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Abstract. In irregular coloring, each vertex is labeled with a unique
color code, a tuple consisting of its assigned color and the number
of neighbors in each color class. This work proposes a local search
algorithm as a metaheuristic approach to the irregular face coloring
problem in planar graphs, with a particular focus on fullerene molecular
structures. Additionally, a linear programming model is utilized to
validate the performance of the proposed algorithm. The methodology
demonstrates efficient solutions for irregular coloring in fullerene
graphs, bridging combinatorial optimization with practical applications
in chemistry and materials science.
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1 Background and Motivation

Graph coloring is a central topic in graph theory and combinatorics, with wide-ranging applications
in scheduling, resource allocation, frequency assignment, and molecular chemistry. The idea was first
formally introduced by Francis Guthrie in 1852, which spurred the development of diverse coloring tech-
niques, including equitable coloring, list coloring, and irregular coloring, each designed for particular
practical needs [3].

For a graph G, the degree of a vertex v ∈ V , denoted deg(v), is the number of edges incident to v.
A proper coloring assigns colors to vertices such that adjacent vertices receive different colors, thereby
preventing conflicts or overlaps in various contexts.

1.1 Notations and Definitions

A function f is called a proper coloring of a graph G if f(u) ̸= f(v) for each uv ∈ E(G).
Let f be a proper coloring of graph G. For a vertex v of G, the color code of vertex v, denoted by

c(v), is the vector

c(v) = (x1, x2, . . . , xk),

where xi represents the number of neighbors of v colored with color i.
A proper coloring f of G with the property that c(u) ̸= c(v) for each pair of distinct vertices

u, v ∈ V (G) is called an irregular coloring of G.
This concept was first introduced by Radcliffe et al. in [10], motivated by a graph-theoretic problem

concerningmethods to distinguish all the vertices of a connected graph. A few years later, Anderson et al.
[1] explored irregular colorings of regular graphs. The irregular chromatic number for derived graphs,
such as the flower graph, middle graph, and total graph, was investigated Rohini et al. in [11]. Recently,
graph labeling has emerged as a significant area of study in graph theory, involving the assignment of
integers to vertices, edges, or both, typically under specific rules or constraints.

An irregular coloring assigns a distinct color code to each vertex. The minimum k of colors that
yields unique codes for all vertices is the irregular chromatic number χir(G) [1].

Driven by the wide variety of real- world problems, several extensions of vertex coloring have been
introduced. For instance, in [7], a face-distance coloring of graphs was recently proposed to partition
atoms in Fullerenes. The same study also discussed applications of face colorings within mathematical
chemistry. Inspired by this idea, we introduce the notion of irregular face coloring in the present work.

A fullerene graph is a planar, 3-regular (cubic) graph that models fullerene molecules, carbon struc-
tures arranged in spherical, tubular, or ellipsoidal forms. These graphs are connected, planar, and cubic,
implying that each vertex has degree 3 [2, 12]. Throughout, we denote by Fn a fullerene with n vertices.

Exploring irregular coloring in fullerenes yields insights into the structural and functional properties
of these molecules, with meaningful implications for chemistry and materials science. The concept of
irregular face coloring assigns unique color codes for molecular faces, enabling topological distinction
between carbon pentagons and hexagons, an essential feature for isomer identification in chemical graph
models.
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2 Local Search Algorithm for Irregular Coloring

Since determining the irregular chromatic number is an NP-hard problem, metaheuristic algorithms con-
stitute a practical and effective strategy for tackling this problem. This paper adopted a local search
algorithm as the principal metaheuristic framework, and its performance is further supported through
linear programming formulations.

A local search algorithm is a heuristic optimization technique that initiates from an initial solu-
tion and iteratively makes small, incremental changes to obtain superior solutions within a constrained
neighborhood.

In this section, a practical heuristic scheme is introduced to address the irregular coloring problem.
The algorithm starts with a proper coloring and iteratively refines it byminimizing conflicts until an irreg-
ular coloring is produced or a predefined computational bound is reached. This iterative improvement
mechanism demonstrates an efficient way to explore the solution space in this complex optimization
problem [5, 8].

2.1 Local Search Algorithms for Irregular Coloring

The irregular coloring problem is NP-hard, so this section presents two practical, modular algorithms: a
Local Search Algorithm for Irregular Coloring (LSA-IC) and a Supporting Routine for Random Proper
Coloring and Conflict Counting (PRC-CC). The Python implementation offers a workable approach that
ensures proper coloring and unique vertex color codes.

