value

Figure 4: Lorenz system state with control (with delay 7 = 1.0 seconds).

The simulation results for delays 7 = 0.5 (Figure 3), 7 = 1 (Figure 4), 7 = 10 (Figure 5), and 7 = 20
(Figure 6) indicate the effective performance of the control law in managing the system dynamics and

ensuring practical stability. From these simulations, the following observations can be made:

1. In the phase diagrams, it is observed that the state variables x(t), y(t), and z(¢) converge to the
equilibrium point after a certain period. This convergence indicates the success of the controller
in reducing oscillations and stabilizing the system dynamics. Furthermore, the Lyapunov function
V (t) uniformly decreases and approaches zero over time, signifying a reduction in the system’s

energy and fulfilling the expectations of an effectively controlled system.
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|

(a) Lyapunov function (V' (), V (t)) (b) State variable value

Figure 5: Lorenz system state with Control (with delay 7 = 10.0 seconds).

(a) Lyapunov function (V' (¢), V (£)) (b) State variable value

Figure 6: Lorenz system state with control (with delay 7 = 20.0 seconds).

2. The time derivative of the Lyapunov function, V(t), is observed to be nonpositive at all times.
This characteristic, in line with the principles of the Lyapunov—Krasovskii theorem for practical
stability, confirms that the system under the hybrid control is Practical stable.

3. For a small delay such as 7 = 0.5 seconds, V(t) quickly tends to stable negative values.

4. For larger delays such as 7 = 10 and 7 = 20 seconds, despite initial oscillations, V(t) eventually
converges to stable negative values. This behavior demonstrates the significant capability of the

controller in managing severe delays.

5. When the delay is small (7 = 0.5 seconds), the system rapidly reaches equilibrium, and the

oscillations in the state variables decay exponentially.

6. As the delay 7 increases, the system enters an oscillatory phase; however, due to the effective
combination of the integral and trigonometric terms in the control law, the oscillations are sup-
pressed and the stability of the system is maintained.

7. Under large delays (7 = 10 and 7 = 20 seconds), although the system initially exhibits severe
oscillations, the controller is able to neutralize the effect of the delay through the effective com-
bination of the integral and trigonometric terms, leading to a gradual decrease in the Lyapunov
function V' (¢). This indicates the high robustness of the proposed method against large delays.

To summarize, the examination of the simulation results authorizes that the new control law not only
guarantees the convergence of the state variables, but also, through the uniform decrease of the Lyapunov
function and the nonpositivity of its derivative, fully establishes the practical stability of the system in
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accordance with the second condition of the Lyapunov—Krasovskii theorem. This scientific achievement
establishes the proposed method as an efficient and robust solution against severe time delays in the

control of nonlinear dynamical systems.

Sensitivity Analysis of Controller Gains

To evaluate the controller’s robustness to variations in its key gains, a sensitivity analysis was conducted
on the parameters k, A, and u. The results reveal that the linear damping gain, k, primarily affects the
convergence speed; lower values result in slower or more oscillatory responses, whereas excessively high
values can produce an overly aggressive control signal. The delay compensation gain, A, plays a critical
role in ensuring system stability, particularly for large delays 7. The system shows significant sensitivity
to this parameter, with stability being compromised if A falls below a delay-dependent threshold. The
nonlinear damping gain, u, presents a key trade-off: while increasing p effectively suppresses large-
amplitude chaotic oscillations during the transient phase, it simultaneously enlarges the ultimate bound
region, potentially increasing the steady-state error. This analysis underscores the complex interaction
between the gains and confirms that the parameter set derived via the genetic algorithm provides a well-
balanced compromise between stability, convergence speed, and final tracking accuracy.

Comparative Discussion

To contextualize the contributions of this work, a comparative analysis against established control
methodologies is offered in Table 1. The proposed LKF-based controller carves out a compelling niche
by balancing analytical rigor, performance, and application feasibility. Unlike Sliding Mode Control
(SMC), our method generates a smooth, chattering-free control signal, which is critical for preventing
mechanical wear in physical actuators [7, 34]. While Model Predictive Control (MPC) also produces
smooth signals, it suffers from a very high online computational burden, especially for systems with
large delays, making it impractical for many real-time applications [22, 50]. Our controller, in con-
trast, requires only the evaluation of a simple algebraic expression, ensuring computational efficiency.
Furthermore, while Adaptive Intelligent Control (AIC) using neural or fuzzy systems offers excellent ro-
bustness to unmodeled dynamics [20, 56], it often involves complex tuning of network architectures and
learning rates, and its stability guarantees are contingent on the boundedness of approximation errors.
The method developed herein provides a strong, formal guarantee of Uniform Ultimate Boundedness
(UUB) based on a precise analytical model, representing a powerful and practical substitute for systems
where such a model is available.