Local Search Algorithm Overview

1. Initialize with a random proper coloring.

2. Iteratively attempt to decrease the number of conflicts (vertices with identical color codes or
adjacent vertices assigned the same color) by recoloring selected vertices.

3. Terminate when an irregular coloring is obtained or when the algorithm reaches the maximum
allowed number of iterations.

In Table 1, the notation and definitions relevant to the LSA-IC is presented. For ease of reference,
the table below provides each symbol and its meaning with an appropriate caption. Specifically, the
entries and definitions for G, k, MaxIter, v, C0, Ci, C

∗, c, c′, and the function conf(C) are described.

The Python implementation of this algorithm offers a practical local search approach for irregular
graph coloring, ensuring both proper coloring and unique color codes for all vertices.
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Algorithm 6 Local Search Algorithm for Irregular Coloring (LSA-IC)

Input: Graph G, number of colors k, maximum iterationsMaxIter.

Output: An irregular vertex coloring C ′ of G or a failure signal.

Generate a random proper coloring C0 for G with k colors (via Algorithm 7).

for i = 0 toMaxIter do

Compute number of conflicts in Ci.

if the number of conflicts is 0 then

return Ci as a valid irregular coloring.

else

Randomly select a vertex v.

Let the current color of v be c.

for each alternative color c′ ∈ {1, . . . , k} \ {c} do

Temporarily assign c′ to v.

if the new coloring is proper and reduces conflicts then

Update the best coloring and conflict count.

end if

end for

Update Ci+1.

end if

end for

return failure.

2.2 Irregular Coloring of Some Fullerenes

TheWe adapt a local search algorithm to compute χir(G) for certain Fullerenes including an isomer
under the isolated-pentagon-rule (IPR) with 80 vertices, denoted by F IPR

80 , as well as F IPR
100 , and F IPR

120

(IPR with 100 and 120 vertices, respectively) (see [12]).

2.3 Irregular Coloring of Some Hypercubes

A hypercube graph (Qn) represents the vertices and edges of an n-dimensional hypercube. These graphs
have 2n vertices and are n-regular, meaning every vertex has degree n.
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Table 1: Notation used in Algorithms

Symbol Meaning Description

G Input graph The graph on which the irregular coloring problem is defined.
k Maximum number of colors The upper bound on the color set {1, . . . , k}.
MaxIter Maximum iterations Upper limit on the number of iterations of the algorithm.
v A vertex of the input graph A generic vertex in G.
C0 Initial random proper coloring The starting coloring ofG with k colors.
Ci Coloring at iteration i The coloring obtained in iteration i.
C∗ Irregular coloring of the graph A coloring in which all vertices have distinct color codes.
c Current color of vertex v The color currently assigned to vertex v.
c′ New color of vertex v A candidate color for v in a recoloring step.
conf(C) Conflict function Computes conflicts for coloringC. It produces amatrix withn rows and

k + 1 columns, where n is the number of vertices. Each row encodes
the color code of a vertex.
If the rows are pairwise distinct, there is no conflict under the first condi-
tion. The second condition enforces that adjacent vertices do not share
the same color. The total conflict count is the sum of conflicts under
both conditions.

Algorithm 7 Proper Random Coloring and Conflict Counting (PRC-CC)

Input: Graph G, coloring C, number of colors k.

Output: Number of conflicts in C.

Assign each vertex a color from {1, . . . , k} such that adjacent vertices have different colors.

For each vertex, compute its color code.

Pairwise compare all vertices’ codes:

If two vertices share same code, increment conflict count.

If two adjacent vertices share the same color, increment improper-conflict count.

return the sum of conflicts.

For example, the 5-dimensional hypercube (Q5) has 32 vertices and is 5-regular.

2.4 Computational Results

Using the local search algorithm, we computed results for Fullerenes and hypercubes with various num-
bers of vertices.

Refer to [1], Theorem 1.3, if c is an irregular k-coloring of a non-trivial connected graph G, then G
contains at most

k ×
(
r + k − 2

r

)
,

vertices of degree r.
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(a) Structure of Fullerene F80 (b) Irregular coloring of F80 with k = 6

(c) Irregular colored F100 with k = 6 (d) Irregular colored F120 with k = 7

Figure 1: n denotes the number of vertices and k denotes the number of colors.

(a) Q5 (b) Q6

Figure 2: Q5 (n = 32) and Q6 (n = 64) irregular colored with k = 5.

Fullerenes are 3-regular, while hypercubes are 5- and 6-regular. Consequently, to find an irregular
coloring of the target graph using Algorithm 6, it suffices to determine the minimum k that satisfies the
mentioned theorem. This observation indicates that the proposed approximate algorithm achieves high
performance with a small margin of error, validating its practical applicability and robustness.
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Table 2: Results obtained using the local search algorithm.

Number of vertices (n) By Theorem By Algorithm Runtime (s) Number of iterations
80 5 6 0.0791 194
100 5 6 0.1107 246
120 6 7 0.1024 75
32 4 5 0.0151 5
64 4 5 0.1261 314

3 Integer Linear Programming Model of Irregular Coloring

This section describes an exact computational model for irregular coloring based on integer linear pro-
gramming (ILP). The objective is to minimize the total number of used colors, subject to coloring feasi-
bility and irregularity constraints.

Min

n∑
i=1

xi

s.t :
n∑

i=1

yv,i = 1, v ∈ V,

yv,i ≤ xi, v ∈ V, ∀i,

yu,i + yv,i ≤ 1, u, v are adjacent, ∀i, (1)
n∑

i=1

(
Iu,v,i +Nu,v,i

)
> 0, u, v with deg(u) = deg(v),

xi ∈ {0, 1}, yv,i ∈ {0, 1}, ∀v, i.

where auxiliary terms are defined as:

Iu,v,i =

0, yu,i = yv,i,

1, otherwise,
Nu,v,i =


0,

∑
u′∈N(u)

yu′,i =
∑

v′∈N(v)

yv′,i,

1, otherwise.

This ILP enforces a proper coloring and encodes the irregular coloring constraint through neighbor-
hood color-code uniqueness.

Limitations of the ILP Model

Although the ILP model (1) yields exact solutions for the irregular coloring problem, its applicability
for all Fullerene graphs is limited by scalability and computational complexity. The model involves a
large number of variables and constraints, which grow rapidly with the input size: both the number of
vertices (n) and the number of colors directly affect the problem’s dimensionality.
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Figure 3: ILP result for path with 5 vertices (path graph, n = 5).

Figure 4: ILP result for cycle with 4 vertices (circle graph, n = 4).

Fullerene graphs possess regularity and symmetry, and as the vertex count increases, the size of the
ILP grows considerably, often leading to exponential growth in the overall problem size. This imposes
substantial computational challenges for ILP solvers.

Exact solving of the ILP for large Fullerene graphs quickly becomes computationally prohibitive,
demanding substantial memory and time-resources that are often impractical for routine experimentation.
This limitationmotivated the application of ametaheuristic local search algorithm, which offers efficient,
approximate, yet high-quality solutions.

4 Face Coloring

Face coloring assigns colors to faces of planar graphs so that adjacent faces (sharing an edge) have
different colors. Irregular face coloring extends this with unique neighborhood color codes for faces via
the dual graph.

Algorithm 8 describes irregular face coloring for planar graphs by constructing the dual graph D
and applying the vertex irregular coloring algorithm toD.



Shahabi & Rahbarnia, / COAM, 11 (1), Winter-Spring (2026) 149

Algorithm 8 Irregular Face Coloring Algorithm (IFCA) for planar graphs
Input: A planar graph G, number of colors k, maximum number of iterationsMaxIter
Output: An irregular face coloring f
Step 1. Check the planarity of graph G.
If G is non-planar, Then terminate the algorithm and report an error.

Step 2. Compute a planar embedding of G and extract all faces.
Step 3. Construct the dual graph D, where each vertex represents a face of G, and edges
indicate adjacency between faces.
Step 4. Apply Algorithm 1 to the dual graphD to obtain an irregular coloring of its vertices.
Step 5. Map the colors obtained fromD back to the corresponding faces of the original graph
G.
Step 6. Return the irregular face coloring f .

Figure 5: Irregular face coloring of fullerene F80 with 7 colors.

Figure 6: Irregular face coloring of fullerene F120 with 7 colors.

Figure 7: Irregular face coloring of hypercube Q3 with 6 colors.
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5 Conclusion

In this paper, the notion of irregular face coloring of graphs is introduced, and a linear model corre-
sponding to this concept is presented. Furthermore, a local search algorithm for irregular face coloring
of graphs is proposed. The comparative results demonstrate the accuracy of the proposed algorithm. For
future research, it would be interesting to develop alternative approximation algorithms and compare
their performance with that of the proposed approach.
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