5 Conclusion and Future Work

This work proposes a robust and adaptive control framework for chaotic systems subject to large, con-
stant time delays. The approach is built upon a specially constructed Lyapunov—Krasovskii functional
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Table 1: Analytical comparison of control methodologies for chaotic systems with time delay.

Feature / Proposed Method Sliding Mode Model Predictive Adaptive
Method (LKF-based) Control (SMC) Control (MPC) Intelligent Control
(NN/Fuzzy)
Model High. Needs Medium. Needs Very High. Low-Medium.
Dependency accurate model for model for surface; Critically needs Needs general
LKF design (this robust to uncertainty  accurate model; structure; learns
study). [12, 15, 58]. mismatch hurts unknown dynamics
[43, 50, 54]. [2, 20, 56].
Large Delay Excellent. Designed  Good (with mods). Medium-Poor. Good. Often
Management for large delays via Standard SMC must  Large delays make integrated with LKF
LKF; tested for be augmented with problem to handle unknown
7 = 20s (this study). LKF for delays computationally time-delays

Handling of
Strong
Nonlinearity

Chattering
Suppression

Formal
Stability
Guarantee

Computational
Cost (Online)

Implementation
Simplicity

Excellent. Employs
direct cancellation
for Lorenz system
(this study).

Excellent.
Continuous, smooth
control law prevents
chattering (this
study).

Very Strong.
Rigorous
mathematical proof
of UUB via LKF
(this study).

Very Low. Requires
only evaluation of a
simple algebraic
expression (this
study).

Medium. Complex
law, simple
implementation;
challenge is gain
tuning (this study).

[18, 47, 51].
Excellent.
Overcomes
nonlinearities via
high-gain
discontinuous
control [15, 58].
Poor (Inherent).
Discontinuous
control is primary
cause of chattering
[7, 34, 36, 55].
Very Strong.
Guarantees
finite-time
convergence to
stable surface [58].

Low. Involves
calculating surface
and a simple
switching function
[58].

High. Simple
concept; primary
challenge is
chattering
management
[12, 58].

intractable [22, 42].
Good (high cost).
Handles
nonlinearities but
requires expensive
NLP [1, 22, 35].

Excellent. Smooth
optimization ensures
a chattering-free
output [43].

Strong (with
assumptions). Not
inherent; needs
terminal
cost/constraints
[43, 50].

Very High.
Requires solving a
constrained
optimization
problem each step
[50, 54].

Low. Needs
sophisticated solvers
and complex tuning
of many parameters
[50, 54].

[19, 56, 40].
Excellent. Core
strength is universal
approximation
property [2, 24, 59].

Excellent.
Continuous output;
fuzzy logic often
used to stop
chattering [13, 28].
Strong (UUB).
Lyapunov proof, but
contingent on
bounded approx.
error [20, 40, 56].

Medium. Network
forward pass and
adaptive updates;
>SMC, <MPC

[20, 33].

Low-Medium.
Challenged by
network/fuzzy
architecture design
and tuning [3, 33].
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(LKF) that combines an integral term to compensate for delayed state effects with a trigonometric term

that moderates nonlinear oscillations. Stability analysis demonstrates that the resulting controller guar-

antees Uniform Ultimate Boundedness (UUB) of the closed-loop system. Extensive simulations on the

delayed Lorenz system confirm rapid convergence to a small neighborhood of the equilibrium, even for

delays up to 20 seconds, and empirically support the theoretical findings through the non-positive time

derivative of the LKF. Overall, the method provides a computationally efficient and low-complexity

alternative to existing delay-compensation techniques such as Model Predictive Control and predictive

feedback, while offering strong stability guarantees. Several avenues for further research arise from this

study:
1.

Extension to time-varying delays: Developing an LKF-based framework capable of handling
unknown or time-varying delays to broaden applicability.

. Adaptive delay estimation: Incorporating real-time delay estimation mechanisms to enhance per-

formance under uncertain or drifting delays.

. Broader nonlinear applications: Applying the method to higher-dimensional, networked, or more

complex nonlinear chaotic systems.

Experimental validation: Implementing the controller on physical systems to further demonstrate
practicality and robustness.

. Integration with learning-based strategies: Exploring hybrid approaches that combine the pro-

posed framework with data-driven or learning-augmented techniques for improved adaptability
under modeling uncertainties.
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